organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Dimeth­­oxy-6,6′-di­nitro­biphen­yl

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 28 July 2009; accepted 24 August 2009; online 5 September 2009)

In the title compound, C14H12N2O6, the half mol­ecule in the asymmetric unit of the cell is completed by a crystallographic twofold rotation axis, and the two benzene rings of the complete mol­ecule make a dihedral angle of 60.5 (3)°. Furthermore, inter­molecular weak C—H⋯O hydrogen bonds link adjacent mol­ecules, forming a two-dimensional sheet. These sheets are stablized by face-to-face weak ππ contacts [centroid–centroid distance = 3.682 (1) Å] between the nearly parallel [dihedral angle = 0.12 (7)°] benzene rings of the neighboring mol­ecules, resulting in a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Chen et al. (2001[Chen, Y. X., Li, Y. M., Lam, k. H., & Chan, A. S. C. (2001). Chin. J. Chem. 19, 794-799.]). For asymmetric synthesis using chiral ligands with C2 symmetry, see: Jiang et al. (2001[Jiang, B., Feng, Y. & Hang, J. F. (2001). Tetrahedron Asymmetry. 12, 2323-2329.]); García et al. (2002[García, C., LaRochelle, L. K. & Walsh, P. J. (2002). J. Am. Chem. Soc. 124, 10970-10971.]). For synthetic methods for chiral compounds, see: Brunel (2005[Brunel, J. M. (2005). Chem. Rev. 105, 857-897.]); Kočovský et al. (2003[Kočovský, P., Vyskočil, Š. & Smrčina, M. (2003). Chem. Rev. 103, 3213-3245.]). For related biphenyl structures, see: Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1357-o1358.]). For related structural data see: Yang et al. (2005[Yang, D. S., Ma, H. X., Hu, R. Z., Song, J. R. & Zhao, F. Q. (2005). J. Mol. Struct. 779, 49-54.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O6

  • Mr = 304.26

  • Monoclinic, C 2/c

  • a = 18.236 (3) Å

  • b = 7.7826 (12) Å

  • c = 10.9079 (17) Å

  • β = 115.089 (2)°

  • V = 1402.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 K

  • 0.30 × 0.18 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.979

  • 5102 measured reflections

  • 1298 independent reflections

  • 1009 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.03

  • 1298 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O3i 0.96 2.48 3.426 (3) 169
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

A large number of chiral compounds with C2-symmetry are widely used as chiral auxiliaries and ligands in asymmetric synthesis and have shown high stereocontrol properties in a wide range of asymmetric transformations (Jiang et al. 2001; García et al. 2002). Design and synthesis of such compounds play a very important role in the development of highly enantioselective asymmetric reactions. Thus, it is not surprising that a lot of methods have been developed to obtain these chiral compounds (Brunel 2005; Kočovský et al. 2003). In this paper, we report the synthesis and crystal structure of the title compound with C2-symmetry.

A view of the molecular structure of the title compound is given in Fig.1. All bond lengths and angles are in the expected range and in good agreement with those reported previously (Yang et al. 2005). The dihedral angle between two benzene rings is 60.5 (3)°, which is considerable larger than those found in other biphenyls (Fischer et al. 2007), possibly due to the concomitant effects of the steric hindrance of adjacent methoxy and nitro groups.

In the crystal structure, each molecule is connected by four adjacent molecules through intermolecular C—H···O hydrogen bonds (Table 1), between methoxy groups and O atoms of the adjacent nitro groups, leading to the formation of a two-dimensional sheet in the ac plane. The sheets are further connected into a three-dimensional network(Fig.2) by the face-to-face weak ππ contacts between nearly parallel benzene rings of the neighboring title molecules. The Cg1···Cg1iii distance is 3.6823 (11) Å, the perpendicular distance between the rings is 3.410 Å, and the slippage between the rings is 1.389 Å. Cg1 is the centroid of the benzene ring C1 - C6, the symmetry code iii = 1 - x, -y, 1 - z.

Related literature top

For the synthesis of the title compound, see: Chen et al. (2001). For asymmetric synthesis using chiral ligands with C2-symmetry, see: Jiang et al. (2001); García et al. (2002). For synthetic methods for chiral compounds, see: Brunel (2005); Kočovský et al. (2003). For related biphenyl structures, see: Fischer et al. (2007). For related literature, see: Yang et al. (2005).

Experimental top

The title compound was synthesized by a reported method (Chen, et al. 2001),namely, a mixture of 2-iodo-3-nitroanisol (14 g, 0.05 mol) and activated copper brone (9.5 g, 0.15 mol), 50 ml of dimethylformamide was stirried at 140°C for 4 h under nitrogen atmosphere. Yellow crystals suitable for X-ray diffraction study were obtained from a solution in acetic ester.

Refinement top

All of the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were assigned with common isotropic displacement factors Uiso(H) = 1.2 times Ueq(C,N) and 1.5 times Ueq(O), respectively, and included in the final refinement by using geometrical restraints, with C–H distances of 0.93 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (30% probability displacement ellipsoids) of a single molecule of the title compound.
[Figure 2] Fig. 2. three-dimensional structures of the title compound.
2,2'-Dimethoxy-6,6'-dinitrobiphenyl top
Crystal data top
C14H12N2O6F(000) = 632
Mr = 304.26Dx = 1.441 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1790 reflections
a = 18.236 (3) Åθ = 2.5–25.7°
b = 7.7826 (12) ŵ = 0.12 mm1
c = 10.9079 (17) ÅT = 294 K
β = 115.089 (2)°Block, yellow
V = 1402.0 (4) Å30.30 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1298 independent reflections
Radiation source: fine-focus sealed tube1009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.966, Tmax = 0.979k = 99
5102 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.8036P]
where P = (Fo2 + 2Fc2)/3
1298 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H12N2O6V = 1402.0 (4) Å3
Mr = 304.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.236 (3) ŵ = 0.12 mm1
b = 7.7826 (12) ÅT = 294 K
c = 10.9079 (17) Å0.30 × 0.18 × 0.18 mm
β = 115.089 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1298 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1009 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.019
5102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
1298 reflectionsΔρmin = 0.13 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49134 (9)0.22562 (19)0.67636 (14)0.0387 (4)
C20.54245 (9)0.2962 (2)0.62577 (15)0.0434 (4)
C30.52777 (12)0.2896 (2)0.49065 (17)0.0546 (5)
H30.56390.33780.46070.066*
C40.45847 (12)0.2102 (2)0.40223 (17)0.0588 (5)
H40.44710.20580.31070.071*
C50.40569 (11)0.1370 (2)0.44656 (16)0.0540 (5)
H50.35890.08350.38520.065*
C60.42203 (9)0.1426 (2)0.58296 (15)0.0444 (4)
C70.30000 (13)0.0071 (4)0.5464 (2)0.0944 (8)
H7A0.26730.07670.48170.142*
H7B0.27160.04850.59710.142*
H7C0.31100.10120.49980.142*
N10.61559 (9)0.3880 (2)0.71661 (15)0.0557 (4)
O10.37432 (7)0.06986 (18)0.63620 (11)0.0594 (4)
O20.61327 (8)0.47507 (17)0.80791 (13)0.0615 (4)
O30.67594 (9)0.3739 (3)0.69543 (17)0.0967 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (8)0.0425 (8)0.0345 (8)0.0057 (6)0.0166 (7)0.0011 (6)
C20.0464 (9)0.0454 (9)0.0426 (8)0.0044 (7)0.0229 (7)0.0023 (7)
C30.0722 (12)0.0549 (10)0.0508 (10)0.0071 (9)0.0399 (9)0.0053 (8)
C40.0853 (14)0.0566 (11)0.0369 (8)0.0117 (10)0.0283 (10)0.0036 (8)
C50.0610 (11)0.0545 (10)0.0372 (8)0.0046 (9)0.0119 (8)0.0031 (8)
C60.0452 (9)0.0473 (9)0.0388 (8)0.0033 (7)0.0159 (7)0.0004 (7)
C70.0600 (13)0.142 (2)0.0750 (14)0.0445 (14)0.0224 (12)0.0253 (15)
N10.0500 (8)0.0679 (10)0.0571 (9)0.0031 (7)0.0302 (7)0.0073 (8)
O10.0473 (7)0.0794 (9)0.0474 (7)0.0193 (6)0.0162 (6)0.0058 (6)
O20.0612 (8)0.0665 (8)0.0570 (7)0.0133 (6)0.0253 (6)0.0081 (7)
O30.0604 (9)0.1503 (16)0.0999 (12)0.0197 (10)0.0538 (9)0.0120 (11)
Geometric parameters (Å, º) top
C1—C21.383 (2)C5—C61.389 (2)
C1—C61.400 (2)C5—H50.9300
C1—C1i1.500 (3)C6—O11.3576 (19)
C2—C31.383 (2)C7—O11.424 (2)
C2—N11.466 (2)C7—H7A0.9600
C3—C41.370 (3)C7—H7B0.9600
C3—H30.9300C7—H7C0.9600
C4—C51.371 (3)N1—O21.2200 (18)
C4—H40.9300N1—O31.2217 (18)
C2—C1—C6116.51 (13)C6—C5—H5120.0
C2—C1—C1i123.77 (15)O1—C6—C5124.06 (15)
C6—C1—C1i119.63 (14)O1—C6—C1115.19 (13)
C1—C2—C3123.51 (15)C5—C6—C1120.75 (15)
C1—C2—N1119.86 (13)O1—C7—H7A109.5
C3—C2—N1116.60 (14)O1—C7—H7B109.5
C4—C3—C2118.11 (16)H7A—C7—H7B109.5
C4—C3—H3120.9O1—C7—H7C109.5
C2—C3—H3120.9H7A—C7—H7C109.5
C3—C4—C5121.01 (15)H7B—C7—H7C109.5
C3—C4—H4119.5O2—N1—O3123.39 (16)
C5—C4—H4119.5O2—N1—C2119.06 (13)
C4—C5—C6120.08 (17)O3—N1—C2117.55 (16)
C4—C5—H5120.0C6—O1—C7118.46 (14)
C6—C1—C2—C30.7 (2)C2—C1—C6—O1178.01 (14)
C1i—C1—C2—C3177.26 (13)C1i—C1—C6—O11.26 (19)
C6—C1—C2—N1178.92 (14)C2—C1—C6—C51.6 (2)
C1i—C1—C2—N14.5 (2)C1i—C1—C6—C5178.36 (13)
C1—C2—C3—C40.6 (3)C1—C2—N1—O236.5 (2)
N1—C2—C3—C4177.73 (16)C3—C2—N1—O2141.90 (16)
C2—C3—C4—C50.9 (3)C1—C2—N1—O3144.16 (17)
C3—C4—C5—C60.0 (3)C3—C2—N1—O337.5 (2)
C4—C5—C6—O1178.25 (16)C5—C6—O1—C74.5 (3)
C4—C5—C6—C11.3 (3)C1—C6—O1—C7175.90 (18)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3ii0.962.483.426 (3)169
Symmetry code: (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O6
Mr304.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)18.236 (3), 7.7826 (12), 10.9079 (17)
β (°) 115.089 (2)
V3)1402.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.18 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5102, 1298, 1009
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections1298
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.962.483.426 (3)169
Symmetry code: (i) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Youth Foundation of Luoyang Normal University (No. 10000409).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunel, J. M. (2005). Chem. Rev. 105, 857–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, Y. X., Li, Y. M., Lam, k. H., & Chan, A. S. C. (2001). Chin. J. Chem. 19, 794–799.  CrossRef CAS Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1357–o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarcía, C., LaRochelle, L. K. & Walsh, P. J. (2002). J. Am. Chem. Soc. 124, 10970–10971.  Web of Science PubMed Google Scholar
First citationJiang, B., Feng, Y. & Hang, J. F. (2001). Tetrahedron Asymmetry. 12, 2323–2329.  Web of Science CrossRef CAS Google Scholar
First citationKočovský, P., Vyskočil, Š. & Smrčina, M. (2003). Chem. Rev. 103, 3213–3245.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D. S., Ma, H. X., Hu, R. Z., Song, J. R. & Zhao, F. Q. (2005). J. Mol. Struct. 779, 49–54.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds