metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­bromidomercury(II)]-μ-3-(1-methyl­pyrrolidin-2-yl)pyridine-κ2N:N′]

aDepartment of Chemistry, Huaiyin Teachers College, Huai'an 223300, Jiangsu, People's Republic of China, and bKey Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China
*Correspondence e-mail: yuzhang@hytc.edu.cn

(Received 10 September 2008; accepted 18 September 2008; online 24 September 2008)

In the title polymeric complex, [HgBr2(C10H14N2)]n, each nicotine mol­ecule is bonded to two adjacent Hg atoms, one through the pyrrolidine N atom and the other through the pyridine N atom, forming zigzag chains along [010]. The coordination around mercury is completed by two bromido ligands resulting in a distorted tetra­hedral arrangement.

Related literature

For other nicotine complexes of copper and mercury, see: Meyer et al. (2006[Meyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem. 632, 34-35.]); Haendler (1990[Haendler, H. M. (1990). Acta Cryst. C46, 2054-2057.]). For the isostructural dichlorido(nicotine)mercury(II) chain polymer complex, see: Udupa & Krebs (1980[Udupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161-164.]);

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C10H14N2)]

  • Mr = 522.64

  • Orthorhombic, P 21 21 21

  • a = 7.6306 (9) Å

  • b = 11.2177 (14) Å

  • c = 15.443 (2) Å

  • V = 1321.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 17.66 mm−1

  • T = 296 (2) K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.062, Tmax = 0.153 (expected range = 0.049–0.120)

  • 10476 measured reflections

  • 2601 independent reflections

  • 2137 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.076

  • S = 1.00

  • 2601 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −1.03 e Å−3

  • Absolute structure: Flack, (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1083 Friedel pairs

  • Flack parameter: −0.006 (16)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Compounds containing nicotine [3-(1-methyl-2-pyrrolidinyl) pyridine] have been reported to form molecular and polynuclear complexes (Meyer et al., 2006; Haendler, 1990). The crystal structure of the title compound appeared to be isostructural with the dichlorido(nicotine)mercury(II) chain polymer complex (Udupa & Krebs, 1980).

As illustrated in Fig. 1, each nicotine molecule in (I) is coordinated to two adjacent mercury atoms, one through the pyrrolidine nitrogen (Hg—N 2.400 (8) Å) and the other through the pyridine nitrogen (Hg—N 2.460 (8) Å), forming zigzag polymeric chains along the b axis. The coordination around mercury is completed by two bromine ligands (Hg—Br 2.4760 (12) and 2.5034 (12) Å), resulting in a distorted tetrahedral arrangement. In addition, the absolut configurations of C6 and N2 can be given as S (S-nicotine was used as a starting material). No notable interactions were found between polymeric chains.

Related literature top

For nicotine complexes, see: Meyer et al., (2006); Haendler, (1990). For the isostructural dichlorido(nicotine)mercury(II) chain polymer complex, see: Udupa & Krebs, (1980);

Experimental top

HgBr2 (360 mg,1 mmol) was added to a solution of 4-cyanopyridine (104 mg,1 mmol) in dmf (5 ml). The resulting mixture was stirred for about 10 min after which an white precipitate formed. S-Nicotine (3 ml) was then added dropwise to the reaction mixture and stirring was continued, during which time the precipitate changed its colour, giving a flesh colored precipitate. The precipitate was washed with ethanol and vacuum dried. Yield: 0.324 g, 62% (based on HgBr2used). The compound (100 mg) was dissolved in dmf (5 ml), the resulting solution filtered and the light-yellow filtrate transfered into a test tube and i-PrOH (10 ml) was carefully laid on the surface of the filtrate. Light-yellow block crystals were obtained after 15 days. Analysis: Found: C 23.12, H 2.82, N 5.26%; Calculated for C10H14HgBr2N2: C 22.98, H 2.70, N 5.36%.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.98 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). The absolute structure parameter x (Flack, 1983) was refined to -0.006 (16) using 1083 measured Friedel pairs.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXL9 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. All H atoms have been omitted. Symmetry transformations: A is -x + 1/2, -y, z + 1/2.
catena-Poly[[dibromidomercury(II)]-µ-3-(1-methylpyrrolidin-2-yl)pyridine- κ2N:N'] top
Crystal data top
[HgBr2(C10H14N2)]F(000) = 952
Mr = 522.64Dx = 2.626 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3183 reflections
a = 7.6306 (9) Åθ = 4.5–43.1°
b = 11.2177 (14) ŵ = 17.66 mm1
c = 15.443 (2) ÅT = 296 K
V = 1321.9 (3) Å3Block, light yellow
Z = 40.20 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2601 independent reflections
Radiation source: fine-focus sealed tube2137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 89
Tmin = 0.062, Tmax = 0.153k = 1313
10476 measured reflectionsl = 1916
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0314P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2601 reflectionsΔρmax = 1.44 e Å3
137 parametersΔρmin = 1.03 e Å3
0 restraintsAbsolute structure: Flack, (1983), 1083 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (16)
Crystal data top
[HgBr2(C10H14N2)]V = 1321.9 (3) Å3
Mr = 522.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6306 (9) ŵ = 17.66 mm1
b = 11.2177 (14) ÅT = 296 K
c = 15.443 (2) Å0.20 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2601 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2137 reflections with I > 2σ(I)
Tmin = 0.062, Tmax = 0.153Rint = 0.057
10476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076Δρmax = 1.44 e Å3
S = 1.00Δρmin = 1.03 e Å3
2601 reflectionsAbsolute structure: Flack, (1983), 1083 Friedel pairs
137 parametersAbsolute structure parameter: 0.006 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09573 (17)1.16819 (12)0.93970 (8)0.0688 (4)
Br20.15737 (16)1.07721 (14)0.64794 (8)0.0622 (4)
C10.2197 (13)0.7896 (8)0.7769 (6)0.035 (2)
H10.18430.80320.72010.042*
C20.3218 (11)0.6891 (8)0.7935 (6)0.028 (2)
C30.3679 (13)0.6710 (9)0.8800 (7)0.044 (3)
H30.43550.60530.89520.052*
C40.3143 (14)0.7495 (9)0.9428 (7)0.045 (3)
H40.34380.73731.00050.054*
C50.2161 (14)0.8467 (9)0.9184 (6)0.040 (3)
H50.18060.90030.96090.048*
C60.3777 (12)0.6034 (8)0.7256 (6)0.034 (2)
H60.49140.57030.74270.041*
C70.3129 (14)0.4423 (10)0.6345 (7)0.055 (3)
H7A0.21930.39620.60840.066*
H7B0.41030.38960.64700.066*
C80.3698 (16)0.5418 (10)0.5746 (7)0.058 (3)
H8A0.28110.55700.53100.070*
H8B0.47890.52160.54590.070*
C90.3936 (14)0.6494 (9)0.6325 (6)0.047 (3)
H9A0.30410.70860.62070.057*
H9B0.50780.68520.62310.057*
C100.2521 (15)0.4153 (9)0.7882 (7)0.054 (3)
H10A0.19490.34280.77120.081*
H10B0.19100.44990.83650.081*
H10C0.37080.39830.80470.081*
Hg10.04788 (5)1.06376 (4)0.80044 (3)0.04142 (13)
N10.1699 (10)0.8672 (7)0.8373 (5)0.036 (2)
N20.2514 (11)0.5010 (7)0.7140 (5)0.040 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0714 (10)0.0714 (9)0.0635 (8)0.0005 (7)0.0093 (6)0.0279 (7)
Br20.0525 (7)0.0861 (10)0.0481 (7)0.0000 (7)0.0091 (5)0.0157 (7)
C10.043 (6)0.033 (6)0.029 (6)0.005 (5)0.011 (4)0.001 (4)
C20.026 (5)0.025 (5)0.032 (5)0.002 (4)0.005 (4)0.001 (4)
C30.037 (6)0.034 (6)0.060 (7)0.000 (5)0.000 (5)0.004 (5)
C40.059 (8)0.038 (6)0.037 (6)0.015 (5)0.006 (5)0.000 (5)
C50.050 (7)0.037 (6)0.032 (6)0.011 (5)0.008 (5)0.001 (5)
C60.023 (5)0.037 (6)0.044 (6)0.005 (4)0.001 (4)0.009 (4)
C70.051 (7)0.042 (7)0.072 (8)0.012 (6)0.014 (6)0.020 (7)
C80.068 (8)0.066 (9)0.041 (7)0.010 (7)0.009 (6)0.015 (6)
C90.046 (7)0.052 (7)0.044 (7)0.011 (5)0.023 (5)0.003 (5)
C100.052 (7)0.039 (7)0.072 (8)0.007 (5)0.007 (6)0.021 (6)
Hg10.0416 (2)0.0400 (2)0.0427 (2)0.0040 (2)0.0016 (2)0.0011 (2)
N10.038 (5)0.037 (5)0.032 (5)0.002 (4)0.000 (4)0.003 (4)
N20.030 (4)0.035 (5)0.054 (6)0.006 (4)0.001 (4)0.002 (4)
Geometric parameters (Å, º) top
Br1—Hg12.4760 (12)C7—N21.470 (12)
Br2—Hg12.5034 (12)C7—C81.512 (15)
C1—N11.332 (11)C7—H7A0.9700
C1—C21.394 (12)C7—H7B0.9700
C1—H10.9300C8—C91.512 (14)
C2—C31.396 (14)C8—H8A0.9700
C2—C61.485 (12)C8—H8B0.9700
C3—C41.372 (14)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.376 (14)C10—N21.496 (12)
C4—H40.9300C10—H10A0.9600
C5—N11.321 (12)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C6—N21.510 (12)Hg1—N2i2.400 (8)
C6—C91.532 (13)Hg1—N12.460 (8)
C6—H60.9800N2—Hg1ii2.400 (8)
N1—C1—C2124.0 (9)C7—C8—H8B110.7
N1—C1—H1118.0C9—C8—H8B110.7
C2—C1—H1118.0H8A—C8—H8B108.8
C1—C2—C3115.8 (9)C8—C9—C6106.0 (8)
C1—C2—C6123.6 (9)C8—C9—H9A110.5
C3—C2—C6120.6 (8)C6—C9—H9A110.5
C4—C3—C2120.5 (10)C8—C9—H9B110.5
C4—C3—H3119.7C6—C9—H9B110.5
C2—C3—H3119.7H9A—C9—H9B108.7
C3—C4—C5118.5 (10)N2—C10—H10A109.5
C3—C4—H4120.7N2—C10—H10B109.5
C5—C4—H4120.7H10A—C10—H10B109.5
N1—C5—C4122.9 (10)N2—C10—H10C109.5
N1—C5—H5118.6H10A—C10—H10C109.5
C4—C5—H5118.6H10B—C10—H10C109.5
C2—C6—N2113.1 (8)N2i—Hg1—N196.8 (3)
C2—C6—C9117.9 (8)N2i—Hg1—Br1111.1 (2)
N2—C6—C9101.3 (7)N1—Hg1—Br199.6 (2)
C2—C6—H6108.0N2i—Hg1—Br2104.3 (2)
N2—C6—H6108.0N1—Hg1—Br298.36 (19)
C9—C6—H6108.0Br1—Hg1—Br2137.68 (5)
N2—C7—C8105.8 (8)C5—N1—C1118.3 (8)
N2—C7—H7A110.6C5—N1—Hg1118.5 (7)
C8—C7—H7A110.6C1—N1—Hg1122.2 (6)
N2—C7—H7B110.6C7—N2—C10110.6 (8)
C8—C7—H7B110.6C7—N2—C6103.7 (8)
H7A—C7—H7B108.7C10—N2—C6113.3 (8)
C7—C8—C9105.2 (8)C7—N2—Hg1ii110.9 (6)
C7—C8—H8A110.7C10—N2—Hg1ii105.2 (6)
C9—C8—H8A110.7C6—N2—Hg1ii113.3 (6)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[HgBr2(C10H14N2)]
Mr522.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.6306 (9), 11.2177 (14), 15.443 (2)
V3)1321.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)17.66
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.062, 0.153
No. of measured, independent and
observed [I > 2σ(I)] reflections
10476, 2601, 2137
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.076, 1.00
No. of reflections2601
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 1.03
Absolute structureFlack, (1983), 1083 Friedel pairs
Absolute structure parameter0.006 (16)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL9 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

 

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province Education office (No. 04KJB150015). We also thank Dr Zaichao Zhang for his support.

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaendler, H. M. (1990). Acta Cryst. C46, 2054–2057.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeyer, G., Berners, A. & Pantenburg, I. (2006). Z. Anorg. Allg. Chem. 632, 34–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdupa, M. R. & Krebs, B. (1980). Inorg. Chim. Acta, 40, 161–164.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds