organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [2,2,2-tri­fluoro-1-phenyl­sulfonyl­amino-1-(tri­fluoro­meth­yl)eth­yl]phospho­nate

aUniversity of Michigan, Toxicology Program, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA, bUniversity of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA, and cInstitute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation
*Correspondence e-mail: rjrich@umich.edu

(Received 10 June 2008; accepted 1 July 2008; online 5 July 2008)

The title compound, C13H16F6NO5PS, is of inter­est with respect to inhibition of serine hydro­lases. Its structure contains a 1.8797 (13) Å P—C bond and two inter­molecular N—H⋯O=P hydrogen bonds, resulting in centrosymmetric dimers. An intra­molecular N—H⋯O=P hydrogen bond is also present.

Related literature

For related literature, see: Chekhlov et al. (1995[Chekhlov, A. N., Aksinenko, A. Y., Sokolov, V. B. & Martynov, I. V. (1995). Dokl. Chem. 345, 296-299.]); Makhaeva et al. (2005[Makhaeva, G. F., Malygin, V. V., Aksinenko, A. Y., Sokolov, V. B., Strakhova, N. N., Rasdolsky, A. N., Richardson, R. J. & Martynov, I. V. (2005). Dokl. Biochem. Biophys. 400, 831-835.]); Adams et al. (2008[Adams, M. A., Luo, Y., Hove-Jensen, B., He, S.-M., van Staalduinen, L. M., Zechel, D. L. & Jia, Z. (2008). J. Bacteriol. 190, 1072-1083.]); Chen et al. (2008[Chen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144.]); Guo et al. (2008[Guo, Y.-C., Wang, X.-F. & Ding, Y. (2008). Acta Cryst. E64, o384.]); Kachkovskyi & Kolodiazhnyi (2007[Kachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron, 63, 12576-12582.]); Liu et al. (1995[Liu, X.-L., Zhou, Y., Li, W.-Z., Fan, Z., Miao, F.-M., Mao, L.-J. & Chen, R.-Y. (1995). Acta Cryst. C51, 2350-2352.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16F6NO5PS

  • Mr = 443.3

  • Monoclinic, P 21 /n

  • a = 11.6913 (15) Å

  • b = 10.1375 (13) Å

  • c = 15.5955 (19) Å

  • β = 93.264 (2)°

  • V = 1845.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 113 (2) K

  • 0.60 × 0.42 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.820, Tmax = 0.874

  • 20001 measured reflections

  • 4568 independent reflections

  • 4027 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.03

  • 4568 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.88 2.34 2.8730 (14) 119
N1—H1A⋯O3i 0.88 2.00 2.8324 (14) 158
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a member of the fluorinated α-aminophosphonate (FAP) group of compounds [(RO)2P(O)C(CF3)2NHS(O)2C6H5; R = CH3, C2H5, C3H7, iso-C3H7, n-C4H9, iso-C4H9, iso-C5H11, n-C5H11, and n-C6H13] that have been synthesized and used in biochemical studies as inhibitors of serine hydrolases (Chekhlov et al., 1995; Makhaeva et al., 2005). These studies suggested the hypothesis that inhibition of serine hydrolases by FAP compounds occurs via scission of the P—C bond to organophosphorylate the active site serine (Makhaeva et al., 2005). Although P—C bonds are exceptionally stable in most phosphonates, enzymes such as bacterial carbon-phosphorus lyase are capable of catalyzing their cleavage, thus providing a potential method for destroying toxic phosphonates that might otherwise accumulate in the environment (Adams et al., 2008). Moreover, the structure of diisopentyl-FAP revealed a 1.888 (4) Å P—C bond (Chekhlov et al., 1995), which was calculated to be longer and weaker than P—C bonds in phosphonates lacking adjacent –CF3 groups (Makhaeva et al., 2005).

To provide a further test of our hypothesis, the X-ray crystal structure of the title compound was determined (Fig 1). The title compound contains an intramolecular P=O···H—N hydrogen bond (Fig. 1; Table 1), and in the crystal it is linked via two intermolecular P=O···H—N hydrogen bonds to form inversion-related dimers (Fig. 2; Table 1). As predicted, the structure of diethyl-FAP revealed an elongated P—C bond that was 1.8797 (13) Å in length, which is not significantly different from the 1.888 (4) Å P—C bond in diisopentyl-FAP (Chekhlov et al., 1995). This is long compared to P—C bond lengths of 1.822 (2) Å (Chen et al., 2008), 1.803 (4) Å (Guo et al., 2008), 1.818 (5) Å (Kachkovskyi and Kolodiazhnyi, 2007), and 1.805 (6) Å (Liu et al., 1995) reported for the crystal structures of a variety of dialkyl phosphonates lacking α-CF3 groups. The long P—C bond in diethyl-FAP is expected to be labile and would explain the ability of the compound to organophosphorylate and inhibit serine hydrolases as well as their ability to undergo hydrolysis to yield phosphoric acid diethyl ester and the amide, (CF3)2CH–NH–SO2–C6H5 (Makhaeva et al., 2005).

Related literature top

For related literature, see: Chekhlov et al. (1995); Makhaeva et al. (2005); Adams et al. (2008); Chen et al. (2008); Guo et al. (2008); Kachkovskyi & Kolodiazhnyi (2007); Liu et al. (1995).

Experimental top

The title compound was synthesized by mixing ether solutions of equimolar amounts of diethylphosphite and the sulfonylimine of hexafluoroacetone followed by subsequent recrystallization from petroleum ether.

Colorless plates of the ethyl analog were grown via evaporation from methanol at 22 °C. A crystal with dimensions of 0.60 × 0.42 × 0.40 mm was cut from a larger crystal and mounted on a standard Bruker SMART CCD-based X-ray diffractometer equipped with a LT-2 low temperature device and normal focus Mo-target X-ray tube (λ = 0.71073 Å) operated at 2000 W power (50 kV, 40 mA). X-ray intensities were measured at 113 (2) K with the detector placed 4.980 cm from the crystal. A total of 3030 frames were collected with a scan width of 0.3° in ω and ϕ and an exposure time of 20 sec/frame.

Data integration yielded a total of 20001 reflections to a maximum 2θ value of 56.58° of which 4568 were independent and 4343 were greater than 2 σ(I). The final cell constants were based on the xyz centroids of 6691 reflections above 10 σ(I).

Refinement top

The hydrogen atoms were treated as riding, with N—H distance = 0.88 Å and C—H distances in the range 0.95–0.99 Å with Uiso(H) = 1.2Ueq(N,C), 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of diethyl-FAP showing the atom numbering scheme. The intramolecular hydrogen bond is shown as a dashed line. Ellipsoids represent 50% occupancy.
[Figure 2] Fig. 2. The dimer of diethyl-FAP, showing the intermolecular hydrogen bonds and the atom labelling scheme.
Diethyl [2,2,2-trifluoro-1-phenylsulfonylamino-1-(trifluoromethyl)ethyl]phosphonate top
Crystal data top
C13H16F6NO5PSF(000) = 904
Mr = 443.3Dx = 1.596 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6567 reflections
a = 11.6913 (15) Åθ = 2.9–28.3°
b = 10.1375 (13) ŵ = 0.35 mm1
c = 15.5955 (19) ÅT = 113 K
β = 93.264 (2)°Plate, colourless
V = 1845.4 (4) Å30.60 × 0.42 × 0.40 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4568 independent reflections
Radiation source: fine-focus sealed tube4027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.820, Tmax = 0.874k = 1313
20001 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.6948P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.34 e Å3
4568 reflectionsΔρmin = 0.33 e Å3
246 parameters
Crystal data top
C13H16F6NO5PSV = 1845.4 (4) Å3
Mr = 443.3Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6913 (15) ŵ = 0.35 mm1
b = 10.1375 (13) ÅT = 113 K
c = 15.5955 (19) Å0.60 × 0.42 × 0.40 mm
β = 93.264 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4027 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.874Rint = 0.022
20001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
4568 reflectionsΔρmin = 0.33 e Å3
246 parameters
Special details top

Experimental. 2103 frames × 20 sec @ 4.980 cm; 0.3 ° scans in ω & ϕ

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.64284 (3)0.17485 (3)0.04487 (2)0.02726 (9)
S10.33796 (3)0.15018 (3)0.174771 (18)0.02622 (8)
N10.46059 (9)0.12554 (10)0.13045 (6)0.0247 (2)
H1A0.45690.06990.08700.030*
F10.73735 (8)0.14398 (10)0.24829 (6)0.0445 (2)
F20.66649 (8)0.02537 (9)0.17986 (5)0.0429 (2)
F30.57711 (8)0.05961 (9)0.28299 (5)0.0412 (2)
F40.56725 (9)0.33003 (9)0.27115 (5)0.0434 (2)
F50.67125 (8)0.38612 (9)0.16867 (6)0.0415 (2)
F60.48768 (7)0.39288 (8)0.14967 (5)0.03547 (19)
C10.26341 (11)0.26504 (13)0.10763 (7)0.0255 (2)
C20.24216 (12)0.23293 (14)0.02114 (8)0.0307 (3)
H2A0.26760.15130.00090.037*
C30.18337 (14)0.32241 (16)0.03191 (9)0.0398 (3)
H3A0.16820.30220.09090.048*
C40.14648 (15)0.44131 (17)0.00055 (9)0.0435 (4)
H4A0.10740.50280.03660.052*
C50.16614 (14)0.47135 (16)0.08707 (9)0.0402 (3)
H5A0.13910.55220.10910.048*
C60.22553 (12)0.38277 (14)0.14136 (8)0.0313 (3)
H6A0.23990.40260.20050.038*
C70.57400 (11)0.18007 (12)0.15084 (8)0.0258 (2)
C80.57452 (12)0.32405 (14)0.18606 (9)0.0326 (3)
C90.63978 (13)0.08914 (14)0.21698 (9)0.0342 (3)
C100.86488 (14)0.16185 (18)0.02046 (12)0.0464 (4)
H10A0.88760.23510.01700.056*
H10B0.84230.08530.01610.056*
C110.96179 (17)0.1256 (3)0.08278 (18)0.0793 (7)
H11A0.98200.20170.11940.119*
H11B1.02830.09950.05120.119*
H11C0.93860.05190.11860.119*
C120.50917 (13)0.29279 (16)0.07438 (9)0.0367 (3)
H12A0.45900.37130.07280.044*
H12B0.46130.21340.06740.044*
C130.56368 (16)0.28690 (17)0.15912 (10)0.0455 (4)
H13A0.61550.36220.16400.068*
H13B0.50400.29010.20580.068*
H13C0.60710.20460.16280.068*
O10.27788 (9)0.02744 (10)0.16554 (6)0.0339 (2)
O20.36007 (9)0.20787 (10)0.25771 (5)0.0346 (2)
O30.61539 (8)0.04887 (9)0.00278 (6)0.0311 (2)
O40.77052 (9)0.20205 (12)0.07141 (7)0.0435 (3)
O50.59785 (9)0.29985 (10)0.00394 (6)0.0348 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02908 (17)0.02691 (17)0.02539 (16)0.00270 (12)0.00198 (12)0.00504 (12)
S10.03576 (17)0.02732 (16)0.01571 (13)0.00577 (12)0.00261 (11)0.00207 (10)
N10.0305 (5)0.0241 (5)0.0192 (4)0.0051 (4)0.0018 (4)0.0048 (4)
F10.0422 (5)0.0527 (5)0.0364 (4)0.0091 (4)0.0185 (4)0.0058 (4)
F20.0575 (5)0.0330 (4)0.0363 (4)0.0205 (4)0.0127 (4)0.0031 (3)
F30.0557 (5)0.0430 (5)0.0236 (4)0.0084 (4)0.0093 (4)0.0041 (3)
F40.0591 (6)0.0422 (5)0.0277 (4)0.0078 (4)0.0074 (4)0.0163 (3)
F50.0415 (5)0.0342 (5)0.0479 (5)0.0042 (4)0.0065 (4)0.0146 (4)
F60.0423 (4)0.0229 (4)0.0404 (4)0.0082 (3)0.0050 (3)0.0057 (3)
C10.0292 (6)0.0292 (6)0.0181 (5)0.0059 (5)0.0025 (4)0.0009 (4)
C20.0388 (7)0.0329 (7)0.0202 (5)0.0110 (5)0.0005 (5)0.0027 (5)
C30.0523 (9)0.0449 (8)0.0215 (6)0.0175 (7)0.0052 (6)0.0026 (5)
C40.0550 (9)0.0439 (8)0.0304 (7)0.0243 (7)0.0075 (6)0.0003 (6)
C50.0500 (8)0.0379 (8)0.0320 (7)0.0214 (7)0.0022 (6)0.0062 (6)
C60.0371 (7)0.0346 (7)0.0222 (5)0.0100 (5)0.0012 (5)0.0042 (5)
C70.0319 (6)0.0237 (6)0.0210 (5)0.0065 (5)0.0062 (4)0.0044 (4)
C80.0386 (7)0.0287 (6)0.0294 (6)0.0053 (5)0.0067 (5)0.0091 (5)
C90.0412 (7)0.0339 (7)0.0261 (6)0.0100 (6)0.0105 (5)0.0032 (5)
C100.0367 (8)0.0492 (9)0.0545 (10)0.0068 (7)0.0128 (7)0.0050 (7)
C110.0352 (9)0.110 (2)0.0913 (17)0.0118 (11)0.0041 (10)0.0132 (15)
C120.0365 (7)0.0387 (8)0.0345 (7)0.0026 (6)0.0009 (5)0.0107 (6)
C130.0660 (11)0.0390 (8)0.0318 (7)0.0067 (7)0.0048 (7)0.0056 (6)
O10.0433 (5)0.0309 (5)0.0280 (4)0.0005 (4)0.0077 (4)0.0054 (4)
O20.0497 (6)0.0391 (5)0.0150 (4)0.0111 (4)0.0014 (4)0.0011 (4)
O30.0386 (5)0.0286 (5)0.0259 (4)0.0044 (4)0.0006 (4)0.0070 (4)
O40.0289 (5)0.0543 (7)0.0466 (6)0.0028 (5)0.0028 (4)0.0166 (5)
O50.0443 (6)0.0288 (5)0.0308 (5)0.0027 (4)0.0012 (4)0.0026 (4)
Geometric parameters (Å, º) top
P1—O31.4632 (10)C4—C51.390 (2)
P1—O41.5509 (11)C4—H4A0.9500
P1—O51.5545 (10)C5—C61.3923 (19)
P1—C71.8797 (13)C5—H5A0.9500
S1—O21.4296 (9)C6—H6A0.9500
S1—O11.4321 (11)C7—C91.5539 (17)
S1—N11.6458 (11)C7—C81.5594 (17)
S1—C11.7629 (12)C10—O41.4540 (19)
N1—C71.4549 (16)C10—C111.496 (3)
N1—H1A0.8800C10—H10A0.9900
F1—C91.3361 (17)C10—H10B0.9900
F2—C91.3419 (16)C11—H11A0.9800
F3—C91.3313 (18)C11—H11B0.9800
F4—C81.3359 (16)C11—H11C0.9800
F5—C81.3354 (18)C12—O51.4687 (17)
F6—C81.3320 (16)C12—C131.501 (2)
C1—C61.3870 (18)C12—H12A0.9900
C1—C21.3960 (16)C12—H12B0.9900
C2—C31.3838 (18)C13—H13A0.9800
C2—H2A0.9500C13—H13B0.9800
C3—C41.386 (2)C13—H13C0.9800
C3—H3A0.9500
O3—P1—O4117.26 (6)F6—C8—F5107.48 (12)
O3—P1—O5115.62 (6)F6—C8—F4108.02 (11)
O4—P1—O5106.23 (6)F5—C8—F4106.43 (11)
O3—P1—C7108.97 (6)F6—C8—C7110.65 (10)
O4—P1—C7102.36 (6)F5—C8—C7110.84 (11)
O5—P1—C7104.94 (6)F4—C8—C7113.15 (11)
O2—S1—O1120.58 (6)F3—C9—F1107.88 (11)
O2—S1—N1108.97 (6)F3—C9—F2106.91 (12)
O1—S1—N1105.06 (6)F1—C9—F2107.63 (12)
O2—S1—C1108.97 (6)F3—C9—C7111.92 (11)
O1—S1—C1106.92 (6)F1—C9—C7112.07 (12)
N1—S1—C1105.30 (5)F2—C9—C7110.20 (10)
C7—N1—S1130.95 (8)O4—C10—C11106.50 (16)
C7—N1—H1A114.5O4—C10—H10A110.4
S1—N1—H1A114.5C11—C10—H10A110.4
C6—C1—C2121.60 (11)O4—C10—H10B110.4
C6—C1—S1120.05 (9)C11—C10—H10B110.4
C2—C1—S1118.34 (10)H10A—C10—H10B108.6
C3—C2—C1118.67 (12)C10—C11—H11A109.5
C3—C2—H2A120.7C10—C11—H11B109.5
C1—C2—H2A120.7H11A—C11—H11B109.5
C2—C3—C4120.41 (13)C10—C11—H11C109.5
C2—C3—H3A119.8H11A—C11—H11C109.5
C4—C3—H3A119.8H11B—C11—H11C109.5
C3—C4—C5120.51 (13)O5—C12—C13110.09 (13)
C3—C4—H4A119.7O5—C12—H12A109.6
C5—C4—H4A119.7C13—C12—H12A109.6
C4—C5—C6119.89 (13)O5—C12—H12B109.6
C4—C5—H5A120.1C13—C12—H12B109.6
C6—C5—H5A120.1H12A—C12—H12B108.2
C1—C6—C5118.90 (12)C12—C13—H13A109.5
C1—C6—H6A120.5C12—C13—H13B109.5
C5—C6—H6A120.5H13A—C13—H13B109.5
N1—C7—C9109.28 (11)C12—C13—H13C109.5
N1—C7—C8114.70 (10)H13A—C13—H13C109.5
C9—C7—C8109.24 (10)H13B—C13—H13C109.5
N1—C7—P1103.16 (8)C10—O4—P1123.57 (10)
C9—C7—P1110.27 (9)C12—O5—P1122.10 (9)
C8—C7—P1110.04 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.882.342.8730 (14)119
N1—H1A···O3i0.882.002.8324 (14)158
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H16F6NO5PS
Mr443.3
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)11.6913 (15), 10.1375 (13), 15.5955 (19)
β (°) 93.264 (2)
V3)1845.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.60 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.820, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
20001, 4568, 4027
Rint0.022
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.03
No. of reflections4568
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.882.342.8730 (14)119.0
N1—H1A···O3i0.882.002.8324 (14)157.7
Symmetry code: (i) x+1, y, z.
 

Footnotes

Deceased.

Acknowledgements

The authors thank NIH (ES07062), CRDF (RB2-2035 and RB2-2488) and ARO (DAAD19-02-1-0388) for financial support.

References

First citationAdams, M. A., Luo, Y., Hove-Jensen, B., He, S.-M., van Staalduinen, L. M., Zechel, D. L. & Jia, Z. (2008). J. Bacteriol. 190, 1072–1083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekhlov, A. N., Aksinenko, A. Y., Sokolov, V. B. & Martynov, I. V. (1995). Dokl. Chem. 345, 296–299.  Google Scholar
First citationChen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Y.-C., Wang, X.-F. & Ding, Y. (2008). Acta Cryst. E64, o384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron, 63, 12576–12582.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-L., Zhou, Y., Li, W.-Z., Fan, Z., Miao, F.-M., Mao, L.-J. & Chen, R.-Y. (1995). Acta Cryst. C51, 2350–2352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMakhaeva, G. F., Malygin, V. V., Aksinenko, A. Y., Sokolov, V. B., Strakhova, N. N., Rasdolsky, A. N., Richardson, R. J. & Martynov, I. V. (2005). Dokl. Biochem. Biophys. 400, 831–835.  CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds