organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(2-formyl­phen­­oxy)-3-oxa­penta­ne

aInstituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, 21949-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: ronconi@iq.ufrj.br

(Received 29 November 2007; accepted 25 January 2008; online 6 February 2008)

In the title mol­ecule, C18H18O5, the two aromatic rings are connected by a flexible 3-oxapentane chain. The mol­ecule has a crystallographic twofold rotation axis (C2) passing through the central O atom. An intra­molecular C—H⋯O hydrogen bond is observed in the solid state.

Related literature

For related literature, see: Biernat et al. (1992[Biernat, J. F., Luboch, E., Cygan, A., Simonov, Y. A., Dvorkin, A. A., Muszalska, E. & Bilewicz, R. (1992). Tetrahedron, 48, 4399-4406.]); Qi et al. (2005[Qi, A.-D., Zhu, Q.-H., He, Y.-Z. & Ren, X.-L. (2005). Acta Cryst. E61, o3784-o3785.]); Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, pp 20. Berlin: Springer-Verlag.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O5

  • Mr = 314.32

  • Orthorhombic, F d d 2

  • a = 27.613 (6) Å

  • b = 26.404 (5) Å

  • c = 4.4313 (9) Å

  • V = 3230.8 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.25 × 0.08 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4449 measured reflections

  • 1043 independent reflections

  • 480 reflections with I > 2σ(I)

  • Rint = 0.134

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.097

  • S = 0.99

  • 1043 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2 0.93 2.42 2.764 (5) 102

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: PHICHI (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVAL-14 (CCD) (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title molecule is generated by a symmetry operation according to the space group Fdd2. The symmetry operator (0, 1/2, z) applied to the equivalent atoms is a twofold rotation axis passing through the central atom O1 (Fig. 1). Bond lengths and angles are in the ranges reported for analogous structures (Biernat et al., 1992; Qi et al., 2005). The distances involving the C atoms in the central moiety are 1.496 (5) Å for C1—C2, 1.429 (4) Å for C1—O1, and 1.436 (4) Å for C2—O2.

The intramolecular C9—H9···O2 contact observed in the solid state (Fig. 1) is classificated as a non classical hydrogen bond (Jeffrey & Saenger, 1991). This secondary interaction does not affect the torsion angles in the 3-oxapentane chain. The torsion angle for the O2/C2/C1/O1 moiety is -69.3 (3)° and proves the flexibility of the 3-oxapentane chain. The hydrogen bonding geometry of the intramolecular contacts (Jeffrey & Saenger, 1991) with atom O2 as acceptor was calculated with PLATON (Spek, 2003): distances H9···O2 and C9···O2 are 2.42 and 2.764 (5) Å, respectively, and the angle at H9 is 102°.

Related literature top

For related literature, see: Biernat et al. (1992); Qi et al. (2005); Jeffrey & Saenger (1991); Spek (2003).

Experimental top

A mixture of 2[2-(2-p-tolylsulfonyloxy)ethoxy]ethanol (1 g, 8.19 mmol), salicylic aldehyde (0.87 g, 2.10 mmol), and K2CO3 (0.47 g, 3.40 mmol) in dry MeCN (20 ml) was heated for 12 h under reflux. After the reaction mixture had cooled down to room temperature, it was filtered and the solvent removed under vacuum. The residue was purified by column chromatography (SiO2, Hexane:EtOAc 1:1) to give the desired product (0.55 g, 83%) as a yellow solid. A single-crystal was isolated after slow evaporation of the crystallization solvent (THF).

Refinement top

All hydrogen atoms were geometrically constrained using a riding model, with C—H distances of 0.93 Å for both benzene rings and the aldehyde moieties with Uiso(H) = 1.2Ueq(Csp2), and with C—H distances of 0.97 Å for the ethyl C atoms with Uiso(H) = 1.2Ueq(Csp3).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: PHICHI (Duisenberg et al., 2000); data reduction: EVAL14 (CCD) (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP projection of the title molecule. Symmetry equivalent atoms are generated by the symmetry code [-x, 1 - y, z]. Intramolecular bonds are indicated by dashed lines. Thermal ellipsoids are shown at the 50% probability level.
1,5-Bis(2-formylphenoxy)-3-oxapentane top
Crystal data top
C18H18O5F(000) = 1328
Mr = 314.32Dx = 1.292 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 50 reflections
a = 27.613 (6) Åθ = 1–27.5°
b = 26.404 (5) ŵ = 0.09 mm1
c = 4.4313 (9) ÅT = 295 K
V = 3230.8 (11) Å3Plate, yellow
Z = 80.25 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
480 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.134
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ϕ and ω scans with κ offsetsh = 3435
4449 measured reflectionsk = 3434
1043 independent reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0377P)2]
where P = (Fo2 + 2Fc2)/3
1043 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H18O5V = 3230.8 (11) Å3
Mr = 314.32Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 27.613 (6) ŵ = 0.09 mm1
b = 26.404 (5) ÅT = 295 K
c = 4.4313 (9) Å0.25 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
480 reflections with I > 2σ(I)
4449 measured reflectionsRint = 0.134
1043 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.99Δρmax = 0.12 e Å3
1043 reflectionsΔρmin = 0.14 e Å3
105 parameters
Special details top

Experimental. The transformation of the unit cell axes and hkl intensity data were performed by using the matrix (00–1, 010, 100) in order to solve and refine the structure in the standard setting for space group Fdd2.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03242 (14)0.47183 (13)1.1699 (9)0.0683 (12)
H1A0.01380.45081.30690.082*
H1B0.05150.49511.29020.082*
C20.06560 (13)0.43903 (12)0.9883 (9)0.0607 (10)
H2A0.08310.41621.12070.073*
H2B0.04690.41880.84720.073*
C30.13695 (13)0.44746 (12)0.6829 (8)0.0495 (9)
C40.14652 (13)0.39549 (12)0.6935 (9)0.0622 (11)
H40.12630.37400.80150.075*
C50.18651 (15)0.37623 (15)0.5414 (11)0.0773 (13)
H50.19300.34170.55190.093*
C60.21687 (15)0.40706 (15)0.3753 (10)0.0731 (13)
H60.24330.39350.27390.088*
C70.20743 (14)0.45820 (15)0.3617 (9)0.0677 (13)
H70.22760.47910.24910.081*
C80.16770 (12)0.47928 (12)0.5159 (10)0.0523 (10)
C90.15870 (14)0.53391 (13)0.4966 (13)0.0834 (14)
H90.13230.54660.60300.100*
O10.00000.50000.9830 (7)0.0529 (9)
O20.09910 (9)0.47057 (7)0.8266 (6)0.0563 (7)
O30.18230 (10)0.56356 (10)0.3560 (9)0.1276 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (3)0.085 (3)0.054 (3)0.002 (2)0.005 (3)0.018 (2)
C20.059 (2)0.061 (2)0.062 (3)0.007 (2)0.011 (2)0.023 (2)
C30.044 (2)0.045 (2)0.059 (3)0.0026 (19)0.018 (2)0.003 (2)
C40.060 (2)0.044 (2)0.083 (3)0.0005 (18)0.018 (3)0.0096 (19)
C50.075 (3)0.047 (2)0.110 (4)0.010 (2)0.029 (3)0.009 (3)
C60.069 (3)0.066 (3)0.084 (3)0.013 (2)0.012 (3)0.014 (3)
C70.051 (3)0.073 (3)0.079 (3)0.002 (2)0.006 (2)0.007 (2)
C80.0426 (19)0.049 (2)0.066 (2)0.0020 (18)0.014 (2)0.011 (2)
C90.059 (3)0.053 (3)0.138 (4)0.004 (2)0.011 (3)0.023 (3)
O10.0469 (17)0.066 (2)0.0457 (19)0.0031 (18)0.0000.000
O20.0481 (13)0.0462 (13)0.0746 (18)0.0005 (12)0.0020 (13)0.0170 (14)
O30.090 (2)0.0707 (18)0.222 (4)0.0013 (17)0.043 (3)0.068 (2)
Geometric parameters (Å, º) top
C1—O11.429 (4)C4—H40.9300
C1—C21.496 (5)C5—C61.381 (5)
C1—H1A0.9700C5—H50.9300
C1—H1B0.9700C6—C71.377 (4)
C2—O21.436 (4)C6—H60.9300
C2—H2A0.9700C7—C81.407 (5)
C2—H2B0.9700C7—H70.9300
C3—O21.368 (4)C8—C91.466 (4)
C3—C41.398 (4)C9—O31.194 (4)
C3—C81.405 (4)C9—H90.9300
C4—C51.390 (5)O1—C1i1.429 (4)
O1—C1—C2111.9 (3)C6—C5—C4121.7 (4)
O1—C1—H1A109.2C6—C5—H5119.2
C2—C1—H1A109.2C4—C5—H5119.2
O1—C1—H1B109.2C7—C6—C5119.1 (4)
C2—C1—H1B109.2C7—C6—H6120.4
H1A—C1—H1B107.9C5—C6—H6120.4
O2—C2—C1109.1 (3)C6—C7—C8121.0 (4)
O2—C2—H2A109.9C6—C7—H7119.5
C1—C2—H2A109.9C8—C7—H7119.5
O2—C2—H2B109.9C3—C8—C7119.4 (3)
C1—C2—H2B109.9C3—C8—C9121.1 (4)
H2A—C2—H2B108.3C7—C8—C9119.5 (4)
O2—C3—C4124.5 (3)O3—C9—C8125.7 (4)
O2—C3—C8116.1 (3)O3—C9—H9117.2
C4—C3—C8119.4 (3)C8—C9—H9117.2
C5—C4—C3119.5 (3)C1i—O1—C1109.1 (4)
C5—C4—H4120.2C3—O2—C2117.8 (2)
C3—C4—H4120.2
O1—C1—C2—O269.3 (3)C4—C3—C8—C9179.4 (4)
O2—C3—C4—C5179.1 (3)C6—C7—C8—C30.8 (6)
C8—C3—C4—C50.7 (5)C6—C7—C8—C9180.0 (4)
C3—C4—C5—C61.0 (6)C3—C8—C9—O3178.5 (4)
C4—C5—C6—C70.5 (6)C7—C8—C9—O30.6 (7)
C5—C6—C7—C80.4 (6)C2—C1—O1—C1i176.7 (3)
O2—C3—C8—C7180.0 (3)C4—C3—O2—C23.0 (5)
C4—C3—C8—C70.2 (5)C8—C3—O2—C2177.2 (3)
O2—C3—C8—C90.8 (5)C1—C2—O2—C3170.5 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.932.422.764 (5)102

Experimental details

Crystal data
Chemical formulaC18H18O5
Mr314.32
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)295
a, b, c (Å)27.613 (6), 26.404 (5), 4.4313 (9)
V3)3230.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.08 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4449, 1043, 480
Rint0.134
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.097, 0.99
No. of reflections1043
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: COLLECT (Nonius, 1998), PHICHI (Duisenberg et al., 2000), EVAL14 (CCD) (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.932.422.764 (5)102
 

Acknowledgements

The X-ray diffraction measurements were performed in the Laboratório de Difração de Raios X of the Universidade Federal Fluminense (LDRX-UFF), Niterói, Brazil. The authors thank CAPES, CNPq and FAPERJ for financial support. The co-editor is thanked for the transformation of the space group F2dd to the standard setting Fdd2, and for help with the solution and refinement of the structure.

References

First citationBiernat, J. F., Luboch, E., Cygan, A., Simonov, Y. A., Dvorkin, A. A., Muszalska, E. & Bilewicz, R. (1992). Tetrahedron, 48, 4399–4406.  CSD CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, pp 20. Berlin: Springer-Verlag.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationQi, A.-D., Zhu, Q.-H., He, Y.-Z. & Ren, X.-L. (2005). Acta Cryst. E61, o3784–o3785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds