organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Di­methyl­anilino)acetohydrazide

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Gomal University, Dera Ismail Khan, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 21 September 2009; accepted 25 September 2009; online 30 September 2009)

The title compound, C10H15N3O, crystallizes in an infinite two-dimensional polymeric network due to inter­molecular N—H⋯O hydrogen bonding. Intra­molecular N—H⋯N and inter­molecular C—H⋯N inter­actions are also present. The 3,4-dimethyl­phenyl unit is disordered over two sites with an occupancy ratio of 0.677 (5):0.323 (5). The dihedral angle between the benzene rings of the disordered components is 2.6 (6)°.

Related literature

For the structure of phenyl­glycine hydrazide, see: Gudasi et al. (2007[Gudasi, K. B., Patil, M. S., Vadavi, R. S., Shenoy, R. V., Patil, S. A. & Nethaji, M. (2007). Spectrochim. Acta Part A, 67, 172-177.]). For the biological and medicinal activity of hydrazide compounds, see: Hall et al. (1993[Hall, L. H., Mohney, B. K. & Kier, L. B. (1993). Quant. Struct. Act. Relat. 12, 44-48.]); Waisser et al. (1990[Waisser, K., Houngbedji, N., Odlerova, Z., Thiel, W. & Mayer, R. (1990). Pharmazie, 45, 141-142.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15N3O

  • Mr = 193.25

  • Triclinic, [P \overline 1]

  • a = 5.1956 (6) Å

  • b = 6.0869 (7) Å

  • c = 16.3477 (19) Å

  • α = 80.657 (6)°

  • β = 86.733 (5)°

  • γ = 84.040 (6)°

  • V = 506.96 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.991

  • 8717 measured reflections

  • 2182 independent reflections

  • 1299 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.03

  • 2182 reflections

  • 180 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.8600 2.5200 3.223 (2) 140.00
N2—H2⋯N1 0.8600 2.2500 2.672 (3) 110.00
N2—H2⋯N3ii 0.8600 2.4700 3.139 (3) 136.00
N3—H3A⋯O1 0.91 (3) 2.39 (2) 2.779 (3) 105.6 (17)
N3—H3A⋯O1iii 0.91 (3) 2.42 (2) 3.223 (2) 147 (2)
N3—H3B⋯O1iv 0.93 (3) 2.32 (3) 3.156 (3) 149 (2)
C9—H9B⋯N3v 0.9700 2.5800 3.484 (3) 155.00
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) x+1, y, z; (v) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The hydrazides and their analogues are known to have different biological activities such as tuberculostatic activity, antifungal and monoamine oxidase inhibitory activity (Waisser et al., 1990; Hall et al., 1993). The title compound (I, Fig. 1) has been prepared as an intermediate for further derivatization with various substituted pyridine aldehydes.

The crystal structure of (II) Phenylglycine hydrazide (Gudasi et al., 2007) and the title compound (I) differ due to substitution of the methyl moieties. In the title compound, the 3,4-dimethylphenyl group is disordered over two possible sites with an occupancy ratio 0.677 (5):0.323 (5). The dihedral angle between the benzene rings A (C1A—C6A) and B (C1B—C6B) of the disordered moiety is 2.6 (6)°. The group C (N1/N2/N3/C10/O1) is almost planar with maximum r.m.s. deviation of 0.0457 Å from its mean square plane, and C9 is at a distance of -0.2594 (26) Å. The dihedral angle between A/C and B/C is 89.46 (10) and 87.80 (23)°, respectively. The title compound is stabilized in the form of an infinite two dimensional polymeric network due to intra as well as inter-molecular N—H···O hydrogen bondings (Table 1, Fig. 2).

Related literature top

For the structure of phenylglycine hydrazide, see: Gudasi et al. (2007). For the biological and medicinal activity of hydrazide compounds, see: Hall et al. (1993); Waisser et al. (1990).

Experimental top

In a first step ethylchloroacetate (2.3 g, 0.0187 mol), the 3,4-dimethylaniline (2.266 g, 0.0187 mol) and triethylamine (1.89 g, 0.0187 mol) were refluxed in 60 ml of THF. The reaction was monitored by TLC and solvent was removed under reduced pressure. The solid residue obtained was washed with water to get reddish precipitate of ethyl [(3,4-dimethylphenyl)amino]acetate.

In a second step ethyl[(3,4-dimethylphenyl)amino]acetate (3.41 g, 0.0164 mol) and about three folds of hydrazine hydrate (2.46 g, 0.0492 mol) were refluxed in 20 ml of ethyl alcohol. On evaporation of solvent at room temperature yellow needles of the title compound (I) were obtained.

Refinement top

The coordinates of H-atoms of NH2 group were refined. H-atoms were positioned geometrically, with N—H = 0.86 Å for NH group, C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and 1.2 for all other H atoms.

The benzene rings of the disordered group were fitted using AFIX 66.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines represent the group of lower occupancy factor.
[Figure 2] Fig. 2. The projectional view (PLATON; Spek, 2009) along the a axis which shows that the molecules are stabilized in form of a two dimensional polymeric network.
2-(3,4-Dimethylanilino)acetohydrazide top
Crystal data top
C10H15N3OZ = 2
Mr = 193.25F(000) = 208
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1956 (6) ÅCell parameters from 2187 reflections
b = 6.0869 (7) Åθ = 2.5–27.1°
c = 16.3477 (19) ŵ = 0.09 mm1
α = 80.657 (6)°T = 296 K
β = 86.733 (5)°Needle, yellow
γ = 84.040 (6)°0.25 × 0.12 × 0.10 mm
V = 506.96 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube1299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.60 pixels mm-1θmax = 27.1°, θmin = 2.5°
ω scansh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 77
Tmin = 0.989, Tmax = 0.991l = 2019
8717 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.1107P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C10H15N3Oγ = 84.040 (6)°
Mr = 193.25V = 506.96 (10) Å3
Triclinic, P1Z = 2
a = 5.1956 (6) ÅMo Kα radiation
b = 6.0869 (7) ŵ = 0.09 mm1
c = 16.3477 (19) ÅT = 296 K
α = 80.657 (6)°0.25 × 0.12 × 0.10 mm
β = 86.733 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1299 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.991Rint = 0.034
8717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
2182 reflectionsΔρmin = 0.31 e Å3
180 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3981 (3)0.8061 (2)0.09951 (10)0.0591 (6)
N10.6054 (3)0.2257 (3)0.16440 (12)0.0503 (6)
N20.7511 (3)0.5889 (3)0.06510 (10)0.0427 (6)
N30.8768 (4)0.7634 (3)0.01577 (12)0.0488 (6)
C1A0.7662 (6)0.2289 (5)0.2378 (2)0.0393 (10)0.677 (5)
C2A0.9473 (5)0.0477 (4)0.2606 (2)0.0438 (13)0.677 (5)
C3A1.1022 (5)0.0453 (4)0.3274 (2)0.0490 (17)0.677 (5)
C4A1.0758 (5)0.2241 (5)0.37135 (17)0.0477 (14)0.677 (5)
C5A0.8947 (5)0.4053 (5)0.34854 (18)0.0533 (14)0.677 (5)
C6A0.7398 (6)0.4077 (5)0.2818 (2)0.0467 (12)0.677 (5)
C7A1.3044 (7)0.1488 (7)0.3490 (3)0.0738 (16)0.677 (5)
C8A1.2393 (8)0.2247 (8)0.4457 (2)0.0712 (14)0.677 (5)
C90.4124 (4)0.4092 (3)0.14708 (14)0.0462 (7)
C100.5202 (4)0.6210 (3)0.10230 (13)0.0404 (6)
C1B0.7655 (13)0.1771 (12)0.2182 (4)0.0393 (10)0.323 (5)
C2B0.7810 (13)0.3188 (12)0.2760 (4)0.044 (3)0.323 (5)
C3B0.9597 (14)0.2633 (16)0.3379 (4)0.070 (4)0.323 (5)
C4B1.1229 (12)0.0662 (18)0.3420 (4)0.070 (6)0.323 (5)
C5B1.1073 (11)0.0755 (13)0.2842 (5)0.082 (4)0.323 (5)
C6B0.9286 (13)0.0200 (11)0.2222 (5)0.061 (3)0.323 (5)
C7B0.976 (3)0.398 (2)0.4034 (7)0.128 (7)0.323 (5)
C8B1.327 (2)0.016 (2)0.4075 (7)0.107 (5)0.323 (5)
H9B0.283410.367540.113310.0555*
H711.473780.098090.338240.1105*0.677 (5)
H721.284690.262060.315900.1105*0.677 (5)
H731.283500.209650.406700.1105*0.677 (5)
H811.221730.090550.484690.1067*0.677 (5)
H821.181480.352530.471700.1067*0.677 (5)
H831.417640.231270.427450.1067*0.677 (5)
H10.628400.120100.134840.0604*
H20.828560.455770.071170.0512*
H2A0.964950.071940.231160.0527*0.677 (5)
H3A0.750 (5)0.876 (4)0.0011 (14)0.0586*
H3B0.987 (5)0.812 (4)0.0509 (14)0.0586*
H5A0.877060.524920.377970.0638*0.677 (5)
H6A0.618620.528880.266500.0560*0.677 (5)
H9A0.326550.439740.198860.0555*
H2B0.671850.450700.273240.0524*0.323 (5)
H5B1.216450.207390.286920.0981*0.323 (5)
H6B0.918190.114830.183550.0722*0.323 (5)
H740.941210.309390.456370.1919*0.323 (5)
H750.850300.525840.395130.1919*0.323 (5)
H761.146200.446220.401830.1919*0.323 (5)
H841.247270.099900.455350.1600*0.323 (5)
H851.396230.110610.423240.1600*0.323 (5)
H861.463490.109080.384740.1600*0.323 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (8)0.0453 (9)0.0813 (12)0.0028 (7)0.0029 (8)0.0035 (8)
N10.0550 (11)0.0357 (9)0.0591 (12)0.0053 (8)0.0063 (9)0.0063 (8)
N20.0367 (9)0.0339 (9)0.0541 (11)0.0060 (7)0.0040 (8)0.0024 (8)
N30.0415 (10)0.0403 (10)0.0604 (13)0.0108 (8)0.0008 (9)0.0078 (9)
C1A0.0391 (12)0.038 (2)0.038 (2)0.0060 (14)0.0067 (14)0.0007 (17)
C2A0.0480 (19)0.0329 (18)0.049 (3)0.0067 (15)0.0062 (18)0.0031 (16)
C3A0.045 (3)0.035 (3)0.061 (3)0.002 (2)0.013 (2)0.004 (2)
C4A0.048 (2)0.048 (2)0.046 (3)0.0130 (18)0.0021 (17)0.0001 (19)
C5A0.056 (2)0.048 (2)0.055 (3)0.0001 (17)0.0026 (19)0.0103 (19)
C6A0.048 (2)0.039 (2)0.052 (2)0.0053 (17)0.0013 (18)0.0115 (18)
C7A0.052 (2)0.054 (2)0.104 (4)0.0030 (18)0.003 (2)0.016 (2)
C8A0.065 (2)0.087 (3)0.058 (2)0.013 (2)0.0144 (19)0.007 (2)
C90.0370 (10)0.0506 (12)0.0503 (13)0.0124 (9)0.0015 (9)0.0006 (10)
C100.0338 (9)0.0408 (11)0.0461 (12)0.0045 (9)0.0039 (9)0.0042 (9)
C1B0.0391 (12)0.038 (2)0.038 (2)0.0060 (14)0.0067 (14)0.0007 (17)
C2B0.046 (4)0.051 (6)0.038 (5)0.007 (4)0.013 (4)0.022 (4)
C3B0.055 (6)0.114 (10)0.043 (6)0.044 (6)0.007 (4)0.008 (6)
C4B0.042 (7)0.116 (15)0.047 (6)0.040 (8)0.017 (5)0.026 (8)
C5B0.048 (5)0.091 (7)0.088 (7)0.019 (5)0.002 (5)0.023 (6)
C6B0.069 (5)0.060 (5)0.051 (6)0.003 (4)0.000 (4)0.007 (4)
C7B0.178 (13)0.165 (13)0.055 (7)0.084 (11)0.038 (7)0.006 (7)
C8B0.080 (7)0.141 (12)0.091 (8)0.030 (7)0.027 (6)0.025 (8)
Geometric parameters (Å, º) top
O1—C101.230 (2)C5A—C6A1.390 (4)
N1—C1A1.505 (4)C5B—C6B1.391 (10)
N1—C91.425 (3)C9—C101.519 (3)
N1—C1B1.225 (7)C2A—H2A0.9300
N2—N31.418 (3)C2B—H2B0.9300
N2—C101.324 (3)C5A—H5A0.9300
N1—H10.8600C5B—H5B0.9300
N2—H20.8600C6A—H6A0.9300
N3—H3A0.91 (3)C6B—H6B0.9300
N3—H3B0.93 (3)C7A—H710.9600
C1A—C2A1.390 (4)C7A—H720.9600
C1A—C6A1.390 (4)C7A—H730.9600
C1B—C2B1.390 (10)C7B—H740.9600
C1B—C6B1.390 (10)C7B—H750.9600
C2A—C3A1.390 (4)C7B—H760.9600
C2B—C3B1.390 (10)C8A—H810.9600
C3A—C7A1.508 (5)C8A—H820.9600
C3A—C4A1.390 (4)C8A—H830.9600
C3B—C4B1.390 (13)C8B—H840.9600
C3B—C7B1.461 (14)C8B—H860.9600
C4A—C8A1.523 (5)C8B—H850.9600
C4A—C5A1.390 (4)C9—H9B0.9700
C4B—C5B1.390 (12)C9—H9A0.9700
C4B—C8B1.538 (13)
O1···N1i3.223 (2)H2···N12.2500
O1···N3ii3.156 (3)H2···H9Bvii2.4800
O1···N32.779 (3)H2···C1B2.7300
O1···C6Biii3.269 (7)H2···H12.4400
O1···N3iv3.223 (2)H2···N3vi2.4700
O1···H3A2.39 (2)H2A···H722.3200
O1···H1i2.5200H2A···H12.4900
O1···H6Biii2.8100H2B···C102.9400
O1···H3Bii2.32 (3)H2B···C92.5900
O1···H3Aiv2.42 (2)H2B···H752.3700
N1···O1v3.223 (2)H2B···H9A2.2400
N1···N22.672 (3)H3A···O1iv2.42 (2)
N2···C1B3.240 (7)H3A···O12.39 (2)
N2···N12.672 (3)H3A···H9Bix2.5900
N2···C1A3.280 (4)H3A···H3Bviii2.47 (4)
N2···N3vi3.139 (3)H3B···C10vii3.00 (3)
N3···O1vii3.156 (3)H3B···O1vii2.32 (3)
N3···O1iv3.223 (2)H3B···H3Aviii2.47 (4)
N3···O12.779 (3)H3B···H6Bi2.2800
N3···N3viii3.226 (3)H3B···N3viii2.78 (2)
N3···N2vi3.139 (3)H5A···H822.3200
N1···H22.2500H5A···C7Ai3.1000
N2···H9Bix2.9000H5B···H862.2900
N3···H2vi2.4700H6A···C92.5200
N3···H3Bviii2.78 (2)H6A···C102.7200
N3···H9Bix2.5800H6A···H72iii2.2400
C1A···N23.280 (4)H6A···H9A2.0900
C1B···N23.240 (7)H6A···C7Aiii2.8800
C2B···C103.392 (7)H6B···O1x2.8100
C5B···C7Bv3.579 (15)H6B···H12.0700
C6A···C103.230 (4)H6B···H3Bv2.2800
C6B···O1x3.269 (7)H9A···C6A2.5800
C7B···C5Bi3.579 (15)H9A···C2B2.7200
C10···C2B3.392 (7)H9A···C3Bii3.0200
C10···C6A3.230 (4)H9A···H6A2.0900
C1A···H22.8600H9A···H2B2.2400
C1A···H71ii2.8700H9B···N2ix2.9000
C1B···H22.7300H9B···N3ix2.5800
C2A···H71ii2.8600H9B···H2ii2.4800
C2B···H9A2.7200H9B···H3Aix2.5900
C3B···H9Avii3.0200H71···C1Avii2.8700
C5A···H72i2.9800H71···C2Avii2.8600
C5A···H83ii2.9400H71···C8A2.9700
C6A···H72iii3.0300H72···H6Ax2.2400
C6A···H9A2.5800H72···C6Ax3.0300
C6A···H83ii2.9500H72···H2A2.3200
C7A···H5Av3.1000H72···C5Av2.9800
C7A···H6Ax2.8800H73···C8A2.8000
C7A···H812.8400H73···H812.3800
C7A···H832.9500H74···C8B2.8400
C7B···H852.6500H74···H84xi2.0400
C7B···H84xi2.9600H74···C8Bxi2.9900
C8A···H712.9700H75···H2B2.3700
C8A···H732.8000H76···C8B2.8600
C8B···H762.8600H76···H852.2900
C8B···H742.8400H81···H732.3800
C8B···H74xi2.9900H81···C7A2.8400
C9···H2B2.5900H82···H5A2.3200
C9···H6A2.5200H83···C6Avii2.9500
C10···H3Bii3.00 (3)H83···C7A2.9500
C10···H6A2.7200H83···C5Avii2.9400
C10···H2B2.9400H84···C7Bxi2.9600
H1···H6B2.0700H84···H74xi2.0400
H1···H22.4400H85···C7B2.6500
H1···H2A2.4900H85···H762.2900
H1···O1v2.5200H86···H5B2.2900
H2···C1A2.8600
C1A—N1—C9115.60 (19)C3A—C2A—H2A120.00
C1B—N1—C9132.4 (4)C3B—C2B—H2B120.00
N3—N2—C10123.20 (17)C1B—C2B—H2B120.00
C1B—N1—H1105.00C6A—C5A—H5A120.00
C9—N1—H1122.00C4A—C5A—H5A120.00
C1A—N1—H1122.00C6B—C5B—H5B120.00
N3—N2—H2118.00C4B—C5B—H5B120.00
C10—N2—H2118.00C5A—C6A—H6A120.00
N2—N3—H3A105.9 (16)C1A—C6A—H6A120.00
N2—N3—H3B105.9 (14)C5B—C6B—H6B120.00
H3A—N3—H3B108 (2)C1B—C6B—H6B120.00
C2A—C1A—C6A120.0 (3)C3A—C7A—H72110.00
N1—C1A—C2A118.2 (3)C3A—C7A—H71109.00
N1—C1A—C6A121.8 (3)H71—C7A—H72110.00
C2B—C1B—C6B120.1 (6)H71—C7A—H73109.00
N1—C1B—C6B120.3 (6)C3A—C7A—H73109.00
N1—C1B—C2B119.6 (6)H72—C7A—H73109.00
C1A—C2A—C3A120.0 (3)C3B—C7B—H74109.00
C1B—C2B—C3B120.0 (7)C3B—C7B—H75109.00
C2A—C3A—C7A119.1 (3)C3B—C7B—H76110.00
C4A—C3A—C7A120.9 (3)H74—C7B—H75109.00
C2A—C3A—C4A120.0 (2)H74—C7B—H76110.00
C2B—C3B—C4B120.0 (7)H75—C7B—H76110.00
C4B—C3B—C7B117.1 (8)C4A—C8A—H82109.00
C2B—C3B—C7B122.8 (9)C4A—C8A—H83109.00
C5A—C4A—C8A118.7 (3)C4A—C8A—H81109.00
C3A—C4A—C8A121.2 (3)H81—C8A—H82110.00
C3A—C4A—C5A120.0 (3)H81—C8A—H83109.00
C3B—C4B—C5B120.0 (6)H82—C8A—H83110.00
C5B—C4B—C8B114.7 (8)C4B—C8B—H84109.00
C3B—C4B—C8B125.3 (8)C4B—C8B—H85109.00
C4A—C5A—C6A120.0 (3)C4B—C8B—H86109.00
C4B—C5B—C6B120.0 (7)H85—C8B—H86110.00
C1A—C6A—C5A120.0 (3)H84—C8B—H85109.00
C1B—C6B—C5B119.9 (7)H84—C8B—H86110.00
N1—C9—C10113.32 (17)N1—C9—H9B109.00
O1—C10—C9122.10 (19)H9A—C9—H9B108.00
N2—C10—C9114.70 (17)C10—C9—H9A109.00
O1—C10—N2123.18 (19)C10—C9—H9B109.00
C1A—C2A—H2A120.00N1—C9—H9A109.00
C9—N1—C1A—C2A176.3 (2)C1A—C2A—C3A—C4A0.0 (4)
C9—N1—C1A—C6A4.5 (4)C7A—C3A—C4A—C5A177.6 (3)
C1A—N1—C9—C1078.7 (2)C2A—C3A—C4A—C8A178.9 (3)
N3—N2—C10—O12.4 (3)C2A—C3A—C4A—C5A0.0 (4)
N3—N2—C10—C9175.88 (18)C7A—C3A—C4A—C8A3.4 (5)
N1—C1A—C2A—C3A179.2 (2)C8A—C4A—C5A—C6A179.0 (3)
N1—C1A—C6A—C5A179.1 (3)C3A—C4A—C5A—C6A0.0 (4)
C2A—C1A—C6A—C5A0.1 (5)C4A—C5A—C6A—C1A0.1 (4)
C6A—C1A—C2A—C3A0.0 (5)N1—C9—C10—N219.1 (3)
C1A—C2A—C3A—C7A177.7 (3)N1—C9—C10—O1162.6 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x1, y+1, z; (iv) x+1, y+2, z; (v) x, y1, z; (vi) x+2, y+1, z; (vii) x+1, y, z; (viii) x+2, y+2, z; (ix) x+1, y+1, z; (x) x+1, y1, z; (xi) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1v0.86002.52003.223 (2)140.00
N2—H2···N10.86002.25002.672 (3)110.00
N2—H2···N3vi0.86002.47003.139 (3)136.00
N3—H3A···O10.91 (3)2.39 (2)2.779 (3)105.6 (17)
N3—H3A···O1iv0.91 (3)2.42 (2)3.223 (2)147 (2)
N3—H3B···O1vii0.93 (3)2.32 (3)3.156 (3)149 (2)
C9—H9B···N3ix0.97002.58003.484 (3)155.00
Symmetry codes: (iv) x+1, y+2, z; (v) x, y1, z; (vi) x+2, y+1, z; (vii) x+1, y, z; (ix) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H15N3O
Mr193.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.1956 (6), 6.0869 (7), 16.3477 (19)
α, β, γ (°)80.657 (6), 86.733 (5), 84.040 (6)
V3)506.96 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.989, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8717, 2182, 1299
Rint0.034
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.03
No. of reflections2182
No. of parameters180
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86002.52003.223 (2)140.00
N2—H2···N10.86002.25002.672 (3)110.00
N2—H2···N3ii0.86002.47003.139 (3)136.00
N3—H3A···O10.91 (3)2.39 (2)2.779 (3)105.6 (17)
N3—H3A···O1iii0.91 (3)2.42 (2)3.223 (2)147 (2)
N3—H3B···O1iv0.93 (3)2.32 (3)3.156 (3)149 (2)
C9—H9B···N3v0.97002.58003.484 (3)155.00
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x+1, y+2, z; (iv) x+1, y, z; (v) x+1, y+1, z.
 

Acknowledgements

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–121068-PS2–109).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGudasi, K. B., Patil, M. S., Vadavi, R. S., Shenoy, R. V., Patil, S. A. & Nethaji, M. (2007). Spectrochim. Acta Part A, 67, 172–177.  CrossRef Google Scholar
First citationHall, L. H., Mohney, B. K. & Kier, L. B. (1993). Quant. Struct. Act. Relat. 12, 44–48.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaisser, K., Houngbedji, N., Odlerova, Z., Thiel, W. & Mayer, R. (1990). Pharmazie, 45, 141–142.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds