Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Mo(CO)2(phen)2] (phen = C12H8N2), the Mo atom adopts a cis-MoC2N4 geometry. The C—Mo—C angle of 88.0 (3)° is close to its ideal, undistorted value and the dihedral angle between the phen mean planes is 84.79 (9)°. A C—H...O bond and various π–π stacking inter­actions [centroid-centroid separation = 3.472 (3)–3.890 (4) Å] may help to establish the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042791/sj2349sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042791/sj2349Isup2.hkl
Contains datablock I

CCDC reference: 663573

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.054
  • wR factor = 0.141
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), Mo(CO)2(phen)2 (phen = 1,10-phenanthroline, C12H8N2), was first reported over forty years ago by Behrens & Harder (1964). Chisholm et al. (1984) described the crystal structure of its close analogue Mo(CO)2(bipy)2 (bipy = 2,2'-bipyridine, C10H8N2). Both compounds originate from Mo(CO)6 by the replacement of four carbonyl groups by two N,N-bidentate aromatic ligands.

The asymmetric unit of compound (I) is built up around a distorted cis-MoC2N4 octahedron (Table 1; Fig. 1). The N1—Mo1—N2 and N3—Mo1—N4 phen bite angles are 74.43 (17)° and 73.97 (18)°, respectively, The cis C1—Mo1—C2 angle of 88.0 (3)° in (I) indicates a near ideal (90°) geometry for this grouping. The equivalent angle in Mo(CO)2(bipy)2 is compressed to 82.6 (3)°. Theoretical calculations (Kubácek & Hoffmann, 1981) have suggested an electronic origin for this type of distortion: it is not clear why it occurs in Mo(CO)2(bipy)2 but not in (I).

Both phen ligands in (I) are close to planar and show normal geometrical parameters. The dihedral angle between N1/N2/C3—C13 and N3/N4/C14—C22 is 84.74 (9)°, i.e. the phen molecules are close to perpendicular, and Mo1 is displaced from the N1 and N3-containing molecules by 0.262 (4) Å and 0.068 (4) Å, respectively.

The short Mo1—C1 and Mo1—C2 distances in (I) imply a substantial electron transfer from the Mo 5 d orbitals to the CO antibonding π* orbitals (Chisholm et al., 1984). For comparison, the Mo—C separation in Mo(CO)6, in which the Mo d electrons are "shared out" between six Mo—C bonds, is 2.06 (2) Å (Cotton & Wing, 1965). The difference in Mo—N bond lengths in (I) was also seen in the analagous Mo(CO)2(bipy)2 (Chisholm et al., 1984), and related to models of possible Mo --> bipy(π*) back bonding.

An acute C—H···O bond (Table 2) and various π-π stacking interactions [centroid-centroid separation = 3.472 (3)–3.890 (4) Å] may help to establish the packing for (I), which appears to be quite different to that for Mo(CO)2(bipy)2.

Related literature top

For background, see: Behrens & Harder (1964); Cotton & Wing (1965); Chisholm et al. (1984); Kubácek & Hoffmann (1981).

Experimental top

Mo(CO)6 and excess 1,10-phenanthroline were refluxed in toluene under an N2 atmosphere for seven hours. After cooling, air-stable greenish-black chunks of (I) were recovered by vacuum filtration and rinsing with light petroleum ether.

Refinement top

The hydrogen atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound, (I), Mo(CO)2(phen)2 (phen = 1,10-phenanthroline, C12H8N2), was first reported over forty years ago by Behrens & Harder (1964). Chisholm et al. (1984) described the crystal structure of its close analogue Mo(CO)2(bipy)2 (bipy = 2,2'-bipyridine, C10H8N2). Both compounds originate from Mo(CO)6 by the replacement of four carbonyl groups by two N,N-bidentate aromatic ligands.

The asymmetric unit of compound (I) is built up around a distorted cis-MoC2N4 octahedron (Table 1; Fig. 1). The N1—Mo1—N2 and N3—Mo1—N4 phen bite angles are 74.43 (17)° and 73.97 (18)°, respectively, The cis C1—Mo1—C2 angle of 88.0 (3)° in (I) indicates a near ideal (90°) geometry for this grouping. The equivalent angle in Mo(CO)2(bipy)2 is compressed to 82.6 (3)°. Theoretical calculations (Kubácek & Hoffmann, 1981) have suggested an electronic origin for this type of distortion: it is not clear why it occurs in Mo(CO)2(bipy)2 but not in (I).

Both phen ligands in (I) are close to planar and show normal geometrical parameters. The dihedral angle between N1/N2/C3—C13 and N3/N4/C14—C22 is 84.74 (9)°, i.e. the phen molecules are close to perpendicular, and Mo1 is displaced from the N1 and N3-containing molecules by 0.262 (4) Å and 0.068 (4) Å, respectively.

The short Mo1—C1 and Mo1—C2 distances in (I) imply a substantial electron transfer from the Mo 5 d orbitals to the CO antibonding π* orbitals (Chisholm et al., 1984). For comparison, the Mo—C separation in Mo(CO)6, in which the Mo d electrons are "shared out" between six Mo—C bonds, is 2.06 (2) Å (Cotton & Wing, 1965). The difference in Mo—N bond lengths in (I) was also seen in the analagous Mo(CO)2(bipy)2 (Chisholm et al., 1984), and related to models of possible Mo --> bipy(π*) back bonding.

An acute C—H···O bond (Table 2) and various π-π stacking interactions [centroid-centroid separation = 3.472 (3)–3.890 (4) Å] may help to establish the packing for (I), which appears to be quite different to that for Mo(CO)2(bipy)2.

For background, see: Behrens & Harder (1964); Cotton & Wing (1965); Chisholm et al. (1984); Kubácek & Hoffmann (1981).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
Dicarbonyl-bis(1,10-phenanthroline)molybdenum(0) top
Crystal data top
[Mo(CO)2(C12H8N2)2]F(000) = 1032
Mr = 512.37Dx = 1.669 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2524 reflections
a = 9.7031 (6) Åθ = 2.6–24.6°
b = 14.5684 (10) ŵ = 0.68 mm1
c = 14.7006 (9) ÅT = 296 K
β = 101.142 (2)°Chunk, green–black
V = 2038.9 (2) Å30.22 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3603 independent reflections
Radiation source: fine-focus sealed tube2320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1110
Tmin = 0.865, Tmax = 0.896k = 1717
11958 measured reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0827P)2]
where P = (Fo2 + 2Fc2)/3
3603 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.58 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Mo(CO)2(C12H8N2)2]V = 2038.9 (2) Å3
Mr = 512.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7031 (6) ŵ = 0.68 mm1
b = 14.5684 (10) ÅT = 296 K
c = 14.7006 (9) Å0.22 × 0.19 × 0.17 mm
β = 101.142 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2320 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.896Rint = 0.069
11958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.95Δρmax = 1.58 e Å3
3603 reflectionsΔρmin = 1.12 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.75010 (5)0.22662 (4)0.54232 (3)0.03397 (19)
C10.6848 (6)0.1357 (5)0.6200 (5)0.0451 (16)
C20.5790 (7)0.2066 (4)0.4523 (4)0.0416 (16)
O10.6409 (5)0.0837 (4)0.6684 (4)0.0723 (16)
O20.4796 (5)0.1909 (4)0.3943 (3)0.0636 (14)
C31.0121 (7)0.2653 (4)0.7098 (4)0.0450 (15)
H30.94710.29520.73830.054*
C41.1505 (8)0.2633 (5)0.7554 (5)0.0572 (19)
H41.17660.29060.81330.069*
C51.2489 (7)0.2210 (5)0.7151 (4)0.0546 (18)
H51.34260.22060.74500.066*
C61.2089 (7)0.1778 (5)0.6280 (4)0.0456 (16)
C71.0638 (6)0.1824 (4)0.5875 (4)0.0359 (14)
C81.0123 (6)0.1366 (4)0.5012 (4)0.0341 (13)
C91.1081 (6)0.0892 (4)0.4573 (4)0.0393 (15)
C101.2543 (7)0.0900 (5)0.4978 (5)0.0542 (19)
H101.31810.06110.46750.065*
C111.3007 (7)0.1321 (5)0.5797 (5)0.0536 (18)
H111.39630.13100.60500.064*
C121.0530 (8)0.0430 (5)0.3735 (4)0.0508 (18)
H121.11170.01220.34070.061*
C130.9112 (7)0.0450 (5)0.3422 (4)0.0484 (17)
H130.87250.01460.28760.058*
C140.8251 (7)0.0912 (4)0.3903 (4)0.0420 (16)
H140.72900.09000.36670.050*
C150.5923 (7)0.3434 (5)0.6732 (4)0.0455 (16)
H150.57960.28740.70080.055*
C160.5330 (7)0.4205 (5)0.7049 (5)0.0544 (19)
H160.47910.41510.75050.065*
C170.5542 (8)0.5049 (6)0.6686 (5)0.061 (2)
H170.51540.55740.68950.073*
C180.6350 (7)0.5108 (5)0.6000 (5)0.0477 (17)
C190.6890 (6)0.4298 (4)0.5716 (4)0.0392 (15)
C200.7682 (6)0.4315 (4)0.4978 (4)0.0392 (15)
C210.7944 (8)0.5157 (5)0.4583 (5)0.054 (2)
C220.7413 (8)0.5977 (5)0.4908 (6)0.067 (2)
H220.75980.65380.46550.080*
C230.6639 (9)0.5951 (5)0.5583 (6)0.066 (2)
H230.62890.64950.57780.079*
C240.8739 (8)0.5126 (6)0.3866 (5)0.062 (2)
H240.89490.56640.35820.075*
C250.9182 (9)0.4314 (6)0.3605 (5)0.068 (2)
H250.97070.42880.31390.081*
C260.8862 (7)0.3515 (5)0.4027 (4)0.0522 (18)
H260.91750.29600.38290.063*
N10.9670 (5)0.2270 (3)0.6277 (3)0.0366 (11)
N20.8708 (5)0.1393 (3)0.4707 (3)0.0347 (12)
N30.6669 (5)0.3443 (4)0.6053 (3)0.0367 (12)
N40.8127 (5)0.3502 (3)0.4701 (3)0.0373 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0355 (3)0.0410 (3)0.0249 (3)0.0045 (3)0.00437 (18)0.0041 (2)
C10.032 (4)0.049 (4)0.052 (4)0.011 (3)0.004 (3)0.009 (3)
C20.043 (4)0.045 (4)0.038 (4)0.011 (3)0.010 (3)0.005 (3)
O10.060 (4)0.083 (4)0.079 (4)0.002 (3)0.026 (3)0.039 (3)
O20.045 (3)0.094 (4)0.044 (3)0.007 (3)0.010 (2)0.006 (3)
C30.054 (4)0.051 (4)0.030 (3)0.003 (3)0.010 (3)0.002 (3)
C40.066 (5)0.067 (5)0.032 (4)0.004 (4)0.007 (3)0.003 (3)
C50.047 (4)0.068 (5)0.042 (4)0.007 (4)0.010 (3)0.007 (3)
C60.040 (4)0.056 (4)0.038 (4)0.002 (3)0.001 (3)0.009 (3)
C70.037 (4)0.038 (3)0.032 (3)0.002 (3)0.007 (3)0.007 (3)
C80.043 (4)0.033 (3)0.026 (3)0.001 (3)0.007 (3)0.006 (2)
C90.039 (4)0.043 (4)0.037 (4)0.002 (3)0.011 (3)0.008 (3)
C100.044 (4)0.061 (5)0.062 (5)0.006 (3)0.020 (3)0.002 (4)
C110.032 (4)0.071 (5)0.057 (5)0.003 (3)0.005 (3)0.006 (4)
C120.066 (5)0.055 (4)0.035 (4)0.014 (4)0.018 (3)0.008 (3)
C130.057 (5)0.057 (4)0.027 (3)0.007 (4)0.000 (3)0.006 (3)
C140.051 (4)0.043 (4)0.027 (3)0.003 (3)0.004 (3)0.001 (3)
C150.046 (4)0.061 (5)0.030 (3)0.006 (3)0.009 (3)0.003 (3)
C160.050 (4)0.079 (6)0.034 (4)0.011 (4)0.008 (3)0.014 (3)
C170.057 (5)0.068 (5)0.051 (5)0.018 (4)0.004 (4)0.021 (4)
C180.045 (4)0.046 (4)0.044 (4)0.004 (3)0.010 (3)0.007 (3)
C190.039 (4)0.048 (4)0.025 (3)0.001 (3)0.008 (3)0.002 (3)
C200.036 (4)0.044 (4)0.033 (3)0.001 (3)0.005 (3)0.008 (3)
C210.064 (5)0.046 (4)0.041 (4)0.008 (3)0.012 (4)0.012 (3)
C220.075 (6)0.037 (4)0.075 (6)0.004 (4)0.016 (5)0.013 (4)
C230.078 (6)0.049 (5)0.059 (5)0.010 (4)0.013 (4)0.017 (4)
C240.066 (5)0.058 (5)0.057 (5)0.013 (4)0.002 (4)0.031 (4)
C250.078 (6)0.085 (7)0.043 (5)0.001 (5)0.017 (4)0.024 (4)
C260.062 (5)0.059 (5)0.037 (4)0.002 (4)0.013 (3)0.009 (3)
N10.044 (3)0.035 (3)0.029 (3)0.002 (3)0.001 (2)0.003 (2)
N20.036 (3)0.042 (3)0.024 (3)0.000 (2)0.001 (2)0.004 (2)
N30.030 (3)0.054 (3)0.024 (3)0.004 (2)0.001 (2)0.002 (2)
N40.046 (3)0.039 (3)0.026 (3)0.001 (2)0.005 (2)0.005 (2)
Geometric parameters (Å, º) top
Mo1—C11.933 (7)C13—C141.371 (9)
Mo1—C21.935 (6)C13—H130.9300
Mo1—N22.139 (5)C14—N21.372 (7)
Mo1—N32.177 (5)C14—H140.9300
Mo1—N12.232 (5)C15—N31.343 (7)
Mo1—N42.233 (5)C15—C161.382 (9)
C1—O11.174 (8)C15—H150.9300
C2—O21.180 (7)C16—C171.371 (10)
C3—N11.326 (7)C16—H160.9300
C3—C41.380 (9)C17—C181.396 (10)
C3—H30.9300C17—H170.9300
C4—C51.364 (9)C18—C191.388 (9)
C4—H40.9300C18—C231.423 (10)
C5—C61.412 (9)C19—N31.372 (7)
C5—H50.9300C19—C201.446 (9)
C6—C111.410 (9)C20—N41.350 (8)
C6—C71.420 (8)C20—C211.401 (9)
C7—N11.367 (7)C21—C221.419 (11)
C7—C81.434 (8)C21—C241.421 (11)
C8—N21.360 (7)C22—C231.355 (11)
C8—C91.411 (8)C22—H220.9300
C9—C121.415 (9)C23—H230.9300
C9—C101.429 (8)C24—C251.340 (10)
C10—C111.348 (10)C24—H240.9300
C10—H100.9300C25—C261.382 (9)
C11—H110.9300C25—H250.9300
C12—C131.364 (9)C26—N41.329 (8)
C12—H120.9300C26—H260.9300
C1—Mo1—C288.0 (3)C13—C14—H14117.7
C1—Mo1—N299.0 (2)N2—C14—H14117.7
C2—Mo1—N293.0 (2)N3—C15—C16124.2 (7)
C1—Mo1—N395.6 (2)N3—C15—H15117.9
C2—Mo1—N394.0 (2)C16—C15—H15117.9
N2—Mo1—N3163.99 (19)C17—C16—C15119.6 (7)
C1—Mo1—N192.9 (2)C17—C16—H16120.2
C2—Mo1—N1167.4 (2)C15—C16—H16120.2
N2—Mo1—N174.43 (17)C16—C17—C18119.0 (7)
N3—Mo1—N198.39 (17)C16—C17—H17120.5
C1—Mo1—N4169.5 (2)C18—C17—H17120.5
C2—Mo1—N494.2 (2)C19—C18—C17117.5 (7)
N2—Mo1—N491.20 (19)C19—C18—C23119.2 (7)
N3—Mo1—N473.97 (18)C17—C18—C23123.3 (7)
N1—Mo1—N487.24 (17)N3—C19—C18124.7 (7)
O1—C1—Mo1176.7 (6)N3—C19—C20115.4 (6)
O2—C2—Mo1175.7 (6)C18—C19—C20119.8 (6)
N1—C3—C4123.5 (6)N4—C20—C21123.3 (7)
N1—C3—H3118.3N4—C20—C19117.2 (6)
C4—C3—H3118.3C21—C20—C19119.4 (6)
C5—C4—C3119.8 (6)C20—C21—C22119.4 (8)
C5—C4—H4120.1C20—C21—C24116.5 (7)
C3—C4—H4120.1C22—C21—C24124.1 (7)
C4—C5—C6120.1 (6)C23—C22—C21120.8 (7)
C4—C5—H5119.9C23—C22—H22119.6
C6—C5—H5119.9C21—C22—H22119.6
C11—C6—C5125.2 (6)C22—C23—C18121.5 (7)
C11—C6—C7118.9 (6)C22—C23—H23119.3
C5—C6—C7115.9 (6)C18—C23—H23119.3
N1—C7—C6123.3 (5)C25—C24—C21119.4 (7)
N1—C7—C8116.9 (5)C25—C24—H24120.3
C6—C7—C8119.8 (6)C21—C24—H24120.3
N2—C8—C9125.1 (5)C24—C25—C26120.1 (8)
N2—C8—C7115.8 (5)C24—C25—H25119.9
C9—C8—C7119.0 (5)C26—C25—H25119.9
C8—C9—C12117.4 (6)N4—C26—C25123.2 (7)
C8—C9—C10119.6 (6)N4—C26—H26118.4
C12—C9—C10123.0 (6)C25—C26—H26118.4
C11—C10—C9120.6 (7)C3—N1—C7117.4 (5)
C11—C10—H10119.7C3—N1—Mo1128.5 (4)
C9—C10—H10119.7C7—N1—Mo1114.1 (3)
C10—C11—C6122.0 (6)C8—N2—C14114.0 (5)
C10—C11—H11119.0C8—N2—Mo1118.0 (4)
C6—C11—H11119.0C14—N2—Mo1127.7 (4)
C13—C12—C9118.1 (6)C15—N3—C19114.9 (6)
C13—C12—H12121.0C15—N3—Mo1127.3 (5)
C9—C12—H12121.0C19—N3—Mo1117.7 (4)
C12—C13—C14120.8 (6)C26—N4—C20117.5 (6)
C12—C13—H13119.6C26—N4—Mo1126.9 (4)
C14—C13—H13119.6C20—N4—Mo1115.6 (4)
C13—C14—N2124.6 (6)
N1—C3—C4—C50.8 (11)C2—Mo1—N1—C3169.4 (9)
C3—C4—C5—C61.3 (11)N2—Mo1—N1—C3174.3 (5)
C4—C5—C6—C11180.0 (7)N3—Mo1—N1—C320.4 (5)
C4—C5—C6—C70.3 (10)N4—Mo1—N1—C393.7 (5)
C11—C6—C7—N1178.3 (6)C1—Mo1—N1—C7105.3 (4)
C5—C6—C7—N11.4 (9)C2—Mo1—N1—C711.6 (12)
C11—C6—C7—C83.3 (9)N2—Mo1—N1—C76.8 (4)
C5—C6—C7—C8177.0 (6)N3—Mo1—N1—C7158.6 (4)
N1—C7—C8—N22.8 (8)N4—Mo1—N1—C785.3 (4)
C6—C7—C8—N2175.6 (5)C9—C8—N2—C140.6 (8)
N1—C7—C8—C9179.6 (5)C7—C8—N2—C14177.2 (5)
C6—C7—C8—C91.2 (8)C9—C8—N2—Mo1174.2 (4)
N2—C8—C9—C122.0 (9)C7—C8—N2—Mo19.2 (6)
C7—C8—C9—C12178.5 (5)C13—C14—N2—C80.9 (9)
N2—C8—C9—C10178.4 (6)C13—C14—N2—Mo1172.0 (5)
C7—C8—C9—C101.9 (9)C1—Mo1—N2—C899.1 (4)
C8—C9—C10—C113.0 (10)C2—Mo1—N2—C8172.5 (4)
C12—C9—C10—C11177.5 (7)N3—Mo1—N2—C856.5 (8)
C9—C10—C11—C60.8 (11)N1—Mo1—N2—C88.6 (4)
C5—C6—C11—C10177.9 (7)N4—Mo1—N2—C878.2 (4)
C7—C6—C11—C102.3 (11)C1—Mo1—N2—C1488.3 (5)
C8—C9—C12—C132.0 (9)C2—Mo1—N2—C140.2 (5)
C10—C9—C12—C13178.5 (6)N3—Mo1—N2—C14116.2 (7)
C9—C12—C13—C140.7 (10)N1—Mo1—N2—C14178.8 (5)
C12—C13—C14—N20.8 (10)N4—Mo1—N2—C1494.4 (5)
N3—C15—C16—C172.7 (10)C16—C15—N3—C193.8 (8)
C15—C16—C17—C180.3 (10)C16—C15—N3—Mo1174.6 (5)
C16—C17—C18—C190.5 (9)C18—C19—N3—C153.0 (8)
C16—C17—C18—C23179.6 (6)C20—C19—N3—C15179.5 (5)
C17—C18—C19—N30.9 (9)C18—C19—N3—Mo1175.6 (4)
C23—C18—C19—N3179.0 (5)C20—C19—N3—Mo10.9 (6)
C17—C18—C19—C20177.3 (6)C1—Mo1—N3—C152.0 (5)
C23—C18—C19—C202.6 (8)C2—Mo1—N3—C1586.4 (5)
N3—C19—C20—N40.4 (8)N2—Mo1—N3—C15157.7 (6)
C18—C19—C20—N4177.1 (5)N1—Mo1—N3—C1595.8 (5)
N3—C19—C20—C21179.2 (5)N4—Mo1—N3—C15179.6 (5)
C18—C19—C20—C212.5 (8)C1—Mo1—N3—C19179.7 (4)
N4—C20—C21—C22178.9 (6)C2—Mo1—N3—C1992.0 (4)
C19—C20—C21—C220.7 (9)N2—Mo1—N3—C1923.9 (8)
N4—C20—C21—C240.9 (9)N1—Mo1—N3—C1985.9 (4)
C19—C20—C21—C24179.5 (6)N4—Mo1—N3—C191.2 (4)
C20—C21—C22—C231.1 (10)C25—C26—N4—C200.0 (10)
C24—C21—C22—C23178.7 (7)C25—C26—N4—Mo1178.8 (5)
C21—C22—C23—C181.0 (11)C21—C20—N4—C260.8 (9)
C19—C18—C23—C220.9 (10)C19—C20—N4—C26179.7 (5)
C17—C18—C23—C22179.0 (7)C21—C20—N4—Mo1178.2 (4)
C20—C21—C24—C250.4 (10)C19—C20—N4—Mo11.4 (6)
C22—C21—C24—C25179.4 (7)C1—Mo1—N4—C26171.2 (11)
C21—C24—C25—C260.3 (11)C2—Mo1—N4—C2687.2 (5)
C24—C25—C26—N40.5 (11)N2—Mo1—N4—C265.9 (5)
C4—C3—N1—C70.8 (9)N3—Mo1—N4—C26179.8 (6)
C4—C3—N1—Mo1178.1 (5)N1—Mo1—N4—C2680.3 (5)
C6—C7—N1—C31.9 (9)C1—Mo1—N4—C2010.0 (14)
C8—C7—N1—C3176.5 (5)C2—Mo1—N4—C2091.6 (4)
C6—C7—N1—Mo1177.2 (5)N2—Mo1—N4—C20175.3 (4)
C8—C7—N1—Mo14.4 (6)N3—Mo1—N4—C201.4 (4)
C1—Mo1—N1—C375.8 (5)N1—Mo1—N4—C20100.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.473.381 (8)165
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mo(CO)2(C12H8N2)2]
Mr512.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.7031 (6), 14.5684 (10), 14.7006 (9)
β (°) 101.142 (2)
V3)2038.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.22 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.865, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
11958, 3603, 2320
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.141, 0.95
No. of reflections3603
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.58, 1.12

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Mo1—C11.933 (7)Mo1—N32.177 (5)
Mo1—C21.935 (6)Mo1—N12.232 (5)
Mo1—N22.139 (5)Mo1—N42.233 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.473.381 (8)165
Symmetry code: (i) x+1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds