organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4-Tri-O-acetyl-β-D-xylosyl 2,4-di­chloro­phen­oxy­acetate

aState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, nanjing University, Hankou Road, Nanjing 210093, People's Republic of China
*Correspondence e-mail: yangyh@nju.edu.cn

(Received 11 January 2008; accepted 2 March 2008; online 5 March 2008)

In the title compound, C19H20Cl2O10, the hexopyranosyl ring adopts a chair conformation. The four substituents are in equatorial positions. The mol­ecules arelinked via C—H⋯O contacts along the a axis.

Related literature

For related literature, see: Hamner et al. (1946[Hamner, C. L., Moulton, J. E. & Tukey, H. B. (1946). Science, 103, 476-477.]); Chandra­sekhar & Pattabhi (1977[Chandrasekhar, K. & Pattabhi, V. (1977). Acta Cryst. B33, 1257-1260.]); Dalton (2004[Dalton, R. (2004). Nature (London) 432, 136-136.]); Tsorteki et al. (2004[Tsorteki, F., Bethanis, K. & Mentzafos, D. (2004). Carbohydrate Res. 339, 233-240.]); Yang et al. (2004[Yang, B., Zhang, S.-S., Wang, Y.-F., Li, X.-M., Jiao, K., Kassim, M. & Yamin, B. M. (2004). Acta Cryst. E60, o1902-o1904.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20Cl2O10

  • Mr = 479.25

  • Monoclinic, P 21

  • a = 5.6601 (8) Å

  • b = 23.129 (3) Å

  • c = 8.7456 (13) Å

  • β = 104.281 (2)°

  • V = 1109.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 (2) K

  • 0.45 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: none

  • 5656 measured reflections

  • 3337 independent reflections

  • 3044 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.03

  • 3337 reflections

  • 284 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1325 Friedel pairs

  • Flack parameter: 0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O6i 0.93 2.41 3.322 (6) 168
C9—H9⋯O10i 0.98 2.54 3.381 (4) 144
C11—H11⋯O10i 0.98 2.44 3.296 (4) 146
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The plant growth regulator 2,4-dichlorophenoxyacetic acid cocrystallized as a guest molecule in Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (Tsorteki et al., 2004), and it plays an important role in graining and controlling weeds (Hamner et al., 1946). However, problems such as toxic residues and environmental pollution were protruded increasingly by using amounts of herbicides during the past decades (Dalton, 2004). In order to search for a new herbicide with high efficiency and low toxicity, we obtained the title compound. All bond lengths and angles in the title molecule show normal values. The hexopyranosyl ring adopts a chair conformation (Fig. 1). The three acetyl groups are individually planar and occupy equatorial positions (Yang et al., 2004). The 2,4-dichlorophenoxyacetic acid group shows a similar geometry in 2-Chlorophenoxyacetic acid (Chandrasekhar & Pattabhi, 1977), and it is twisted at the bond of O3—C8—C7—O1, with the torsion angle of 4.3°. The title molecules are linked via intermolecular hydrogen bonding C—H···O contacts along the a axis by translation (Table 1).

Related literature top

For related literature, see: Hamner et al. (1946); Chandrasekhar & Pattabhi (1977); Dalton (2004); Tsorteki et al. (2004); Yang et al. (2004).

Experimental top

The title compound was prepared from α-D-1-bromo-2,3,4-tri-O- acetyl-xylosyl with 2,4-dichlorophenoxyacetic acid in aq NaOH at the benzyltriethylammonium chloride and 4-dimethylaminopyridine in present. Fine block colourless crystals for single-crystal X-ray diffraction were obtained by slow evaporation of an ethyl acetate at room temperature.

Refinement top

The H atoms were refined by riding on their appropriate parent atoms in their as-found or calculated positions. The C—H distances for CH, CH2 and CH3 groups are 0.93, 0.96 and 0.97 Å, respectively, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3). The absolute structure parameter was determined as 0.04 (8) (Flack, 1983). The number of Friedel pairs was found to be 1325 by comparison of merged intensity reflections (2012) with unmerged unique reflections of the final refinement.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2,3,4-Tri-O-acetyl-β-D-xylosyl 2,4-dichlorophenoxyacetate top
Crystal data top
C19H20Cl2O10F(000) = 496
Mr = 479.25Dx = 1.435 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 90 reflections
a = 5.6601 (8) Åθ = 2.4–25.0°
b = 23.129 (3) ŵ = 0.35 mm1
c = 8.7456 (13) ÅT = 293 K
β = 104.281 (2)°Block, colourless
V = 1109.5 (3) Å30.45 × 0.23 × 0.21 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3044 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
Detector resolution: 9.00cm pixels mm-1h = 65
ω and ϕ scansk = 2715
5656 measured reflectionsl = 910
3337 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.2029P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3337 reflectionsΔρmax = 0.29 e Å3
284 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 1325 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C19H20Cl2O10V = 1109.5 (3) Å3
Mr = 479.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.6601 (8) ŵ = 0.35 mm1
b = 23.129 (3) ÅT = 293 K
c = 8.7456 (13) Å0.45 × 0.23 × 0.21 mm
β = 104.281 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3044 reflections with I > 2σ(I)
5656 measured reflectionsRint = 0.089
3337 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.29 e Å3
S = 1.04Δρmin = 0.31 e Å3
3337 reflectionsAbsolute structure: Flack (1983), 1325 Friedel pairs
284 parametersAbsolute structure parameter: 0.04 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39611 (18)0.41178 (5)0.40852 (13)0.0708 (3)
Cl20.4306 (3)0.37317 (8)0.0324 (2)0.1303 (7)
O10.2663 (5)0.31057 (11)0.5567 (3)0.0593 (6)
O20.1992 (6)0.16524 (12)0.6787 (3)0.0662 (7)
O30.3421 (4)0.20235 (10)0.4807 (3)0.0492 (5)
O40.6349 (4)0.13402 (10)0.5269 (3)0.0501 (6)
O50.1431 (4)0.15293 (10)0.1744 (3)0.0452 (5)
O60.2612 (5)0.22405 (14)0.0364 (4)0.0748 (9)
O70.4821 (4)0.08031 (10)0.0669 (2)0.0478 (5)
O80.1649 (6)0.01975 (16)0.0038 (4)0.0854 (10)
O90.7485 (4)0.00745 (10)0.2985 (2)0.0451 (5)
O101.1379 (4)0.01306 (11)0.4309 (3)0.0552 (6)
C10.0205 (8)0.38597 (19)0.1966 (5)0.0648 (10)
H10.01050.41810.14060.078*
C20.2255 (8)0.3534 (2)0.1430 (5)0.0733 (11)
C30.2759 (8)0.30616 (19)0.2235 (6)0.0724 (11)
H30.41650.28460.18410.087*
C40.1159 (7)0.29073 (17)0.3640 (5)0.0601 (9)
H40.15100.25920.42070.072*
C50.0968 (6)0.32194 (15)0.4211 (4)0.0502 (8)
C60.1387 (6)0.36984 (16)0.3357 (4)0.0520 (8)
C70.2153 (9)0.26725 (17)0.6570 (4)0.0632 (10)
H7A0.04810.27200.66410.076*
H7B0.31960.27340.76170.076*
C80.2479 (6)0.20569 (15)0.6091 (4)0.0470 (7)
C90.3960 (5)0.14523 (14)0.4394 (3)0.0406 (6)
H90.28110.11730.46470.049*
C100.3903 (5)0.14345 (14)0.2641 (3)0.0396 (6)
H100.50020.17260.23820.048*
C110.4660 (5)0.08292 (14)0.2273 (3)0.0383 (6)
H110.34420.05500.24350.046*
C120.7106 (5)0.06757 (13)0.3323 (4)0.0407 (6)
H120.83800.09170.30660.049*
C130.7069 (6)0.07587 (15)0.5044 (4)0.0462 (7)
H13A0.59310.04890.53230.055*
H13B0.86760.06840.57190.055*
C140.1046 (6)0.19246 (16)0.0576 (4)0.0479 (8)
C150.1479 (7)0.1900 (2)0.0418 (5)0.0628 (10)
H15A0.22490.22690.04040.094*
H15B0.23780.16100.00130.094*
H15C0.14500.18040.14810.094*
C160.3333 (7)0.04317 (17)0.0295 (4)0.0543 (9)
C170.4131 (10)0.0352 (2)0.1786 (5)0.0802 (14)
H17A0.55230.01010.15930.120*
H17B0.45570.07210.21480.120*
H17C0.28270.01840.25750.120*
C180.9736 (5)0.01395 (15)0.3484 (4)0.0439 (7)
C190.9926 (7)0.07338 (17)0.2889 (5)0.0620 (9)
H19A1.00630.07160.18180.093*
H19B0.84970.09500.29340.093*
H19C1.13430.09200.35310.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0728 (6)0.0576 (6)0.0782 (6)0.0171 (5)0.0114 (5)0.0004 (5)
Cl20.1225 (12)0.1201 (14)0.1079 (10)0.0217 (10)0.0481 (9)0.0335 (10)
O10.0780 (16)0.0361 (13)0.0569 (14)0.0026 (12)0.0038 (12)0.0004 (11)
O20.100 (2)0.0457 (16)0.0624 (16)0.0022 (14)0.0379 (14)0.0033 (12)
O30.0682 (14)0.0353 (13)0.0468 (12)0.0000 (10)0.0191 (10)0.0025 (10)
O40.0557 (13)0.0461 (15)0.0444 (12)0.0009 (10)0.0044 (10)0.0115 (10)
O50.0425 (11)0.0481 (14)0.0462 (12)0.0016 (9)0.0130 (9)0.0082 (10)
O60.0692 (16)0.076 (2)0.0702 (17)0.0201 (15)0.0009 (13)0.0305 (15)
O70.0600 (13)0.0497 (14)0.0362 (10)0.0045 (11)0.0170 (9)0.0007 (10)
O80.090 (2)0.091 (3)0.0718 (19)0.0339 (19)0.0142 (16)0.0312 (17)
O90.0458 (11)0.0385 (13)0.0508 (12)0.0028 (9)0.0114 (9)0.0053 (10)
O100.0480 (12)0.0565 (16)0.0585 (14)0.0034 (11)0.0084 (10)0.0008 (12)
C10.075 (2)0.057 (2)0.058 (2)0.0028 (19)0.0095 (17)0.0090 (18)
C20.070 (2)0.067 (3)0.071 (2)0.001 (2)0.0058 (19)0.006 (2)
C30.065 (2)0.050 (2)0.095 (3)0.0128 (18)0.003 (2)0.003 (2)
C40.068 (2)0.037 (2)0.074 (2)0.0035 (16)0.0142 (18)0.0021 (17)
C50.0619 (19)0.0340 (18)0.0543 (18)0.0064 (15)0.0134 (15)0.0033 (14)
C60.0598 (18)0.0414 (19)0.0548 (18)0.0017 (15)0.0142 (15)0.0048 (15)
C70.097 (3)0.041 (2)0.052 (2)0.0103 (19)0.0190 (19)0.0014 (17)
C80.0599 (18)0.0381 (19)0.0414 (15)0.0056 (14)0.0095 (14)0.0016 (14)
C90.0506 (16)0.0316 (16)0.0395 (15)0.0021 (13)0.0112 (12)0.0031 (12)
C100.0399 (14)0.0401 (17)0.0389 (14)0.0072 (12)0.0099 (11)0.0027 (13)
C110.0443 (14)0.0404 (17)0.0331 (13)0.0098 (12)0.0150 (11)0.0017 (12)
C120.0418 (15)0.0334 (17)0.0477 (16)0.0036 (13)0.0125 (12)0.0020 (13)
C130.0502 (16)0.0423 (19)0.0442 (16)0.0044 (14)0.0081 (13)0.0024 (14)
C140.0517 (17)0.051 (2)0.0423 (16)0.0055 (15)0.0146 (13)0.0017 (14)
C150.0564 (19)0.073 (3)0.058 (2)0.0036 (18)0.0110 (16)0.0126 (19)
C160.069 (2)0.046 (2)0.0420 (17)0.0046 (17)0.0039 (16)0.0052 (15)
C170.132 (4)0.065 (3)0.044 (2)0.019 (3)0.023 (2)0.0076 (19)
C180.0437 (17)0.0473 (19)0.0421 (16)0.0012 (14)0.0136 (13)0.0055 (13)
C190.063 (2)0.051 (2)0.071 (2)0.0030 (17)0.0147 (17)0.0049 (18)
Geometric parameters (Å, º) top
Cl1—C61.735 (4)C5—C61.389 (5)
Cl2—C21.740 (4)C7—C81.508 (5)
O1—C51.355 (4)C7—H7A0.9700
O1—C71.407 (5)C7—H7B0.9700
O2—C81.185 (4)C9—C101.526 (4)
O3—C81.359 (4)C9—H90.9800
O3—C91.422 (4)C10—C111.521 (4)
O4—C91.404 (4)C10—H100.9800
O4—C131.433 (4)C11—C121.503 (4)
O5—C141.347 (4)C11—H110.9800
O5—C101.442 (4)C12—C131.523 (4)
O6—C141.198 (4)C12—H120.9800
O7—C161.344 (4)C13—H13A0.9700
O7—C111.429 (3)C13—H13B0.9700
O8—C161.193 (5)C14—C151.479 (5)
O9—C181.336 (4)C15—H15A0.9600
O9—C121.448 (4)C15—H15B0.9600
O10—C181.202 (4)C15—H15C0.9600
C1—C21.366 (6)C16—C171.493 (5)
C1—C61.375 (5)C17—H17A0.9600
C1—H10.9300C17—H17B0.9600
C2—C31.367 (6)C17—H17C0.9600
C3—C41.381 (6)C18—C191.483 (5)
C3—H30.9300C19—H19A0.9600
C4—C51.387 (5)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—O1—C7118.3 (3)O7—C11—C12108.5 (2)
C8—O3—C9114.5 (2)O7—C11—C10109.6 (2)
C9—O4—C13111.5 (2)C12—C11—C10110.7 (2)
C14—O5—C10118.0 (2)O7—C11—H11109.3
C16—O7—C11117.4 (3)C12—C11—H11109.3
C18—O9—C12117.8 (2)C10—C11—H11109.3
C2—C1—C6118.0 (4)O9—C12—C11105.2 (2)
C2—C1—H1121.0O9—C12—C13111.2 (2)
C6—C1—H1121.0C11—C12—C13109.8 (2)
C1—C2—C3122.1 (4)O9—C12—H12110.2
C1—C2—Cl2118.9 (4)C11—C12—H12110.2
C3—C2—Cl2119.1 (3)C13—C12—H12110.2
C2—C3—C4119.4 (4)O4—C13—C12109.1 (3)
C2—C3—H3120.3O4—C13—H13A109.9
C4—C3—H3120.3C12—C13—H13A109.9
C3—C4—C5120.4 (4)O4—C13—H13B109.9
C3—C4—H4119.8C12—C13—H13B109.9
C5—C4—H4119.8H13A—C13—H13B108.3
O1—C5—C4125.3 (3)O6—C14—O5122.9 (3)
O1—C5—C6116.6 (3)O6—C14—C15125.2 (3)
C4—C5—C6118.0 (3)O5—C14—C15111.8 (3)
C1—C6—C5122.1 (3)C14—C15—H15A109.5
C1—C6—Cl1118.7 (3)C14—C15—H15B109.5
C5—C6—Cl1119.2 (3)H15A—C15—H15B109.5
O1—C7—C8116.2 (3)C14—C15—H15C109.5
O1—C7—H7A108.2H15A—C15—H15C109.5
C8—C7—H7A108.2H15B—C15—H15C109.5
O1—C7—H7B108.2O8—C16—O7123.5 (3)
C8—C7—H7B108.2O8—C16—C17126.1 (4)
H7A—C7—H7B107.4O7—C16—C17110.4 (4)
O2—C8—O3124.6 (3)C16—C17—H17A109.5
O2—C8—C7122.9 (3)C16—C17—H17B109.5
O3—C8—C7112.5 (3)H17A—C17—H17B109.5
O4—C9—O3105.7 (2)C16—C17—H17C109.5
O4—C9—C10108.8 (2)H17A—C17—H17C109.5
O3—C9—C10109.1 (2)H17B—C17—H17C109.5
O4—C9—H9111.0O10—C18—O9122.5 (3)
O3—C9—H9111.0O10—C18—C19125.5 (3)
C10—C9—H9111.0O9—C18—C19112.0 (3)
O5—C10—C11108.1 (2)C18—C19—H19A109.5
O5—C10—C9108.6 (2)C18—C19—H19B109.5
C11—C10—C9107.4 (2)H19A—C19—H19B109.5
O5—C10—H10110.8C18—C19—H19C109.5
C11—C10—H10110.8H19A—C19—H19C109.5
C9—C10—H10110.8H19B—C19—H19C109.5
C6—C1—C2—C30.4 (7)O4—C9—C10—O5178.0 (2)
C6—C1—C2—Cl2179.7 (3)O3—C9—C10—O567.1 (3)
C1—C2—C3—C40.3 (7)O4—C9—C10—C1161.2 (3)
Cl2—C2—C3—C4179.0 (4)O3—C9—C10—C11176.1 (2)
C2—C3—C4—C51.6 (7)C16—O7—C11—C12120.4 (3)
C7—O1—C5—C46.4 (5)C16—O7—C11—C10118.6 (3)
C7—O1—C5—C6171.7 (3)O5—C10—C11—O767.4 (3)
C3—C4—C5—O1179.8 (4)C9—C10—C11—O7175.5 (2)
C3—C4—C5—C62.1 (5)O5—C10—C11—C12172.9 (2)
C2—C1—C6—C50.2 (6)C9—C10—C11—C1255.9 (3)
C2—C1—C6—Cl1178.3 (3)C18—O9—C12—C11165.2 (2)
O1—C5—C6—C1179.7 (3)C18—O9—C12—C1376.0 (3)
C4—C5—C6—C11.4 (5)O7—C11—C12—O966.0 (3)
O1—C5—C6—Cl11.2 (4)C10—C11—C12—O9173.7 (2)
C4—C5—C6—Cl1177.0 (3)O7—C11—C12—C13174.3 (2)
C5—O1—C7—C878.3 (4)C10—C11—C12—C1354.0 (3)
C9—O3—C8—O24.1 (5)C9—O4—C13—C1263.7 (3)
C9—O3—C8—C7174.8 (3)O9—C12—C13—O4171.9 (2)
O1—C7—C8—O2176.0 (4)C11—C12—C13—O455.8 (3)
O1—C7—C8—O35.0 (5)C10—O5—C14—O68.1 (5)
C13—O4—C9—O3176.0 (2)C10—O5—C14—C15169.6 (3)
C13—O4—C9—C1066.9 (3)C11—O7—C16—O812.6 (5)
C8—O3—C9—O487.9 (3)C11—O7—C16—C17166.3 (3)
C8—O3—C9—C10155.2 (3)C12—O9—C18—O106.7 (4)
C14—O5—C10—C11112.4 (3)C12—O9—C18—C19172.9 (3)
C14—O5—C10—C9131.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.413.322 (6)168
C9—H9···O10i0.982.543.381 (4)144
C11—H11···O10i0.982.443.296 (4)146
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H20Cl2O10
Mr479.25
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.6601 (8), 23.129 (3), 8.7456 (13)
β (°) 104.281 (2)
V3)1109.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.45 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5656, 3337, 3044
Rint0.089
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.04
No. of reflections3337
No. of parameters284
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31
Absolute structureFlack (1983), 1325 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.413.322 (6)168
C9—H9···O10i0.982.543.381 (4)144
C11—H11···O10i0.982.443.296 (4)146
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 30701041), the Postdoctoral Science Foundation of China (No. 20060400917) and Jiangsu Postdoctoral Science Foundation of China (No. 0602002B).

References

First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, K. & Pattabhi, V. (1977). Acta Cryst. B33, 1257–1260.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDalton, R. (2004). Nature (London) 432, 136–136.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamner, C. L., Moulton, J. E. & Tukey, H. B. (1946). Science, 103, 476–477.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsorteki, F., Bethanis, K. & Mentzafos, D. (2004). Carbohydrate Res. 339, 233–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, B., Zhang, S.-S., Wang, Y.-F., Li, X.-M., Jiao, K., Kassim, M. & Yamin, B. M. (2004). Acta Cryst. E60, o1902–o1904.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds