Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Mo2(C2H4NO2)2O2S2(C2H5NO2)], the two MoV atoms are bridged by two μ2-S atoms and one glycine ligand in an O:O′-bidentate mode. In addition, each MoV atom is bonded to one terminal oxygen ligand and chelated by one N,O-bidentate glycinate ligand, resulting in a distorted octa­hedral coordination. A complex hydrogen-bonding network is constructed by inter­molecular N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054761/si2039sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054761/si2039Isup2.hkl
Contains datablock I

CCDC reference: 672607

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.023 Å
  • R factor = 0.087
  • wR factor = 0.178
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level B ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.483 0.813 Tmin(prime) and Tmax expected: 0.655 0.813 RR(prime) = 0.737 Please check that your absorption correction is appropriate. PLAT027_ALERT_3_B _diffrn_reflns_theta_full (too) Low ............ 24.99 Deg. PLAT061_ALERT_3_B Tmax/Tmin Range Test RR' too Large ............. 0.72 PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds (x 1000) Ang ... 23
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo1 - S1 .. 6.95 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo2 - S1 .. 8.46 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S1 PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2B ... ?
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo1 (5) 5.10 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo2 (5) 5.26
0 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Dimolybdenum complexes containing [Mo2O2(µ-S)2] have attracted many chemists' attention, not only because the [Mo2O2(µ-S)2] unit has special stability but also because it may be employed as a starting material to react with many transition metals. Some [Mo2O2(µ-S)2] structural compounds based on amino-acid have been isolated and structurally characterized (Spivack & Dori, 1975; Li et al., 2005). The crystal structure of our new neutral dimolybdenum glycinato complex is similar to the compound [Mo2O4(C2H4NO2)2(C2H5NO2)] (Liu et al., 2000).

The title structure consists of the neutral Mo2O2(µ-S)2(C2H5NO2)(C2H4NO2)2 (Fig. 1). In the structure, the two molybdenum atoms are not crystallographically equivalent, which are linked by two µ2-S ligand and one glycine (+H3NCH2COO-) ligand in an O:O'-bidentate mode. Each MoV atom is also bonded to one terminal oxygen atom and chelated by one N,O-glycine (NH2CH2COO-) ligand, resulting in a distorted octahedral coordination. The Mo···Mo separation is 2.788 (2) Å, which is shorter than the Mo···Mo distance (2.848 (1) Å) in the histidinato complex (Spivack & Dori, 1975). The Mo—S, Mo—N, Mo—O and Mo?O bond lengths are 2.304 (5)—2.336 (4) Å, 2.195 (12)—2.225 (11) Å, 2.091 (11)—2.328 (9) Å and 1.668 (11)—1.696 (10) Å, respectively.

A three-dimensional network is constructed by six classic intermolecular N—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related structure, see: Spivack & Dori (1975); Li et al. (2005); Liu et al. (2000); Lin et al. (1998).

Experimental top

The title compound was prepared by adding a solution of glycin (0.075 g, 1 mmol) in 5 ml H2O to a solution of (Et4N)2Mo2S2O2(edt)2 (0.366 g, 0.5 mmol) in 5 ml DMF. After stirring about 10 min, the solution was filtered. Orange block crystals of the title compound were obtained by slow evaporation of the orange filtrate for several weeks. (Et4N)2Mo2S2O2(edt)2 was synthesized by the literature (Lin et al.,1998).

Refinement top

All H atoms were positioned geometrically and treated as riding atoms (including free rotation about the C—NH3+ bond), with C—H = 0.97 Å and N—H = 0.89—0.90 Å, with Uiso(H) = 1.2 Ueq(C, N) (1.5 for —NH3+ groups). Rint value of 0.086 and R of 0.0869 indicate a low structure quality.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Siemens, 1996); program(s) used to refine structure: SHELXTL (Siemens, 1996); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. Hydrogen bonds are shown as dashed lines.
µ-Glycine-κ2O:O'-di-µ-sulfido- bis[(glycinato-κ2N,O)oxidomolybdenum(V)] top
Crystal data top
[Mo2(C2H4NO2)2O2S2(C2H5NO2)]F(000) = 1000
Mr = 511.19Dx = 2.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 45 reflections
a = 13.1258 (13) Åθ = 2.5–25.0°
b = 10.8384 (10) ŵ = 2.07 mm1
c = 10.585 (1) ÅT = 295 K
β = 106.597 (2)°Block, orange
V = 1443.1 (2) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube1620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1513
Tmin = 0.483, Tmax = 0.813k = 127
4358 measured reflectionsl = 712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0001P)2 + 52.2323P]
where P = (Fo2 + 2Fc2)/3
2519 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.10 e Å3
Crystal data top
[Mo2(C2H4NO2)2O2S2(C2H5NO2)]V = 1443.1 (2) Å3
Mr = 511.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1258 (13) ŵ = 2.07 mm1
b = 10.8384 (10) ÅT = 295 K
c = 10.585 (1) Å0.20 × 0.15 × 0.10 mm
β = 106.597 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2519 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1620 reflections with I > 2σ(I)
Tmin = 0.483, Tmax = 0.813Rint = 0.086
4358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0001P)2 + 52.2323P]
where P = (Fo2 + 2Fc2)/3
2519 reflectionsΔρmax = 1.16 e Å3
190 parametersΔρmin = 1.10 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.72243 (11)0.35843 (13)0.32342 (13)0.0272 (4)
Mo20.64096 (11)0.59751 (13)0.30419 (13)0.0281 (4)
S10.7788 (4)0.5267 (4)0.2284 (5)0.0513 (13)
S20.5926 (3)0.4310 (4)0.4150 (4)0.0355 (10)
O11.0118 (9)0.1842 (12)0.4619 (12)0.051 (3)
O20.8716 (8)0.2768 (10)0.3310 (10)0.034 (3)
O30.6503 (8)0.2828 (10)0.1868 (10)0.036 (3)
O40.5367 (8)0.6025 (11)0.1700 (10)0.040 (3)
O50.7134 (10)0.9688 (11)0.3142 (13)0.051 (3)
O60.7004 (8)0.7698 (10)0.2716 (10)0.033 (3)
O70.7740 (7)0.6195 (10)0.5025 (10)0.030 (3)
O80.8358 (9)0.4270 (10)0.5171 (10)0.035 (3)
N10.7391 (10)0.1977 (10)0.4585 (12)0.027 (3)
H1A0.71190.21710.52500.032*
H1B0.70180.13360.41430.032*
N20.5774 (10)0.7223 (11)0.4264 (12)0.030 (3)
H2A0.50610.71540.40280.036*
H2B0.60230.69920.51130.036*
N30.9018 (10)0.6917 (13)0.7315 (12)0.035 (3)
H3A0.94750.70590.81010.053*
H3B0.83580.70470.73550.053*
H3E0.91560.74230.67220.053*
C10.9187 (14)0.2111 (16)0.4302 (18)0.040 (4)
C20.8498 (12)0.1619 (18)0.5123 (16)0.043 (5)
H2C0.85470.07260.51580.052*
H2D0.87630.19290.60160.052*
C30.6054 (14)0.8498 (15)0.4143 (17)0.040 (4)
H3C0.63940.88230.50160.047*
H3D0.54090.89680.37750.047*
C40.6778 (13)0.8681 (16)0.3302 (14)0.034 (4)
C50.9124 (13)0.5617 (16)0.6923 (17)0.042 (4)
H5A0.98430.54680.68840.050*
H5B0.89800.50610.75690.050*
C60.8361 (12)0.5390 (16)0.5617 (14)0.029 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0314 (8)0.0282 (8)0.0244 (7)0.0040 (6)0.0116 (6)0.0006 (6)
Mo20.0289 (8)0.0300 (8)0.0281 (7)0.0000 (6)0.0128 (6)0.0005 (6)
S10.062 (3)0.035 (3)0.061 (3)0.000 (2)0.024 (3)0.004 (2)
S20.039 (3)0.035 (3)0.038 (2)0.0018 (19)0.019 (2)0.0015 (19)
O10.032 (7)0.057 (9)0.062 (9)0.005 (6)0.010 (6)0.015 (7)
O20.026 (6)0.046 (7)0.035 (6)0.002 (5)0.017 (5)0.003 (6)
O30.037 (7)0.039 (7)0.032 (6)0.012 (5)0.012 (5)0.001 (5)
O40.035 (7)0.052 (8)0.037 (6)0.004 (6)0.016 (5)0.007 (6)
O50.058 (9)0.030 (7)0.078 (10)0.009 (6)0.038 (8)0.005 (7)
O60.038 (7)0.025 (6)0.043 (7)0.005 (5)0.023 (6)0.006 (5)
O70.015 (5)0.038 (7)0.030 (6)0.004 (5)0.004 (4)0.006 (5)
O80.046 (7)0.033 (7)0.028 (6)0.004 (5)0.012 (5)0.002 (5)
N10.044 (8)0.007 (6)0.037 (7)0.003 (6)0.023 (6)0.002 (5)
N20.032 (8)0.031 (8)0.030 (7)0.001 (6)0.012 (6)0.001 (6)
N30.031 (8)0.053 (10)0.024 (7)0.003 (7)0.011 (6)0.007 (6)
C10.033 (11)0.037 (11)0.053 (12)0.010 (8)0.015 (9)0.002 (9)
C20.028 (10)0.067 (14)0.033 (10)0.012 (9)0.004 (8)0.000 (9)
C30.047 (11)0.030 (10)0.050 (11)0.000 (8)0.028 (9)0.005 (8)
C40.035 (9)0.040 (11)0.021 (8)0.003 (8)0.003 (7)0.003 (8)
C50.034 (10)0.045 (11)0.047 (11)0.007 (8)0.012 (8)0.011 (9)
C60.017 (8)0.049 (11)0.021 (8)0.012 (8)0.003 (7)0.004 (8)
Geometric parameters (Å, º) top
Mo1—O31.696 (10)N1—C21.454 (19)
Mo1—O22.129 (10)N1—H1A0.9000
Mo1—N12.225 (11)N1—H1B0.9000
Mo1—O82.286 (11)N2—C31.44 (2)
Mo1—S12.304 (5)N2—H2A0.9000
Mo1—S22.325 (4)N2—H2B0.9000
Mo1—Mo22.788 (2)N3—C51.49 (2)
Mo2—O41.668 (11)N3—H3A0.8900
Mo2—O62.091 (11)N3—H3B0.8900
Mo2—N22.195 (12)N3—H3E0.8900
Mo2—S12.310 (5)C1—C21.52 (2)
Mo2—O72.328 (9)C2—H2C0.9700
Mo2—S22.336 (4)C2—H2D0.9700
O1—C11.206 (19)C3—C41.49 (2)
O2—C11.274 (19)C3—H3C0.9700
O5—C41.219 (19)C3—H3D0.9700
O6—C41.308 (19)C5—C61.48 (2)
O7—C61.235 (17)C5—H5A0.9700
O8—C61.303 (19)C5—H5B0.9700
O3—Mo1—O296.6 (5)C6—O8—Mo1124.2 (9)
O3—Mo1—N195.6 (5)C2—N1—Mo1111.4 (9)
O2—Mo1—N174.3 (4)C2—N1—H1A109.3
O3—Mo1—O8169.5 (5)Mo1—N1—H1A109.3
O2—Mo1—O875.2 (4)C2—N1—H1B109.3
N1—Mo1—O876.0 (4)Mo1—N1—H1B109.3
O3—Mo1—S1100.4 (4)H1A—N1—H1B108.0
O2—Mo1—S186.5 (3)C3—N2—Mo2112.8 (9)
N1—Mo1—S1156.3 (4)C3—N2—H2A109.0
O8—Mo1—S185.8 (3)Mo2—N2—H2A109.0
O3—Mo1—S2102.8 (4)C3—N2—H2B109.0
O2—Mo1—S2154.2 (3)Mo2—N2—H2B109.0
N1—Mo1—S286.9 (3)H2A—N2—H2B107.8
O8—Mo1—S283.3 (3)C5—N3—H3A109.5
S1—Mo1—S2106.19 (17)C5—N3—H3B109.5
O3—Mo1—Mo2106.1 (4)H3A—N3—H3B109.5
O2—Mo1—Mo2135.9 (3)C5—N3—H3E109.5
N1—Mo1—Mo2137.7 (3)H3A—N3—H3E109.5
O8—Mo1—Mo284.3 (3)H3B—N3—H3E109.5
S1—Mo1—Mo252.90 (13)O1—C1—O2125.3 (16)
S2—Mo1—Mo253.45 (11)O1—C1—C2118.6 (16)
O4—Mo2—O694.9 (5)O2—C1—C2116.1 (14)
O4—Mo2—N297.1 (5)N1—C2—C1112.0 (14)
O6—Mo2—N276.7 (4)N1—C2—H2C109.2
O4—Mo2—S1104.4 (4)C1—C2—H2C109.2
O6—Mo2—S182.7 (3)N1—C2—H2D109.2
N2—Mo2—S1151.3 (4)C1—C2—H2D109.2
O4—Mo2—O7170.5 (5)H2C—C2—H2D107.9
O6—Mo2—O780.7 (4)N2—C3—C4113.7 (13)
N2—Mo2—O773.7 (4)N2—C3—H3C108.8
S1—Mo2—O783.5 (3)C4—C3—H3C108.8
O4—Mo2—S2100.2 (4)N2—C3—H3D108.8
O6—Mo2—S2160.1 (3)C4—C3—H3D108.8
N2—Mo2—S288.7 (3)H3C—C3—H3D107.7
S1—Mo2—S2105.66 (17)O5—C4—O6121.1 (15)
O7—Mo2—S282.4 (3)O5—C4—C3122.5 (16)
O4—Mo2—Mo1107.2 (4)O6—C4—C3116.4 (14)
O6—Mo2—Mo1133.5 (3)C6—C5—N3109.0 (14)
N2—Mo2—Mo1137.1 (3)C6—C5—H5A109.9
S1—Mo2—Mo152.73 (13)N3—C5—H5A109.9
O7—Mo2—Mo181.7 (3)C6—C5—H5B109.9
S2—Mo2—Mo153.08 (11)N3—C5—H5B109.9
Mo1—S1—Mo274.36 (16)H5A—C5—H5B108.3
Mo1—S2—Mo273.47 (13)O7—C6—O8122.7 (14)
C1—O2—Mo1119.2 (10)O7—C6—C5122.0 (15)
C4—O6—Mo2120.2 (10)O8—C6—C5115.2 (14)
C6—O7—Mo2127.0 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.902.092.975 (16)167
N1—H1B···O5ii0.902.102.882 (16)144
N2—H2A···O3iii0.902.132.958 (16)153
N3—H3A···O1iv0.892.333.119 (17)148
N3—H3B···O6v0.891.942.825 (16)172
N3—H3E···O1vi0.892.082.934 (17)160
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+3/2; (v) x, y+3/2, z+1/2; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mo2(C2H4NO2)2O2S2(C2H5NO2)]
Mr511.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.1258 (13), 10.8384 (10), 10.585 (1)
β (°) 106.597 (2)
V3)1443.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.483, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
4358, 2519, 1620
Rint0.086
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.178, 1.11
No. of reflections2519
No. of parameters190
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0001P)2 + 52.2323P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.16, 1.10

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.902.092.975 (16)166.5
N1—H1B···O5ii0.902.102.882 (16)144.1
N2—H2A···O3iii0.902.132.958 (16)152.7
N3—H3A···O1iv0.892.333.119 (17)147.7
N3—H3B···O6v0.891.942.825 (16)171.7
N3—H3E···O1vi0.892.082.934 (17)160.4
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+3/2; (v) x, y+3/2, z+1/2; (vi) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds