Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C23H22Cl4N2O2, was synthesized by the reaction of 1,1′-spiro­[4,4]nonane-1,6-diamine and 3,5-dichloro­salicylaldehyde. It is a new Schiff base containing a spiro­cyclic backbone and an approximate non-crystallographic C2 axis. Two intra­molecular O—H...N hydrogen bonds determine the relative orientation of the two benzene rings. Inter­molecular π–π stacking inter­actions between the phenyl rings and weak inter­molecular C—H...Cl hydrogen bonds stabilize the structure. Cp1 and Cp2 are the centroids of the planes defined by atoms C11–C16 and C18–C23. The angle between the planes is only 0.8° and interplanar distances are Cp1...Cp2(x, y, z + 1) = 4.023 Å and Cp1...Cp2(x + 1, y, z + 1) = 4.032 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023148/sj2310sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023148/sj2310Isup2.hkl
Contains datablock I

CCDC reference: 651538

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.086
  • wR factor = 0.277
  • Data-to-parameter ratio = 18.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for Cl3 - C20 .. 8.40 su PLAT230_ALERT_2_B Hirshfeld Test Diff for C1 - C2 .. 9.24 su
Alert level C RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25 Weighted R factor given 0.277 PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.89 PLAT084_ALERT_2_C High R2 Value .................................. 0.28 PLAT230_ALERT_2_C Hirshfeld Test Diff for Cl2 - C15 .. 6.34 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C8 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. CL1 .. 3.10 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H7B .. CL1 .. 2.87 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H14 .. CL2 .. 3.01 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6 .. CL3 .. 3.10 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3A .. CL3 .. 3.00 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H21 .. CL4 .. 3.01 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H23 .. CL4 .. 3.16 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C2 .. CL1 .. 4.01 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C6 .. CL3 .. 4.03 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C23 .. CL4 .. 4.02 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C6 = ... S
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Chiral salen transition metal complexes have been widely and successfully applied in various asymmetric catalytic reactions (Larrow et al., 1994; Li et al., 2006; Lo et al., 2006). Compared with a normal chiral salen ligand, derived from diamine with chiral carbons, such as cyclohexanediamine or 1, 2-diphenylethyldiamine, chiral salen with spiro scaffold has never been reported. In a continuation of our studies of salen complexes (Zhou et al., 1999; Li et al., 2005), we report here the synthesis and structure of the title compound. The rigid structure indicates its potential usage as a ligand in asymmetric synthesis.

The novel salen ligand (I) possesses a spirocyclic backbone, Fig. 1, and contains a non-crystallgraphic C2 axis through the C1 atom, Fig. 1. The two five–membered rings adopt a conformation intermediate between envelope and half-chair forms but closer to the latter as reported for spiro[4,4]nonane-1,6-dione (Altona et al., 1971) and nearly perpendicular to each other with a dihedral angle of 86.1 (3)° between the respective ring planes, which adds to the rigidity of the molecule. The two imine moieties are well separated and provide potential sites for coordination with metal ions. Furthermore, there are two intramolecular O—H···N hydrogen bonds in the ligand that define the conformation of the two benzene rings.

In the crystal structure there are intermolecular π-π stacking interactions between the C12–C19 and C15–C22 rings as well as a number of weak Cl···H–C hydrogen bonds, Fig 2.

Related literature top

For information on the application of salen complexes to asymmetric catalysis, see Larrow et al. (1994), Li et al. (2006) and Lo et al. (2006). For related structures, see Zhou et al. (1999), Li et al. (2005) and Altona et al. (1971).

For related literature, see: Cram & Steinberg (1954); Ebeling et al. (2002).

Experimental top

The salen ligand, 2,6-bis(3,5-dichlorosalicylaldimine)-1,1`-spiro[4,4]nonane was prepared by condensation of 3,5-dichlorosalicylaldehyde with 1, 1`-spiro[4,4]nonane-1,6-diamine, which was prepared by literature methods (Cram & Steinberg, 1954; Ebeling et al., 2002). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol /methylene chloride (10:1) solution of (I). MS (EI) m/z: 500(M+). Anal calculated for C23H22Cl4N2O2: C, 55.20; H, 4.40; N, 5.60. Found: C, 55.12; H, 4.48; N, 5.61.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic, 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2, O—H = 0.82 Å, Uiso(H) = 1.5Ueq(O) for the OH groups.

Structure description top

Chiral salen transition metal complexes have been widely and successfully applied in various asymmetric catalytic reactions (Larrow et al., 1994; Li et al., 2006; Lo et al., 2006). Compared with a normal chiral salen ligand, derived from diamine with chiral carbons, such as cyclohexanediamine or 1, 2-diphenylethyldiamine, chiral salen with spiro scaffold has never been reported. In a continuation of our studies of salen complexes (Zhou et al., 1999; Li et al., 2005), we report here the synthesis and structure of the title compound. The rigid structure indicates its potential usage as a ligand in asymmetric synthesis.

The novel salen ligand (I) possesses a spirocyclic backbone, Fig. 1, and contains a non-crystallgraphic C2 axis through the C1 atom, Fig. 1. The two five–membered rings adopt a conformation intermediate between envelope and half-chair forms but closer to the latter as reported for spiro[4,4]nonane-1,6-dione (Altona et al., 1971) and nearly perpendicular to each other with a dihedral angle of 86.1 (3)° between the respective ring planes, which adds to the rigidity of the molecule. The two imine moieties are well separated and provide potential sites for coordination with metal ions. Furthermore, there are two intramolecular O—H···N hydrogen bonds in the ligand that define the conformation of the two benzene rings.

In the crystal structure there are intermolecular π-π stacking interactions between the C12–C19 and C15–C22 rings as well as a number of weak Cl···H–C hydrogen bonds, Fig 2.

For information on the application of salen complexes to asymmetric catalysis, see Larrow et al. (1994), Li et al. (2006) and Lo et al. (2006). For related structures, see Zhou et al. (1999), Li et al. (2005) and Altona et al. (1971).

For related literature, see: Cram & Steinberg (1954); Ebeling et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A perspective view, with displacement ellipsoids drawn at the 30% probability level.
2,6-bis(3,5-dichlorosalicylaldimine)-1,1'-spiro[4,4]nonane top
Crystal data top
C23H22Cl4N2O2F(000) = 1032
Mr = 500.23Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7024 reflections
a = 8.052 (2) Åθ = 1–27.5°
b = 33.489 (6) ŵ = 0.54 mm1
c = 8.881 (3) ÅT = 294 K
β = 107.310 (5)°Plate, colourless
V = 2286.5 (10) Å30.50 × 0.50 × 0.26 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5224 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.686, Tmax = 0.869k = 4343
20717 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.277H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0917P)2 + 10.5P]
where P = (Fo2 + 2Fc2)/3
5224 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C23H22Cl4N2O2V = 2286.5 (10) Å3
Mr = 500.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.052 (2) ŵ = 0.54 mm1
b = 33.489 (6) ÅT = 294 K
c = 8.881 (3) Å0.50 × 0.50 × 0.26 mm
β = 107.310 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5224 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2703 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.869Rint = 0.080
20717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.277H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0917P)2 + 10.5P]
where P = (Fo2 + 2Fc2)/3
5224 reflectionsΔρmax = 0.57 e Å3
282 parametersΔρmin = 0.40 e Å3
Special details top

Experimental. 1H NMR (CDCl3, 400 MHz, δ, p.p.m.): 1.30–1.96 (m, 12H, CH2), 3.13 (m, 2H, CH), 7.14 (m, 2H, Ar-H), 7.34 (m, 2H, Ar-H), 5.0 (br, 2H, -OH ), 8.18 (s, 2H, HCN).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54922 (14)0.61810 (3)1.00270 (11)0.0636 (3)
Cl20.23820 (16)0.48030 (3)0.76711 (14)0.0695 (4)
Cl30.44144 (15)0.61516 (4)0.57224 (11)0.0691 (3)
Cl40.27100 (15)0.47871 (3)0.24418 (13)0.0658 (3)
O10.3179 (3)0.65320 (7)0.7145 (3)0.0504 (8)
H10.25120.66160.63170.076*
O20.1879 (3)0.65165 (8)0.2998 (3)0.0511 (8)
H20.10960.66030.22520.077*
N10.0794 (3)0.65024 (8)0.4446 (3)0.0370 (8)
N20.0376 (3)0.65020 (8)0.0213 (3)0.0374 (8)
C10.0581 (4)0.69371 (8)0.2094 (3)0.0267 (7)
C20.0370 (4)0.66977 (10)0.3067 (3)0.0347 (9)
H2A0.11010.64950.23880.042*
C30.1546 (5)0.70092 (12)0.3505 (5)0.0506 (11)
H3A0.25670.68830.36610.061*
H3B0.09240.71490.44650.061*
C40.2054 (5)0.72931 (13)0.2129 (4)0.0581 (12)
H4A0.18650.75670.24950.070*
H4B0.32740.72600.15480.070*
C50.0928 (4)0.71947 (10)0.1091 (4)0.0383 (9)
H5A0.04850.74370.07520.046*
H5B0.15910.70490.01640.046*
C60.1552 (4)0.66987 (10)0.1156 (3)0.0329 (8)
H60.22960.64990.18420.040*
C70.2688 (4)0.70132 (11)0.0676 (4)0.0460 (10)
H7A0.20460.71470.02910.055*
H7B0.37220.68920.05260.055*
C80.3169 (5)0.73070 (14)0.2072 (5)0.0641 (13)
H8A0.43890.72810.26620.077*
H8B0.29550.75800.16970.077*
C90.2034 (4)0.72019 (11)0.3102 (4)0.0392 (9)
H9A0.15550.74420.34240.047*
H9B0.27020.70600.40380.047*
C100.0692 (4)0.61313 (10)0.4599 (3)0.0335 (8)
H100.01010.59870.38130.040*
C110.1808 (4)0.59175 (10)0.6003 (3)0.0346 (8)
C120.3006 (4)0.61407 (10)0.7220 (3)0.0354 (9)
C130.3999 (4)0.59259 (11)0.8535 (4)0.0401 (9)
C140.3822 (4)0.55176 (11)0.8680 (4)0.0424 (10)
H140.44960.53830.95670.051*
C150.2626 (5)0.53137 (11)0.7486 (4)0.0440 (10)
C160.1630 (4)0.55106 (11)0.6149 (4)0.0386 (9)
H160.08400.53690.53510.046*
C170.0223 (4)0.61260 (9)0.0209 (3)0.0331 (8)
H170.09120.59800.06400.040*
C180.1022 (4)0.59139 (10)0.1519 (3)0.0341 (9)
C190.2007 (4)0.61212 (10)0.2847 (3)0.0352 (9)
C200.3175 (4)0.59040 (11)0.4050 (3)0.0395 (9)
C210.3378 (4)0.54951 (12)0.3938 (4)0.0446 (10)
H210.41600.53550.47490.054*
C220.2402 (4)0.53002 (11)0.2603 (4)0.0408 (9)
C230.1231 (4)0.54973 (10)0.1397 (4)0.0385 (9)
H230.05810.53590.05090.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0608 (6)0.0764 (7)0.0372 (4)0.0104 (5)0.0103 (4)0.0129 (5)
Cl20.0771 (7)0.0500 (5)0.0698 (6)0.0244 (5)0.0041 (5)0.0005 (5)
Cl30.0704 (6)0.0789 (7)0.0382 (4)0.0185 (5)0.0142 (5)0.0151 (6)
Cl40.0741 (6)0.0474 (5)0.0617 (6)0.0015 (5)0.0014 (5)0.0138 (5)
O10.0647 (16)0.0420 (14)0.0342 (12)0.0015 (10)0.0010 (12)0.0001 (12)
O20.0674 (17)0.0440 (14)0.0312 (12)0.0062 (10)0.0015 (12)0.0042 (12)
N10.0397 (14)0.0396 (15)0.0271 (12)0.0079 (11)0.0031 (11)0.0004 (12)
N20.0376 (14)0.0449 (16)0.0253 (12)0.0064 (11)0.0025 (11)0.0032 (12)
C10.0236 (12)0.0258 (13)0.0265 (13)0.0021 (12)0.0010 (11)0.0012 (12)
C20.0297 (15)0.0418 (17)0.0253 (14)0.0102 (12)0.0031 (12)0.0005 (14)
C30.0442 (17)0.058 (2)0.0572 (19)0.0088 (17)0.0267 (15)0.0075 (17)
C40.0477 (19)0.070 (3)0.064 (2)0.0217 (18)0.0290 (17)0.0284 (18)
C50.0374 (16)0.0386 (17)0.0334 (15)0.0108 (13)0.0022 (14)0.0107 (15)
C60.0286 (14)0.0412 (17)0.0258 (14)0.0050 (12)0.0033 (12)0.0019 (14)
C70.0397 (16)0.055 (2)0.0505 (18)0.0076 (16)0.0237 (14)0.0055 (16)
C80.056 (2)0.075 (3)0.068 (2)0.024 (2)0.0286 (19)0.0329 (19)
C90.0301 (15)0.0456 (19)0.0414 (16)0.0057 (15)0.0098 (13)0.0082 (14)
C100.0346 (15)0.0391 (17)0.0249 (13)0.0034 (12)0.0059 (12)0.0012 (14)
C110.0360 (15)0.0434 (18)0.0252 (13)0.0061 (13)0.0102 (12)0.0046 (14)
C120.0392 (16)0.0430 (19)0.0256 (13)0.0017 (12)0.0119 (12)0.0021 (14)
C130.0350 (16)0.057 (2)0.0259 (14)0.0013 (14)0.0055 (13)0.0101 (16)
C140.0440 (17)0.055 (2)0.0275 (14)0.0114 (14)0.0093 (14)0.0158 (16)
C150.0451 (18)0.0452 (19)0.0425 (17)0.0156 (15)0.0143 (15)0.0126 (16)
C160.0347 (16)0.051 (2)0.0290 (15)0.0086 (14)0.0075 (13)0.0005 (15)
C170.0336 (15)0.0359 (17)0.0260 (13)0.0024 (12)0.0031 (12)0.0088 (14)
C180.0339 (15)0.0411 (17)0.0238 (13)0.0043 (13)0.0030 (12)0.0020 (14)
C190.0385 (16)0.0424 (18)0.0233 (13)0.0025 (12)0.0073 (13)0.0018 (14)
C200.0379 (16)0.056 (2)0.0204 (13)0.0046 (14)0.0029 (13)0.0021 (16)
C210.0350 (16)0.067 (2)0.0293 (15)0.0035 (15)0.0064 (13)0.0143 (17)
C220.0396 (17)0.0437 (19)0.0362 (16)0.0000 (15)0.0067 (14)0.0034 (15)
C230.0401 (17)0.0437 (19)0.0276 (14)0.0008 (13)0.0038 (13)0.0006 (15)
Geometric parameters (Å, º) top
Cl1—C131.727 (3)C7—C81.540 (5)
Cl2—C151.735 (4)C7—H7A0.9700
Cl3—C201.734 (3)C7—H7B0.9700
Cl4—C221.748 (4)C8—C91.514 (6)
O1—C121.321 (4)C8—H8A0.9700
O1—H10.8200C8—H8B0.9700
O2—C191.338 (4)C9—H9A0.9700
O2—H20.8200C9—H9B0.9700
N1—C101.255 (4)C10—C111.486 (4)
N1—C21.458 (4)C10—H100.9300
N2—C171.265 (4)C11—C161.380 (5)
N2—C61.457 (4)C11—C121.427 (4)
C1—C61.526 (5)C12—C131.402 (4)
C1—C91.527 (4)C13—C141.385 (5)
C1—C21.539 (5)C14—C151.383 (5)
C1—C51.539 (4)C14—H140.9300
C2—C31.535 (5)C15—C161.386 (4)
C2—H2A0.9800C16—H160.9300
C3—C41.506 (5)C17—C181.473 (4)
C3—H3A0.9700C17—H170.9300
C3—H3B0.9700C18—C191.395 (4)
C4—C51.510 (6)C18—C231.413 (5)
C4—H4A0.9700C19—C201.399 (4)
C4—H4B0.9700C20—C211.386 (5)
C5—H5A0.9700C21—C221.376 (5)
C5—H5B0.9700C21—H210.9300
C6—C71.537 (5)C22—C231.368 (4)
C6—H60.9800C23—H230.9300
C12—O1—H1109.5C7—C8—H8B110.4
C19—O2—H2109.5H8A—C8—H8B108.6
C10—N1—C2119.3 (3)C8—C9—C1106.0 (3)
C17—N2—C6119.1 (3)C8—C9—H9A110.5
C6—C1—C9101.3 (3)C1—C9—H9A110.5
C6—C1—C2117.1 (3)C8—C9—H9B110.5
C9—C1—C2113.3 (3)C1—C9—H9B110.5
C6—C1—C5114.9 (2)H9A—C9—H9B108.7
C9—C1—C5110.4 (2)N1—C10—C11121.7 (3)
C2—C1—C5100.3 (2)N1—C10—H10119.2
N1—C2—C3112.5 (3)C11—C10—H10119.2
N1—C2—C1113.7 (3)C16—C11—C12120.7 (3)
C3—C2—C1103.7 (3)C16—C11—C10120.1 (3)
N1—C2—H2A108.9C12—C11—C10119.1 (3)
C3—C2—H2A108.9O1—C12—C13120.6 (3)
C1—C2—H2A108.9O1—C12—C11122.6 (3)
C4—C3—C2105.2 (3)C13—C12—C11116.8 (3)
C4—C3—H3A110.7C14—C13—C12122.4 (3)
C2—C3—H3A110.7C14—C13—Cl1119.0 (2)
C4—C3—H3B110.7C12—C13—Cl1118.7 (3)
C2—C3—H3B110.7C15—C14—C13118.9 (3)
H3A—C3—H3B108.8C15—C14—H14120.5
C3—C4—C5106.9 (3)C13—C14—H14120.5
C3—C4—H4A110.3C14—C15—C16121.0 (3)
C5—C4—H4A110.3C14—C15—Cl2119.1 (3)
C3—C4—H4B110.3C16—C15—Cl2119.8 (3)
C5—C4—H4B110.3C11—C16—C15120.1 (3)
H4A—C4—H4B108.6C11—C16—H16120.0
C4—C5—C1106.4 (3)C15—C16—H16120.0
C4—C5—H5A110.4N2—C17—C18121.4 (3)
C1—C5—H5A110.4N2—C17—H17119.3
C4—C5—H5B110.4C18—C17—H17119.3
C1—C5—H5B110.4C19—C18—C23120.4 (3)
H5A—C5—H5B108.6C19—C18—C17120.7 (3)
N2—C6—C1112.4 (2)C23—C18—C17118.9 (3)
N2—C6—C7111.7 (3)O2—C19—C18122.4 (3)
C1—C6—C7103.7 (3)O2—C19—C20119.5 (3)
N2—C6—H6109.6C18—C19—C20118.1 (3)
C1—C6—H6109.6C21—C20—C19121.7 (3)
C7—C6—H6109.6C21—C20—Cl3118.9 (2)
C6—C7—C8104.0 (3)C19—C20—Cl3119.4 (3)
C6—C7—H7A111.0C22—C21—C20118.8 (3)
C8—C7—H7A111.0C22—C21—H21120.6
C6—C7—H7B111.0C20—C21—H21120.6
C8—C7—H7B111.0C23—C22—C21122.0 (3)
H7A—C7—H7B109.0C23—C22—Cl4119.4 (3)
C9—C8—C7106.6 (3)C21—C22—Cl4118.6 (3)
C9—C8—H8A110.4C22—C23—C18119.1 (3)
C7—C8—H8A110.4C22—C23—H23120.5
C9—C8—H8B110.4C18—C23—H23120.5
C10—N1—C2—C3119.2 (4)C10—C11—C12—O10.7 (5)
C10—N1—C2—C1123.3 (3)C16—C11—C12—C131.3 (5)
C6—C1—C2—N171.0 (3)C10—C11—C12—C13178.6 (3)
C9—C1—C2—N146.3 (4)O1—C12—C13—C14178.1 (3)
C5—C1—C2—N1164.0 (3)C11—C12—C13—C141.2 (5)
C6—C1—C2—C3166.5 (2)O1—C12—C13—Cl11.7 (5)
C9—C1—C2—C376.1 (3)C11—C12—C13—Cl1179.0 (3)
C5—C1—C2—C341.5 (3)C12—C13—C14—C150.2 (6)
N1—C2—C3—C4156.4 (3)Cl1—C13—C14—C15180.0 (3)
C1—C2—C3—C433.1 (3)C13—C14—C15—C160.8 (6)
C2—C3—C4—C510.6 (4)C13—C14—C15—Cl2179.3 (3)
C3—C4—C5—C115.9 (4)C12—C11—C16—C150.3 (5)
C6—C1—C5—C4161.9 (3)C10—C11—C16—C15177.7 (3)
C9—C1—C5—C484.3 (3)C14—C15—C16—C110.7 (6)
C2—C1—C5—C435.4 (3)Cl2—C15—C16—C11179.4 (3)
C17—N2—C6—C1109.3 (3)C6—N2—C17—C18176.3 (3)
C17—N2—C6—C7134.5 (3)N2—C17—C18—C193.4 (5)
C9—C1—C6—N2163.8 (3)N2—C17—C18—C23175.3 (3)
C2—C1—C6—N272.4 (3)C23—C18—C19—O2178.6 (3)
C5—C1—C6—N244.8 (4)C17—C18—C19—O20.1 (5)
C9—C1—C6—C742.9 (3)C23—C18—C19—C201.0 (5)
C2—C1—C6—C7166.7 (2)C17—C18—C19—C20179.7 (3)
C5—C1—C6—C776.1 (3)O2—C19—C20—C21178.9 (3)
N2—C6—C7—C8155.0 (3)C18—C19—C20—C210.7 (5)
C1—C6—C7—C833.7 (3)O2—C19—C20—Cl30.7 (5)
C6—C7—C8—C911.1 (4)C18—C19—C20—Cl3179.7 (3)
C7—C8—C9—C115.7 (4)C19—C20—C21—C220.1 (6)
C6—C1—C9—C836.1 (3)Cl3—C20—C21—C22179.5 (3)
C2—C1—C9—C8162.4 (3)C20—C21—C22—C230.6 (6)
C5—C1—C9—C886.1 (3)C20—C21—C22—Cl4178.1 (3)
C2—N1—C10—C11178.2 (3)C21—C22—C23—C180.3 (6)
N1—C10—C11—C16178.4 (3)Cl4—C22—C23—C18178.4 (3)
N1—C10—C11—C121.0 (5)C19—C18—C23—C220.5 (5)
C16—C11—C12—O1178.0 (3)C17—C18—C23—C22179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.882.597 (3)146
O1—H1···N10.821.862.589 (3)148
C2—H2A···Cl1i0.983.104.005 (3)154
C7—H7B···Cl1ii0.972.873.734 (4)149
C14—H14···Cl2iii0.933.013.886 (3)158
C6—H6···Cl3iv0.983.104.027 (3)158
C3—H3A···Cl3v0.973.003.874 (4)151
C21—H21···Cl4vi0.933.013.886 (3)158
C23—H23···Cl4vii0.933.164.023 (3)154
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1, y+1, z1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H22Cl4N2O2
Mr500.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.052 (2), 33.489 (6), 8.881 (3)
β (°) 107.310 (5)
V3)2286.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.50 × 0.50 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
20717, 5224, 2703
Rint0.080
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.277, 1.01
No. of reflections5224
No. of parameters282
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0917P)2 + 10.5P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.57, 0.40

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.882.597 (3)146.0
O1—H1···N10.821.862.589 (3)147.9
C2—H2A···Cl1i0.983.104.005 (3)154
C7—H7B···Cl1ii0.972.873.734 (4)149
C14—H14···Cl2iii0.933.013.886 (3)158
C6—H6···Cl3iv0.983.104.027 (3)158
C3—H3A···Cl3v0.973.003.874 (4)151
C21—H21···Cl4vi0.933.013.886 (3)158
C23—H23···Cl4vii0.933.164.023 (3)154
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1, y+1, z1; (vii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds