Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The pyrimidine-2-thiol­ate ligand in the title copper(I) complex, [Cu(C4H3N2S)(C18H15P)2], chelates the metal atom through the exocyclic S atom and one heterocyclic N atom. Two triphenyl­phosphine ligands complete the approximately tetra­hedral coordination geometry about the CuI atom. In the crystal structure, inter­molecular C—H...S hydrogen bonds connect the mononuclear complexes into a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807040925/sj2336sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807040925/sj2336Isup2.hkl
Contains datablock I

CCDC reference: 660160

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.043
  • wR factor = 0.113
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - P1 .. 6.17 su
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.00 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 102
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Heterocyclic thiones have attracted much attention as ligands in metal complexes because of their relevance in biological systems (Krebs & Henkel, 1991). Pyrimidine-2-thione and the corresponding thiolate can adopt different coordination modes to yield a variety of coordination complexes (Cookson & Tiekink, 1993; Cotton & Ilsley, 1982; Karagiannidis et al., 1990; Lecomte et al., 1989; Su et al., 1999; Yap & Jensen, 1992; Zhao et al., 2001).

In the earlier study on the complex of copper(I) ion with both phosphine and a heterocyclic mercaptan, Li et al. have found that the heterocyclic thione ligands exist in the thione form in the adduct, the ligands coordinate in a monodentate fashion through the doubly bonded S atom (Li et al., 2004). In this work, the deprotonated ligand coordinates to the copper(I) ion in a chelate manner through an endocyclic N atom and the exocyclic S atom, giving the title complex (Fig. 1). The Cu atom exists in a tetrahedral environment.

A two-dimensional supramolecular network (Fig. 2) is formed by the intermolecular C—H···S hydrogen bonds [H···S 2.73 (3), 2.83 (2) Å; C—H···S 158.6 (1), 149.6 (1) °].

Related literature top

For general background, see: Krebs & Henkel (1991). For details of metal complexes of pyrimidine-2-thiolate, see: Cookson & Tiekink (1993); Cotton & Ilsley (1982); Su et al. (1999); Yap & Jensen (1992); Zhao et al. (2001). For details of the related thiones, see Karagiannidis et al. (1990); Lecomte et al. (1989). For a related structure, see: Li et al. (2004).

Experimental top

Sodium pyrimidine-2-thiolate was prepared through the reaction of pyrimidine-2-thione with sodium metal in dry tetrahydrofuran. To a stirred solution of Cu(NO3)2.3H2O (60.9 mg, 0.25 mmol) in methanol (5 ml) was added a methanol solution (5 ml) of sodium pyrimidine-2-thiolate (34.0 mg, 0.25 mmol) and a precipitate formed immediately. The resulting brown powder was added to a stirred solution of triphenylphosphine (130.2 mg, 0.5 mmol) in acetone (7 ml), forming a clear yellow solution. This was left standing at room temperature. Colorless block-shaped crystals of the title compound were obtained after two months. Yield: 55.6 mg (32%).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic H-atoms.

Structure description top

Heterocyclic thiones have attracted much attention as ligands in metal complexes because of their relevance in biological systems (Krebs & Henkel, 1991). Pyrimidine-2-thione and the corresponding thiolate can adopt different coordination modes to yield a variety of coordination complexes (Cookson & Tiekink, 1993; Cotton & Ilsley, 1982; Karagiannidis et al., 1990; Lecomte et al., 1989; Su et al., 1999; Yap & Jensen, 1992; Zhao et al., 2001).

In the earlier study on the complex of copper(I) ion with both phosphine and a heterocyclic mercaptan, Li et al. have found that the heterocyclic thione ligands exist in the thione form in the adduct, the ligands coordinate in a monodentate fashion through the doubly bonded S atom (Li et al., 2004). In this work, the deprotonated ligand coordinates to the copper(I) ion in a chelate manner through an endocyclic N atom and the exocyclic S atom, giving the title complex (Fig. 1). The Cu atom exists in a tetrahedral environment.

A two-dimensional supramolecular network (Fig. 2) is formed by the intermolecular C—H···S hydrogen bonds [H···S 2.73 (3), 2.83 (2) Å; C—H···S 158.6 (1), 149.6 (1) °].

For general background, see: Krebs & Henkel (1991). For details of metal complexes of pyrimidine-2-thiolate, see: Cookson & Tiekink (1993); Cotton & Ilsley (1982); Su et al. (1999); Yap & Jensen (1992); Zhao et al. (2001). For details of the related thiones, see Karagiannidis et al. (1990); Lecomte et al. (1989). For a related structure, see: Li et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram showing the C—H···.S hydrogen bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
(Pyrimidine-2-thiolato-κ2N,S)bis(triphenylphosphine- κP)copper(I) top
Crystal data top
[Cu(C4H3N2S)(C18H15P)2]Z = 2
Mr = 699.22F(000) = 724
Triclinic, P1Dx = 1.313 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3092 (6) ÅCell parameters from 3662 reflections
b = 11.0636 (7) Åθ = 2.2–23.3°
c = 18.8384 (12) ŵ = 0.80 mm1
α = 93.181 (1)°T = 295 K
β = 91.912 (2)°Block, colourless
γ = 113.810 (2)°0.28 × 0.25 × 0.20 mm
V = 1769.1 (2) Å3
Data collection top
Bruker APEX area-detector
diffractometer
7227 independent reflections
Radiation source: fine-focus sealed tube5598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.808, Tmax = 0.857k = 1313
14456 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2219P]
where P = (Fo2 + 2Fc2)/3
7227 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.41 e Å3
102 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C4H3N2S)(C18H15P)2]γ = 113.810 (2)°
Mr = 699.22V = 1769.1 (2) Å3
Triclinic, P1Z = 2
a = 9.3092 (6) ÅMo Kα radiation
b = 11.0636 (7) ŵ = 0.80 mm1
c = 18.8384 (12) ÅT = 295 K
α = 93.181 (1)°0.28 × 0.25 × 0.20 mm
β = 91.912 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
7227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5598 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.857Rint = 0.024
14456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044102 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
7227 reflectionsΔρmin = 0.37 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.69666 (4)0.54945 (3)0.719137 (16)0.04441 (12)
S10.86486 (8)0.44086 (7)0.68664 (4)0.0569 (2)
P10.63061 (8)0.52595 (7)0.83325 (4)0.04319 (17)
P20.73004 (8)0.72462 (6)0.65674 (4)0.04140 (17)
N10.5631 (3)0.3595 (2)0.66490 (11)0.0485 (5)
N20.6660 (4)0.1983 (3)0.63669 (15)0.0736 (8)
C10.6832 (3)0.3203 (3)0.65968 (13)0.0487 (6)
C20.4191 (4)0.2706 (3)0.64506 (17)0.0679 (8)
H20.33480.29510.64770.082*
C30.3917 (5)0.1435 (4)0.6207 (2)0.0885 (12)
H30.29120.08090.60670.106*
C40.5206 (6)0.1146 (4)0.6183 (2)0.0921 (12)
H40.50460.02870.60240.110*
C50.5714 (3)0.3579 (3)0.86245 (14)0.0492 (6)
C60.6564 (4)0.2863 (3)0.84107 (17)0.0695 (9)
H60.74180.32440.81330.083*
C70.6150 (6)0.1576 (4)0.8607 (2)0.0943 (12)
H70.67320.10990.84680.113*
C80.4865 (6)0.1014 (4)0.9011 (2)0.0940 (13)
H80.45690.01490.91360.113*
C90.4043 (5)0.1710 (3)0.92248 (19)0.0798 (10)
H90.31940.13280.95050.096*
C100.4445 (4)0.2988 (3)0.90314 (16)0.0622 (8)
H100.38550.34530.91770.075*
C110.4607 (3)0.5631 (3)0.85071 (14)0.0463 (6)
C120.3271 (3)0.4996 (3)0.80554 (18)0.0672 (8)
H120.32640.43940.76890.081*
C130.1948 (4)0.5252 (4)0.8146 (2)0.0862 (11)
H130.10450.47980.78510.103*
C140.1963 (4)0.6172 (4)0.8668 (2)0.0851 (11)
H140.10830.63620.87190.102*
C150.3260 (4)0.6802 (4)0.9110 (2)0.0783 (10)
H150.32670.74190.94680.094*
C160.4579 (3)0.6535 (3)0.90348 (16)0.0588 (7)
H160.54610.69720.93450.071*
C170.7791 (3)0.6296 (3)0.90186 (14)0.0457 (6)
C180.8176 (3)0.5834 (3)0.96336 (15)0.0600 (7)
H180.76500.49460.97190.072*
C190.9331 (4)0.6677 (4)1.01194 (18)0.0782 (10)
H190.95800.63521.05290.094*
C201.0117 (4)0.7987 (4)1.0007 (2)0.0820 (11)
H201.08990.85521.03360.098*
C210.9738 (4)0.8456 (3)0.9405 (2)0.0796 (10)
H211.02600.93480.93280.095*
C220.8588 (3)0.7619 (3)0.89089 (16)0.0610 (8)
H220.83500.79510.84990.073*
C230.8644 (3)0.8830 (2)0.70027 (14)0.0453 (6)
C241.0025 (3)0.8879 (3)0.73323 (17)0.0609 (8)
H241.02190.81160.73270.073*
C251.1113 (4)1.0045 (4)0.7668 (2)0.0801 (10)
H251.20461.00710.78760.096*
C261.0822 (5)1.1159 (4)0.7695 (2)0.0862 (11)
H261.15421.19370.79350.103*
C270.9471 (5)1.1137 (3)0.7370 (2)0.0795 (10)
H270.92851.19030.73830.095*
C280.8389 (4)0.9980 (3)0.70238 (17)0.0628 (8)
H280.74780.99720.68020.075*
C290.8153 (3)0.7232 (2)0.57102 (14)0.0481 (6)
C300.9305 (4)0.8340 (3)0.54663 (16)0.0670 (7)
H300.96310.91500.57310.080*
C310.9983 (4)0.8262 (3)0.48327 (16)0.0773 (8)
H311.07650.90190.46790.093*
C320.9520 (4)0.7095 (3)0.44330 (17)0.0757 (8)
H320.99560.70510.40000.091*
C330.8406 (5)0.5990 (3)0.46774 (18)0.0904 (10)
H330.80910.51830.44100.108*
C340.7732 (4)0.6044 (3)0.53167 (16)0.0789 (9)
H340.69920.52740.54800.095*
C350.5498 (3)0.7466 (2)0.63579 (14)0.0464 (6)
C360.4941 (4)0.7507 (3)0.56753 (16)0.0604 (7)
H360.55460.75080.52920.072*
C370.3480 (4)0.7547 (3)0.55584 (19)0.0726 (9)
H370.31110.75660.50960.087*
C380.2587 (4)0.7559 (3)0.6109 (2)0.0772 (10)
H380.15990.75640.60260.093*
C390.3152 (4)0.7562 (4)0.6786 (2)0.0886 (11)
H390.25620.76060.71680.106*
C400.4580 (4)0.7501 (4)0.69101 (18)0.0727 (9)
H400.49350.74830.73750.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0511 (2)0.04317 (19)0.0439 (2)0.02402 (15)0.00632 (14)0.00292 (14)
S10.0506 (4)0.0616 (4)0.0663 (5)0.0324 (4)0.0010 (3)0.0061 (4)
P10.0432 (4)0.0455 (4)0.0410 (4)0.0181 (3)0.0044 (3)0.0025 (3)
P20.0434 (4)0.0419 (4)0.0441 (4)0.0224 (3)0.0061 (3)0.0038 (3)
N10.0483 (13)0.0478 (13)0.0477 (13)0.0185 (11)0.0026 (10)0.0012 (10)
N20.091 (2)0.0479 (15)0.085 (2)0.0330 (15)0.0004 (16)0.0061 (14)
C10.0646 (17)0.0501 (16)0.0392 (14)0.0313 (14)0.0034 (12)0.0029 (12)
C20.0587 (19)0.069 (2)0.066 (2)0.0175 (17)0.0041 (16)0.0010 (17)
C30.080 (3)0.063 (2)0.090 (3)0.001 (2)0.007 (2)0.008 (2)
C40.112 (3)0.051 (2)0.103 (3)0.025 (2)0.001 (3)0.009 (2)
C50.0587 (17)0.0444 (15)0.0402 (14)0.0170 (13)0.0016 (12)0.0023 (11)
C60.090 (2)0.064 (2)0.064 (2)0.0401 (18)0.0112 (17)0.0156 (16)
C70.142 (4)0.073 (2)0.088 (3)0.063 (3)0.002 (3)0.013 (2)
C80.128 (4)0.054 (2)0.082 (3)0.019 (2)0.010 (3)0.0170 (19)
C90.083 (2)0.058 (2)0.073 (2)0.0021 (19)0.0011 (19)0.0115 (18)
C100.0599 (18)0.0561 (18)0.0577 (18)0.0103 (15)0.0012 (15)0.0053 (14)
C110.0391 (14)0.0517 (15)0.0470 (15)0.0164 (12)0.0065 (11)0.0075 (12)
C120.0494 (18)0.075 (2)0.071 (2)0.0196 (16)0.0019 (15)0.0011 (17)
C130.0455 (19)0.112 (3)0.093 (3)0.023 (2)0.0074 (18)0.023 (2)
C140.056 (2)0.109 (3)0.111 (3)0.050 (2)0.023 (2)0.036 (3)
C150.075 (2)0.091 (3)0.088 (3)0.052 (2)0.025 (2)0.009 (2)
C160.0509 (17)0.0708 (19)0.0595 (18)0.0298 (15)0.0061 (14)0.0011 (15)
C170.0368 (13)0.0563 (16)0.0443 (15)0.0190 (12)0.0064 (11)0.0017 (12)
C180.0527 (17)0.0684 (19)0.0546 (18)0.0200 (15)0.0019 (14)0.0086 (15)
C190.068 (2)0.101 (3)0.058 (2)0.028 (2)0.0135 (17)0.0042 (19)
C200.060 (2)0.090 (3)0.076 (2)0.014 (2)0.0164 (18)0.016 (2)
C210.076 (2)0.061 (2)0.084 (3)0.0115 (18)0.002 (2)0.0094 (19)
C220.0618 (19)0.0542 (17)0.0578 (18)0.0147 (15)0.0005 (15)0.0020 (14)
C230.0466 (15)0.0428 (14)0.0474 (15)0.0184 (12)0.0081 (12)0.0050 (11)
C240.0468 (16)0.0636 (19)0.073 (2)0.0239 (15)0.0011 (15)0.0033 (16)
C250.0542 (19)0.084 (3)0.086 (3)0.0127 (18)0.0102 (17)0.003 (2)
C260.084 (3)0.060 (2)0.083 (3)0.000 (2)0.002 (2)0.0084 (19)
C270.103 (3)0.0465 (18)0.086 (3)0.0284 (19)0.002 (2)0.0038 (17)
C280.072 (2)0.0522 (17)0.068 (2)0.0309 (16)0.0038 (16)0.0023 (15)
C290.0581 (14)0.0497 (13)0.0487 (14)0.0332 (11)0.0119 (11)0.0103 (11)
C300.0793 (18)0.0625 (15)0.0639 (16)0.0313 (14)0.0215 (14)0.0124 (13)
C310.090 (2)0.0798 (17)0.0699 (18)0.0386 (16)0.0323 (15)0.0246 (14)
C320.104 (2)0.0863 (18)0.0624 (17)0.0607 (16)0.0352 (15)0.0200 (14)
C330.140 (2)0.0690 (17)0.0681 (18)0.0476 (17)0.0362 (17)0.0004 (15)
C340.118 (2)0.0542 (15)0.0610 (17)0.0294 (15)0.0303 (16)0.0032 (13)
C350.0458 (14)0.0447 (14)0.0530 (15)0.0222 (12)0.0049 (12)0.0072 (12)
C360.0608 (17)0.0711 (19)0.0539 (17)0.0329 (15)0.0031 (14)0.0019 (15)
C370.0632 (19)0.084 (2)0.074 (2)0.0354 (18)0.0173 (17)0.0002 (18)
C380.0539 (18)0.086 (2)0.103 (3)0.0386 (17)0.0008 (18)0.022 (2)
C390.074 (2)0.131 (3)0.095 (2)0.071 (2)0.0334 (19)0.040 (2)
C400.071 (2)0.113 (3)0.0630 (19)0.0626 (19)0.0187 (16)0.0266 (18)
Geometric parameters (Å, º) top
Cu1—N12.139 (2)C17—C181.385 (4)
Cu1—P22.2417 (7)C18—C191.376 (4)
Cu1—P12.2557 (7)C18—H180.9300
Cu1—S12.4023 (7)C19—C201.368 (5)
S1—C11.715 (3)C19—H190.9300
P1—C111.823 (3)C20—C211.365 (5)
P1—C171.826 (3)C20—H200.9300
P1—C51.836 (3)C21—C221.384 (4)
P2—C231.820 (3)C21—H210.9300
P2—C351.824 (3)C22—H220.9300
P2—C291.825 (3)C23—C281.383 (4)
N1—C21.329 (4)C23—C241.389 (4)
N1—C11.357 (3)C24—C251.379 (4)
N2—C41.315 (5)C24—H240.9300
N2—C11.338 (3)C25—C261.364 (5)
C2—C31.373 (5)C25—H250.9300
C2—H20.9300C26—C271.370 (5)
C3—C41.363 (5)C26—H260.9300
C3—H30.9300C27—C281.379 (4)
C4—H40.9300C27—H270.9300
C5—C101.379 (4)C28—H280.9300
C5—C61.380 (4)C29—C341.373 (3)
C6—C71.393 (5)C29—C301.378 (3)
C6—H60.9300C30—C311.383 (3)
C7—C81.382 (6)C30—H300.9300
C7—H70.9300C31—C321.357 (3)
C8—C91.342 (6)C31—H310.9300
C8—H80.9300C32—C331.361 (4)
C9—C101.382 (4)C32—H320.9300
C9—H90.9300C33—C341.386 (3)
C10—H100.9300C33—H330.9300
C11—C161.379 (4)C34—H340.9300
C11—C121.386 (4)C35—C401.377 (4)
C12—C131.384 (5)C35—C361.380 (4)
C12—H120.9300C36—C371.390 (4)
C13—C141.373 (5)C36—H360.9300
C13—H130.9300C37—C381.353 (5)
C14—C151.351 (5)C37—H370.9300
C14—H140.9300C38—C391.362 (5)
C15—C161.384 (4)C38—H380.9300
C15—H150.9300C39—C401.372 (4)
C16—H160.9300C39—H390.9300
C17—C221.379 (4)C40—H400.9300
N1—Cu1—P2115.81 (6)C22—C17—P1117.5 (2)
N1—Cu1—P1104.82 (6)C18—C17—P1124.2 (2)
P2—Cu1—P1126.43 (3)C19—C18—C17120.6 (3)
N1—Cu1—S169.28 (6)C19—C18—H18119.7
P2—Cu1—S1113.43 (3)C17—C18—H18119.7
P1—Cu1—S1112.70 (3)C20—C19—C18120.8 (3)
C1—S1—Cu178.83 (9)C20—C19—H19119.6
C11—P1—C17103.64 (12)C18—C19—H19119.6
C11—P1—C5102.95 (13)C21—C20—C19119.2 (3)
C17—P1—C5103.71 (12)C21—C20—H20120.4
C11—P1—Cu1112.67 (9)C19—C20—H20120.4
C17—P1—Cu1116.99 (8)C20—C21—C22120.8 (3)
C5—P1—Cu1115.25 (9)C20—C21—H21119.6
C23—P2—C35104.69 (12)C22—C21—H21119.6
C23—P2—C29102.33 (12)C17—C22—C21120.4 (3)
C35—P2—C29104.72 (12)C17—C22—H22119.8
C23—P2—Cu1114.48 (9)C21—C22—H22119.8
C35—P2—Cu1114.47 (9)C28—C23—C24118.2 (3)
C29—P2—Cu1114.79 (8)C28—C23—P2124.7 (2)
C2—N1—C1117.5 (3)C24—C23—P2117.1 (2)
C2—N1—Cu1144.9 (2)C25—C24—C23120.7 (3)
C1—N1—Cu196.93 (16)C25—C24—H24119.7
C4—N2—C1115.3 (3)C23—C24—H24119.7
N2—C1—N1124.4 (3)C26—C25—C24120.1 (3)
N2—C1—S1121.1 (2)C26—C25—H25119.9
N1—C1—S1114.42 (19)C24—C25—H25120.0
N1—C2—C3121.6 (3)C25—C26—C27120.2 (3)
N1—C2—H2119.2C25—C26—H26119.9
C3—C2—H2119.2C27—C26—H26119.9
C4—C3—C2116.0 (3)C26—C27—C28120.0 (3)
C4—C3—H3122.0C26—C27—H27120.0
C2—C3—H3122.0C28—C27—H27120.0
N2—C4—C3125.2 (3)C27—C28—C23120.8 (3)
N2—C4—H4117.4C27—C28—H28119.6
C3—C4—H4117.4C23—C28—H28119.6
C10—C5—C6118.6 (3)C34—C29—C30118.1 (3)
C10—C5—P1123.3 (2)C34—C29—P2118.7 (2)
C6—C5—P1118.1 (2)C30—C29—P2122.9 (2)
C5—C6—C7120.5 (3)C29—C30—C31120.8 (3)
C5—C6—H6119.8C29—C30—H30119.6
C7—C6—H6119.8C31—C30—H30119.6
C8—C7—C6119.2 (4)C32—C31—C30120.8 (3)
C8—C7—H7120.4C32—C31—H31119.6
C6—C7—H7120.4C30—C31—H31119.6
C9—C8—C7120.5 (4)C31—C32—C33118.7 (3)
C9—C8—H8119.8C31—C32—H32120.6
C7—C8—H8119.8C33—C32—H32120.6
C8—C9—C10120.6 (4)C32—C33—C34121.3 (3)
C8—C9—H9119.7C32—C33—H33119.4
C10—C9—H9119.7C34—C33—H33119.4
C5—C10—C9120.6 (3)C29—C34—C33120.2 (3)
C5—C10—H10119.7C29—C34—H34119.9
C9—C10—H10119.7C33—C34—H34119.9
C16—C11—C12117.9 (3)C40—C35—C36117.9 (3)
C16—C11—P1124.8 (2)C40—C35—P2117.9 (2)
C12—C11—P1117.3 (2)C36—C35—P2124.0 (2)
C13—C12—C11120.5 (3)C35—C36—C37120.2 (3)
C13—C12—H12119.7C35—C36—H36119.9
C11—C12—H12119.7C37—C36—H36119.9
C14—C13—C12120.3 (3)C38—C37—C36120.8 (3)
C14—C13—H13119.9C38—C37—H37119.6
C12—C13—H13119.9C36—C37—H37119.6
C15—C14—C13119.8 (3)C37—C38—C39119.2 (3)
C15—C14—H14120.1C37—C38—H38120.4
C13—C14—H14120.1C39—C38—H38120.4
C14—C15—C16120.5 (3)C38—C39—C40120.7 (3)
C14—C15—H15119.8C38—C39—H39119.7
C16—C15—H15119.8C40—C39—H39119.7
C11—C16—C15121.0 (3)C39—C40—C35121.1 (3)
C11—C16—H16119.5C39—C40—H40119.4
C15—C16—H16119.5C35—C40—H40119.4
C22—C17—C18118.3 (3)
N1—Cu1—S1—C14.01 (11)C11—C12—C13—C142.3 (5)
P2—Cu1—S1—C1114.09 (9)C12—C13—C14—C152.0 (6)
P1—Cu1—S1—C193.93 (9)C13—C14—C15—C160.6 (6)
N1—Cu1—P1—C1189.40 (11)C12—C11—C16—C150.1 (4)
P2—Cu1—P1—C1149.62 (10)P1—C11—C16—C15177.0 (2)
S1—Cu1—P1—C11162.77 (10)C14—C15—C16—C110.4 (5)
N1—Cu1—P1—C17150.64 (12)C11—P1—C17—C2279.2 (2)
P2—Cu1—P1—C1770.34 (10)C5—P1—C17—C22173.5 (2)
S1—Cu1—P1—C1777.26 (10)Cu1—P1—C17—C2245.4 (2)
N1—Cu1—P1—C528.35 (12)C11—P1—C17—C18101.6 (2)
P2—Cu1—P1—C5167.37 (10)C5—P1—C17—C185.7 (3)
S1—Cu1—P1—C545.03 (11)Cu1—P1—C17—C18133.8 (2)
N1—Cu1—P2—C23172.61 (11)C22—C17—C18—C190.3 (4)
P1—Cu1—P2—C2352.16 (10)P1—C17—C18—C19178.9 (2)
S1—Cu1—P2—C2395.24 (9)C17—C18—C19—C200.3 (5)
N1—Cu1—P2—C3566.51 (12)C18—C19—C20—C210.2 (6)
P1—Cu1—P2—C3568.72 (10)C19—C20—C21—C220.7 (6)
S1—Cu1—P2—C35143.87 (10)C18—C17—C22—C210.1 (4)
N1—Cu1—P2—C2954.66 (12)P1—C17—C22—C21179.4 (2)
P1—Cu1—P2—C29170.11 (10)C20—C21—C22—C170.6 (5)
S1—Cu1—P2—C2922.70 (10)C35—P2—C23—C2811.3 (3)
P2—Cu1—N1—C279.7 (4)C29—P2—C23—C2897.8 (3)
P1—Cu1—N1—C264.5 (4)Cu1—P2—C23—C28137.4 (2)
S1—Cu1—N1—C2173.5 (4)C35—P2—C23—C24169.1 (2)
P2—Cu1—N1—C1111.82 (14)C29—P2—C23—C2481.8 (2)
P1—Cu1—N1—C1104.06 (15)Cu1—P2—C23—C2443.0 (2)
S1—Cu1—N1—C15.01 (14)C28—C23—C24—C250.3 (4)
C4—N2—C1—N10.2 (5)P2—C23—C24—C25179.4 (2)
C4—N2—C1—S1179.3 (3)C23—C24—C25—C261.7 (5)
C2—N1—C1—N20.7 (4)C24—C25—C26—C272.1 (6)
Cu1—N1—C1—N2171.9 (2)C25—C26—C27—C281.1 (6)
C2—N1—C1—S1179.8 (2)C26—C27—C28—C230.3 (5)
Cu1—N1—C1—S17.21 (19)C24—C23—C28—C270.7 (4)
Cu1—S1—C1—N2172.6 (2)P2—C23—C28—C27179.7 (2)
Cu1—S1—C1—N16.50 (17)C23—P2—C29—C34161.5 (3)
C1—N1—C2—C30.5 (5)C35—P2—C29—C3489.5 (3)
Cu1—N1—C2—C3166.6 (3)Cu1—P2—C29—C3436.9 (3)
N1—C2—C3—C40.1 (6)C23—P2—C29—C3012.7 (3)
C1—N2—C4—C30.5 (6)C35—P2—C29—C3096.4 (3)
C2—C3—C4—N20.6 (6)Cu1—P2—C29—C30137.3 (2)
C11—P1—C5—C1013.9 (3)C34—C29—C30—C311.8 (5)
C17—P1—C5—C1093.9 (2)P2—C29—C30—C31176.1 (3)
Cu1—P1—C5—C10136.9 (2)C29—C30—C31—C320.5 (5)
C11—P1—C5—C6164.6 (2)C30—C31—C32—C331.9 (6)
C17—P1—C5—C687.7 (2)C31—C32—C33—C340.8 (6)
Cu1—P1—C5—C641.5 (3)C30—C29—C34—C332.9 (5)
C10—C5—C6—C70.4 (5)P2—C29—C34—C33177.3 (3)
P1—C5—C6—C7179.0 (3)C32—C33—C34—C291.6 (6)
C5—C6—C7—C80.8 (6)C23—P2—C35—C4073.4 (3)
C6—C7—C8—C91.3 (6)C29—P2—C35—C40179.3 (2)
C7—C8—C9—C101.4 (6)Cu1—P2—C35—C4052.8 (3)
C6—C5—C10—C90.5 (4)C23—P2—C35—C36111.3 (3)
P1—C5—C10—C9178.9 (2)C29—P2—C35—C364.0 (3)
C8—C9—C10—C51.0 (5)Cu1—P2—C35—C36122.5 (2)
C17—P1—C11—C161.8 (3)C40—C35—C36—C371.6 (5)
C5—P1—C11—C16109.6 (3)P2—C35—C36—C37173.7 (2)
Cu1—P1—C11—C16125.6 (2)C35—C36—C37—C380.6 (5)
C17—P1—C11—C12178.9 (2)C36—C37—C38—C391.5 (6)
C5—P1—C11—C1273.2 (2)C37—C38—C39—C402.6 (6)
Cu1—P1—C11—C1251.5 (2)C38—C39—C40—C351.5 (6)
C16—C11—C12—C131.2 (5)C36—C35—C40—C390.6 (5)
P1—C11—C12—C13178.6 (3)P2—C35—C40—C39175.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S10.932.833.661 (3)150
C13—H13···S1i0.932.733.613 (4)159
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C4H3N2S)(C18H15P)2]
Mr699.22
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.3092 (6), 11.0636 (7), 18.8384 (12)
α, β, γ (°)93.181 (1), 91.912 (2), 113.810 (2)
V3)1769.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.28 × 0.25 × 0.20
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.808, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
14456, 7227, 5598
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.01
No. of reflections7227
No. of parameters415
No. of restraints102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S10.932.833.661 (3)149.6
C13—H13···S1i0.932.733.613 (4)158.6
Symmetry code: (i) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds