Download citation
Download citation
link to html
The title dinuclear complex, [Cd2(C7H3N2O7)2(C3H4N2)6]·2H2O, lies about an inversion centre. Each CdII atom is coordinated by three O atoms from two 3,5-dinitro­salicylate ligands and the N atoms of three imidazole ligands. Three ligand O atoms and one N atom lie in the equatorial plane with the two other imidazole ligands axial in a distorted octa­hedral coordination environment. The intramolecular Cd...Cd separation is 3.906 (4) Å. In the crystal structure, a supra­molecular network forms through extensive inter­molecular hydrogen-bonding inter­actions. One imidazole ring is disordered over two orientations in ratio of approximately 0.8:0.2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021460/sj2305sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021460/sj2305Isup2.hkl
Contains datablock I

CCDC reference: 629748

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.026
  • wR factor = 0.063
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.26 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C15 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C16 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N6' PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N6 PLAT301_ALERT_3_C Main Residue Disorder ......................... 11.00 Perc. PLAT432_ALERT_2_C Short Inter X...Y Contact C14 .. C14 .. 3.16 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Whereas a large number of metal derivatives of benzoic acid have been reported, there are few examples of metal derivatives of 3,5-dinitrosalicylic acid, and examples of crystal structure reports are limited to the silver (Othman et al., 2003), copper (Su & Xu, 2005) and tin (Tian et al., 2005) derivatives only. We report here a dinuclear cadmium(II) complex formed by the reaction of cadmium nitrate, 3,5-dinitrosalicylic acid and imidazole in an aqueous solution.

As illustrated in Fig. 1, in the asymmetric unit of (I) each CdII centre is coordinated by three O atoms from two 3,5-dinitrosalicylate ligands, three N atoms from three imidazole ligands, and displaying a distorted octahedral geometry. The complex lies about an inversion centre to form a dinuclear complex with a Cd···Cd separation of 3.906 (4) Å. Individual molecules are further extended into a supramolecular network through intermolecular hydrogen bonds (Table 1) involving both the complex and the water solvate.

Related literature top

For related structures of 3,5-dinitrosalicylate complexes, see: Othman et al. (2003), Su & Xu (2005) and Tian et al. (2005).

Experimental top

The title complex was prepared by the addition of a stoichiometric amount of cadmium nitrate (20 mmol) and imidazole (20 mmol) to a hot aqueous solution (25 ml) of 3,5-dinitrosalicylic acid (30 mmol). The pH was then adjusted to 7.0 to 8.0 with NaOH (30 mmol). The resulting solution was filtered, and colorless crystals were obtained at room temperature on slow evaporation of the solvent over several days.

Refinement top

Atoms C14, N6, C15 and C16 of one of the imidazole rings are disordered over two positions such that the two disordered rings are inclined at 75.5 (8)° to one another. The occupancy factor of the major disorder component refined to 0.792 (6). Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C, N). Water H atoms were tentatively located in a difference Fourier map and were refined with distance restraints of O–H = 0.85 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å; and Uiso(H) = 1.2 Ueq(O).

Structure description top

Whereas a large number of metal derivatives of benzoic acid have been reported, there are few examples of metal derivatives of 3,5-dinitrosalicylic acid, and examples of crystal structure reports are limited to the silver (Othman et al., 2003), copper (Su & Xu, 2005) and tin (Tian et al., 2005) derivatives only. We report here a dinuclear cadmium(II) complex formed by the reaction of cadmium nitrate, 3,5-dinitrosalicylic acid and imidazole in an aqueous solution.

As illustrated in Fig. 1, in the asymmetric unit of (I) each CdII centre is coordinated by three O atoms from two 3,5-dinitrosalicylate ligands, three N atoms from three imidazole ligands, and displaying a distorted octahedral geometry. The complex lies about an inversion centre to form a dinuclear complex with a Cd···Cd separation of 3.906 (4) Å. Individual molecules are further extended into a supramolecular network through intermolecular hydrogen bonds (Table 1) involving both the complex and the water solvate.

For related structures of 3,5-dinitrosalicylate complexes, see: Othman et al. (2003), Su & Xu (2005) and Tian et al. (2005).

Computing details top

Data collection: APEXII (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are related to the labelled atoms by the symmetry operator (2 - x, 2 - y, 1 - z).
Bis(µ-3,5-dinitrosalicylato)hexaimidazoledicadmium(II) dihydrate top
Crystal data top
[Cd2(C7H3N2O7)2(C3H4N2)6]·2H2OZ = 1
Mr = 1121.54F(000) = 560
Triclinic, P1Dx = 1.791 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6267 (3) ÅCell parameters from 4650 reflections
b = 10.5305 (3) Åθ = 1.7–28.0°
c = 11.9560 (4) ŵ = 1.11 mm1
α = 63.967 (2)°T = 293 K
β = 73.013 (2)°Block, colorless
γ = 79.712 (2)°0.25 × 0.20 × 0.18 mm
V = 1039.75 (6) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4797 independent reflections
Radiation source: fine-focus sealed tube4363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.768, Tmax = 0.825k = 1313
17831 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.3686P]
where P = (Fo2 + 2Fc2)/3
4797 reflections(Δ/σ)max = 0.002
341 parametersΔρmax = 0.59 e Å3
6 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cd2(C7H3N2O7)2(C3H4N2)6]·2H2Oγ = 79.712 (2)°
Mr = 1121.54V = 1039.75 (6) Å3
Triclinic, P1Z = 1
a = 9.6267 (3) ÅMo Kα radiation
b = 10.5305 (3) ŵ = 1.11 mm1
c = 11.9560 (4) ÅT = 293 K
α = 63.967 (2)°0.25 × 0.20 × 0.18 mm
β = 73.013 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4797 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4363 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.825Rint = 0.028
17831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.59 e Å3
4797 reflectionsΔρmin = 0.67 e Å3
341 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0356 (2)1.0810 (2)0.66201 (19)0.0293 (4)
C20.9348 (2)1.0536 (2)0.79176 (19)0.0268 (4)
C30.8365 (2)0.9396 (2)0.85829 (18)0.0263 (4)
C40.7447 (2)0.9367 (2)0.9779 (2)0.0301 (4)
C50.7498 (2)1.0257 (2)1.0315 (2)0.0333 (5)
H50.69021.01511.11160.040*
C60.8463 (2)1.1323 (2)0.9633 (2)0.0329 (5)
C70.9366 (2)1.1464 (2)0.8448 (2)0.0310 (4)
H70.99961.21970.80020.037*
C81.0851 (3)0.6339 (3)0.7404 (2)0.0432 (6)
H81.06680.67280.80010.052*
C91.1692 (3)0.4916 (3)0.6460 (3)0.0635 (8)
H91.21880.41710.62600.076*
C101.0809 (3)0.5935 (3)0.5818 (3)0.0552 (7)
H101.05820.60120.50850.066*
C110.7147 (3)0.5666 (3)0.6729 (3)0.0649 (9)
H110.79100.55600.60820.078*
C120.6127 (4)0.4720 (4)0.7488 (4)0.0761 (10)
H120.60520.38620.74680.091*
C130.5730 (3)0.6516 (3)0.7986 (2)0.0496 (6)
H130.52950.71100.83970.060*
N50.6563 (2)1.0255 (2)0.5937 (2)0.0453 (5)
C140.5098 (3)1.0074 (3)0.6268 (3)0.0427 (9)0.792 (6)
H140.47030.91930.66600.051*0.792 (6)
N60.4312 (4)1.1290 (5)0.5968 (5)0.0439 (10)0.792 (6)
H60.33831.14030.60700.053*0.792 (6)
C150.5259 (5)1.2320 (5)0.5468 (9)0.087 (2)0.792 (6)
H150.50361.32910.51750.104*0.792 (6)
C160.6577 (4)1.1664 (4)0.5481 (6)0.0833 (19)0.792 (6)
H160.74241.21380.52010.100*0.792 (6)
C14'0.6515 (15)1.1041 (17)0.4670 (12)0.058 (5)0.208 (6)
H14'0.71601.10480.39170.070*0.208 (6)
N6'0.5244 (17)1.1799 (19)0.4856 (13)0.077 (5)0.208 (6)
H6'0.48131.23550.42620.092*0.208 (6)
C15'0.477 (2)1.156 (3)0.607 (2)0.057 (7)0.208 (6)
H15'0.39091.19310.64570.069*0.208 (6)
C16'0.5808 (16)1.0657 (17)0.6632 (13)0.060 (5)0.208 (6)
H16'0.58791.04130.74620.072*0.208 (6)
Cd10.850613 (15)0.865319 (15)0.612784 (14)0.02985 (6)
N11.0288 (2)0.6853 (2)0.6410 (2)0.0396 (4)
N21.1718 (3)0.5189 (3)0.7456 (2)0.0532 (6)
H21.22080.47060.80230.064*
N30.6910 (2)0.6798 (2)0.70391 (19)0.0419 (5)
N40.5238 (3)0.5281 (3)0.8282 (2)0.0636 (7)
H40.44850.49050.88740.076*
N70.8480 (2)1.2320 (2)1.0149 (2)0.0438 (5)
N80.6355 (2)0.8313 (2)1.04896 (19)0.0384 (4)
O10.83206 (16)0.84395 (15)0.82153 (13)0.0322 (3)
O21.01862 (18)1.01829 (18)0.59849 (14)0.0429 (4)
O31.13005 (17)1.16861 (17)0.61858 (16)0.0406 (4)
O40.9334 (2)1.3270 (2)0.9547 (2)0.0656 (6)
O50.7639 (2)1.2197 (2)1.1182 (2)0.0639 (6)
O60.6302 (2)0.7591 (2)1.16355 (17)0.0640 (6)
O70.55420 (19)0.8200 (2)0.99275 (19)0.0528 (5)
O1W0.7629 (2)0.56782 (18)1.00690 (16)0.0445 (4)
H2W0.783 (3)0.6497 (18)0.951 (2)0.053*
H1W0.812 (3)0.506 (2)0.987 (3)0.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (9)0.0333 (10)0.0255 (10)0.0051 (8)0.0032 (8)0.0117 (8)
C20.0284 (9)0.0278 (10)0.0236 (9)0.0023 (8)0.0036 (8)0.0114 (8)
C30.0292 (9)0.0254 (9)0.0231 (9)0.0031 (7)0.0045 (8)0.0093 (7)
C40.0327 (10)0.0272 (10)0.0275 (10)0.0066 (8)0.0011 (8)0.0107 (8)
C50.0355 (11)0.0363 (11)0.0268 (10)0.0041 (9)0.0009 (8)0.0164 (9)
C60.0394 (11)0.0319 (11)0.0325 (11)0.0048 (9)0.0038 (9)0.0198 (9)
C70.0318 (10)0.0313 (10)0.0307 (11)0.0071 (8)0.0024 (8)0.0147 (8)
C80.0435 (13)0.0465 (14)0.0406 (13)0.0047 (10)0.0084 (10)0.0191 (11)
C90.0635 (18)0.0553 (17)0.076 (2)0.0171 (14)0.0181 (16)0.0375 (16)
C100.0565 (16)0.0647 (18)0.0589 (17)0.0114 (13)0.0189 (13)0.0407 (15)
C110.0561 (16)0.0559 (17)0.083 (2)0.0225 (14)0.0106 (15)0.0395 (16)
C120.074 (2)0.0573 (19)0.095 (3)0.0318 (17)0.0073 (19)0.0274 (18)
C130.0445 (13)0.0635 (17)0.0393 (14)0.0131 (12)0.0044 (11)0.0195 (12)
N50.0478 (12)0.0412 (11)0.0470 (12)0.0005 (9)0.0138 (10)0.0180 (10)
C140.0361 (15)0.0462 (18)0.0457 (18)0.0083 (13)0.0067 (13)0.0187 (14)
N60.027 (2)0.0531 (19)0.055 (2)0.0005 (17)0.0075 (17)0.0273 (16)
C150.042 (2)0.043 (2)0.146 (6)0.0050 (19)0.000 (3)0.028 (3)
C160.0330 (18)0.043 (2)0.145 (5)0.0088 (15)0.002 (2)0.021 (2)
C14'0.049 (7)0.080 (10)0.026 (6)0.009 (7)0.003 (5)0.012 (6)
N6'0.086 (11)0.080 (11)0.053 (8)0.042 (8)0.046 (8)0.015 (7)
C15'0.026 (10)0.09 (2)0.062 (11)0.026 (11)0.017 (9)0.044 (12)
C16'0.061 (9)0.081 (11)0.037 (7)0.024 (8)0.027 (6)0.023 (7)
Cd10.03198 (9)0.03015 (9)0.02494 (9)0.00745 (6)0.00006 (6)0.01130 (6)
N10.0387 (10)0.0431 (11)0.0430 (11)0.0020 (8)0.0110 (9)0.0242 (9)
N20.0506 (13)0.0531 (13)0.0510 (14)0.0052 (10)0.0191 (11)0.0159 (11)
N30.0392 (10)0.0432 (11)0.0396 (11)0.0135 (8)0.0007 (8)0.0160 (9)
N40.0557 (14)0.0729 (17)0.0478 (14)0.0376 (13)0.0041 (11)0.0047 (12)
N70.0494 (11)0.0457 (11)0.0454 (12)0.0090 (9)0.0006 (9)0.0312 (10)
N80.0416 (10)0.0346 (10)0.0363 (10)0.0113 (8)0.0081 (8)0.0198 (8)
O10.0429 (8)0.0287 (7)0.0248 (7)0.0106 (6)0.0008 (6)0.0133 (6)
O20.0507 (9)0.0558 (10)0.0267 (8)0.0256 (8)0.0062 (7)0.0223 (7)
O30.0363 (8)0.0446 (9)0.0399 (9)0.0175 (7)0.0064 (7)0.0207 (7)
O40.0769 (13)0.0598 (12)0.0708 (14)0.0355 (11)0.0163 (11)0.0460 (11)
O50.0726 (13)0.0752 (14)0.0578 (12)0.0262 (11)0.0184 (10)0.0530 (11)
O60.0927 (15)0.0553 (12)0.0311 (9)0.0352 (11)0.0056 (9)0.0078 (8)
O70.0407 (9)0.0622 (12)0.0589 (12)0.0179 (8)0.0027 (8)0.0282 (10)
O1W0.0536 (10)0.0340 (9)0.0377 (9)0.0083 (8)0.0008 (8)0.0118 (7)
Geometric parameters (Å, º) top
C1—O31.245 (2)N5—C141.373 (4)
C1—O21.262 (3)N5—C14'1.382 (13)
C1—C21.503 (3)N5—Cd12.276 (2)
C2—C71.384 (3)C14—N61.323 (6)
C2—C31.447 (3)C14—H140.9300
C3—O11.275 (2)N6—C151.354 (6)
C3—C41.435 (3)N6—H60.8600
C4—C51.362 (3)C15—C161.333 (6)
C4—N81.459 (3)C15—H150.9300
C5—C61.383 (3)C16—H160.9300
C5—H50.9300C14'—N6'1.353 (19)
C6—C71.388 (3)C14'—H14'0.9300
C6—N71.437 (3)N6'—C15'1.31 (3)
C7—H70.9300N6'—H6'0.8600
C8—N11.305 (3)C15'—C16'1.37 (2)
C8—N21.331 (3)C15'—H15'0.9300
C8—H80.9300C16'—H16'0.9300
C9—C101.340 (4)Cd1—N12.2949 (19)
C9—N21.348 (4)Cd1—O2i2.3330 (14)
C9—H90.9300Cd1—O12.3606 (15)
C10—N11.381 (3)Cd1—N32.3647 (18)
C10—H100.9300Cd1—O22.4015 (16)
C11—C121.348 (4)N2—H20.8600
C11—N31.360 (4)N4—H40.8600
C11—H110.9300N7—O41.229 (3)
C12—N41.349 (5)N7—O51.229 (3)
C12—H120.9300N8—O71.220 (3)
C13—N31.317 (3)N8—O61.231 (3)
C13—N41.327 (4)O2—Cd1i2.3330 (14)
C13—H130.9300O1W—H2W0.839 (16)
N5—C16'1.115 (15)O1W—H1W0.817 (16)
N5—C161.338 (4)
O3—C1—O2121.97 (18)C16—C15—H15126.9
O3—C1—C2119.04 (19)N6—C15—H15126.9
O2—C1—C2118.94 (17)C15—C16—N5113.4 (3)
C7—C2—C3120.54 (18)C15—C16—H16123.3
C7—C2—C1116.47 (17)N5—C16—H16123.3
C3—C2—C1122.96 (18)N6'—C14'—N598.6 (10)
O1—C3—C4120.58 (17)N6'—C14'—H14'130.7
O1—C3—C2125.47 (17)N5—C14'—H14'130.7
C4—C3—C2113.87 (18)C15'—N6'—C14'110.3 (13)
C5—C4—C3125.37 (18)C15'—N6'—H6'124.9
C5—C4—N8116.31 (18)C14'—N6'—H6'124.9
C3—C4—N8118.31 (18)N6'—C15'—C16'104.2 (15)
C4—C5—C6117.91 (19)N6'—C15'—H15'127.9
C4—C5—H5121.0C16'—C15'—H15'127.9
C6—C5—H5121.0N5—C16'—C15'109.0 (14)
C5—C6—C7120.9 (2)N5—C16'—H16'125.5
C5—C6—N7118.89 (19)C15'—C16'—H16'125.5
C7—C6—N7120.17 (19)N5—Cd1—N1173.81 (7)
C2—C7—C6121.32 (19)N5—Cd1—O2i94.73 (7)
C2—C7—H7119.3N1—Cd1—O2i89.21 (7)
C6—C7—H7119.3N5—Cd1—O190.80 (7)
N1—C8—N2111.5 (2)N1—Cd1—O189.17 (6)
N1—C8—H8124.3O2i—Cd1—O1140.55 (5)
N2—C8—H8124.3N5—Cd1—N389.69 (7)
C10—C9—N2106.2 (3)N1—Cd1—N384.13 (7)
C10—C9—H9126.9O2i—Cd1—N3130.33 (6)
N2—C9—H9126.9O1—Cd1—N388.64 (6)
C9—C10—N1109.6 (3)N5—Cd1—O296.54 (7)
C9—C10—H10125.2N1—Cd1—O289.33 (7)
N1—C10—H10125.2O2i—Cd1—O268.82 (6)
C12—C11—N3110.8 (3)O1—Cd1—O271.75 (5)
C12—C11—H11124.6N3—Cd1—O2159.44 (7)
N3—C11—H11124.6C8—N1—C10104.9 (2)
C11—C12—N4105.4 (3)C8—N1—Cd1121.98 (17)
C11—C12—H12127.3C10—N1—Cd1132.17 (18)
N4—C12—H12127.3C8—N2—C9107.9 (2)
N3—C13—N4111.7 (3)C8—N2—H2126.1
N3—C13—H13124.1C9—N2—H2126.1
N4—C13—H13124.1C13—N3—C11104.3 (2)
C16'—N5—C1669.1 (9)C13—N3—Cd1131.26 (19)
C16'—N5—C1459.9 (9)C11—N3—Cd1124.20 (16)
C16—N5—C14101.4 (2)C13—N4—C12107.8 (2)
C16'—N5—C14'115.2 (9)C13—N4—H4126.1
C16—N5—C14'62.3 (7)C12—N4—H4126.1
C14—N5—C14'90.3 (6)O4—N7—O5121.9 (2)
C16'—N5—Cd1131.7 (7)O4—N7—C6119.18 (19)
C16—N5—Cd1127.5 (2)O5—N7—C6118.9 (2)
C14—N5—Cd1131.09 (19)O7—N8—O6123.7 (2)
C14'—N5—Cd1111.7 (6)O7—N8—C4118.77 (19)
N6—C14—N5112.6 (3)O6—N8—C4117.5 (2)
N6—C14—H14123.7C3—O1—Cd1129.08 (12)
N5—C14—H14123.7C1—O2—Cd1i107.47 (12)
C14—N6—C15106.4 (4)C1—O2—Cd1138.66 (13)
C14—N6—H6126.8Cd1i—O2—Cd1111.18 (6)
C15—N6—H6126.8H2W—O1W—H1W113 (2)
C16—C15—N6106.2 (4)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4ii0.82 (2)2.16 (2)2.970 (3)174 (3)
N6—H6···O3iii0.861.952.805 (4)176
N4—H4···O1Wiv0.862.092.932 (3)165
N2—H2···O6v0.862.513.132 (3)130
N2—H2···O1Wv0.862.182.915 (3)143
O1W—H2W···O10.84 (2)1.99 (2)2.825 (2)179 (3)
Symmetry codes: (ii) x, y1, z; (iii) x1, y, z; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd2(C7H3N2O7)2(C3H4N2)6]·2H2O
Mr1121.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6267 (3), 10.5305 (3), 11.9560 (4)
α, β, γ (°)63.967 (2), 73.013 (2), 79.712 (2)
V3)1039.75 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
17831, 4797, 4363
Rint0.028
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.04
No. of reflections4797
No. of parameters341
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.67

Computer programs: APEXII (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4i0.817 (16)2.156 (16)2.970 (3)174 (3)
N6—H6···O3ii0.861.952.805 (4)176.3
N4—H4···O1Wiii0.862.092.932 (3)164.8
N2—H2···O6iv0.862.513.132 (3)129.7
N2—H2···O1Wiv0.862.182.915 (3)142.7
O1W—H2W···O10.839 (16)1.987 (16)2.825 (2)179 (3)
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds