Download citation
Download citation
link to html
The title complex, [Pt4Br4(CH3)12], the tetra­mer of trimethyl­platinum(IV) bromide, reveals a distorted cubane-like structure and is disposed about a crystallographic mirror plane passing through two Pt atoms, two Br atoms and two methyl groups parallel to the ac plane. The tetra­meric complex displays pseudo-cubic mol­ecular symmetry, \overline{4}3m. The coordination geometry around each Pt centre is distorted octa­hedral. The tetra­meric units in the crystal structure are packed by hydro­phobic inter­actions or van der Waals contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703704X/si2029sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703704X/si2029Isup2.hkl
Contains datablock I

CCDC reference: 660045

Key indicators

  • Single-crystal X-ray study
  • T = 243 K
  • Mean [sigma](t-C) = 0.010 Å
  • R factor = 0.033
  • wR factor = 0.078
  • Data-to-parameter ratio = 26.5

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.053 0.099 Tmin and Tmax expected: 0.042 0.099 RR = 1.248 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.22 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pt1 - Br3 .. 6.90 su PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Pt2 (2) 2.23 PLAT794_ALERT_5_G Check Predicted Bond Valency for Pt3 (2) 2.26
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Trimethylplatinum(IV) halides, hydroxide and pseudohalides reveal structures of cubane-like clusters with the tetrameric unit, [{Pt(CH3)3L}4] (L = F, Cl, Br, I, OH, N3 etc.), and the tetrameric units show approximately -43m symmetry. F (Donath et al., 1998), Cl (Rundle & Sturdivant, 1947) and OH clusters (Cowan et al., 1968; Spiro et al., 1968; Preston et al., 1968; Donath et al., 1998) are isostructural and crystallize in the cubic achiral space group I -43m. The N3 cluster (Atam & Müller, 1974) crystallizes in the trigonal space group P -3c1. The crystal structure of trimethylplatinum(IV) bromide with toluene solvent was previously reported (Massa et al., 1988), which crystallizes in the lower symmetric monoclinic space group C 2/m. This can be explained by hydrophobic interactions or packing effects of the structure.

The title complex shows a distorted cubane-type structure of the tetrameric [{Pt(CH3)3Br}4] unit (Fig. 1), and is disposed about a mirror plane passing through atoms Pt1, Pt2, Br1, Br2, and two methyl groups C1 and C3, parallel to the a,c plane of the unit cell, which coincide with the crystallographic mirror plane m of space group C 2/m (Fig. 2). Each Pt4+ ion is coordinated by three methyl groups and three µ3-Br atoms, and the coordination geometry around respective Pt centre is distorted octahedral. Mean interatomic distances: Pt—Br 2.693 Å, Pt—C 2.028 Å, Pt···Pt 3.933 Å, Br···Br 3.668 Å. Mean bond angles: Br—Pt—Br 86.0°, Pt—Br—Pt 94.1°.

Related literature top

For historical background, see: Rundle & Sturdivant (1947); Atam & Müller (1974). For the corresponding tetrameric trimethylplatinum(IV) bromide with disordered toluene solvent, see: Massa et al. (1988).

For related literature, see: Cowan et al. (1968); Donath et al. (1998); Preston et al. (1968); Spiro et al. (1968).

Experimental top

To a solution of µ-[(1,2,5,6-η:3,4,7,8-η)-1,3,5,7-cyclooctatetraene]bis[dimethylplatinum(II)] (0.0965 g, 0.174 mmol) in CH2Cl2 (40 ml) and MeOH (5 ml) was added hydrobromic acid (48%; 0.0876 g, 0.519 mmol) and stirred for 4 h at room temparature. The solvent was removed in vacuo, the residue was washed with pentane, and dried, to give a dark yellow powder (0.0692 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms, with C—H = 0.97 Å and with Uiso(H) = 1.5Ueq(C).

Structure description top

Trimethylplatinum(IV) halides, hydroxide and pseudohalides reveal structures of cubane-like clusters with the tetrameric unit, [{Pt(CH3)3L}4] (L = F, Cl, Br, I, OH, N3 etc.), and the tetrameric units show approximately -43m symmetry. F (Donath et al., 1998), Cl (Rundle & Sturdivant, 1947) and OH clusters (Cowan et al., 1968; Spiro et al., 1968; Preston et al., 1968; Donath et al., 1998) are isostructural and crystallize in the cubic achiral space group I -43m. The N3 cluster (Atam & Müller, 1974) crystallizes in the trigonal space group P -3c1. The crystal structure of trimethylplatinum(IV) bromide with toluene solvent was previously reported (Massa et al., 1988), which crystallizes in the lower symmetric monoclinic space group C 2/m. This can be explained by hydrophobic interactions or packing effects of the structure.

The title complex shows a distorted cubane-type structure of the tetrameric [{Pt(CH3)3Br}4] unit (Fig. 1), and is disposed about a mirror plane passing through atoms Pt1, Pt2, Br1, Br2, and two methyl groups C1 and C3, parallel to the a,c plane of the unit cell, which coincide with the crystallographic mirror plane m of space group C 2/m (Fig. 2). Each Pt4+ ion is coordinated by three methyl groups and three µ3-Br atoms, and the coordination geometry around respective Pt centre is distorted octahedral. Mean interatomic distances: Pt—Br 2.693 Å, Pt—C 2.028 Å, Pt···Pt 3.933 Å, Br···Br 3.668 Å. Mean bond angles: Br—Pt—Br 86.0°, Pt—Br—Pt 94.1°.

For historical background, see: Rundle & Sturdivant (1947); Atam & Müller (1974). For the corresponding tetrameric trimethylplatinum(IV) bromide with disordered toluene solvent, see: Massa et al. (1988).

For related literature, see: Cowan et al. (1968); Donath et al. (1998); Preston et al. (1968); Spiro et al. (1968).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. H atoms are omitted.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound.
Tetra-µ3-bromido-tetrakis[trimethylplatinum(IV)] top
Crystal data top
[Pt4Br4(CH3)12]F(000) = 2240
Mr = 1280.41Dx = 3.428 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2875 reflections
a = 13.8146 (12) Åθ = 2.5–26.4°
b = 14.0793 (12) ŵ = 28.92 mm1
c = 12.8194 (11) ÅT = 243 K
β = 95.681 (2)°Prism, yellow
V = 2481.1 (4) Å30.15 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2655 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1117
Tmin = 0.053, Tmax = 0.099k = 1717
7252 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
2655 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 1.86 e Å3
Crystal data top
[Pt4Br4(CH3)12]V = 2481.1 (4) Å3
Mr = 1280.41Z = 4
Monoclinic, C2/mMo Kα radiation
a = 13.8146 (12) ŵ = 28.92 mm1
b = 14.0793 (12) ÅT = 243 K
c = 12.8194 (11) Å0.15 × 0.10 × 0.08 mm
β = 95.681 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2189 reflections with I > 2σ(I)
Tmin = 0.053, Tmax = 0.099Rint = 0.035
7252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 0.98Δρmax = 1.37 e Å3
2655 reflectionsΔρmin = 1.86 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.26473 (3)0.50000.04527 (4)0.03258 (14)
Pt20.19786 (4)0.50000.33920 (4)0.03475 (14)
Pt30.42659 (2)0.36035 (2)0.26219 (3)0.03335 (12)
Br10.45060 (8)0.50000.12802 (9)0.0289 (3)
Br20.38834 (9)0.50000.39601 (10)0.0345 (3)
Br30.23514 (6)0.36904 (5)0.19303 (7)0.0321 (2)
C10.1250 (9)0.50000.0110 (14)0.067 (5)
H1A0.12000.50000.08700.100*
H1B0.09350.55630.01330.100*
C20.2882 (7)0.3993 (7)0.0637 (8)0.051 (3)
H2A0.35630.38150.05640.077*
H2B0.27070.42460.13340.077*
H2C0.24860.34390.05300.077*
C30.0533 (8)0.50000.2947 (11)0.045 (3)
H3A0.01800.50000.35640.067*
H3B0.03640.44370.25320.067*
C40.1728 (8)0.4010 (7)0.4491 (8)0.056 (3)
H4A0.17980.33790.42030.084*
H4B0.10730.40870.46900.084*
H4C0.21920.40920.51020.084*
C50.4531 (7)0.2591 (6)0.1556 (8)0.051 (3)
H5A0.46890.28920.09140.076*
H5B0.39570.21970.14080.076*
H5C0.50720.21990.18360.076*
C60.4019 (8)0.2560 (7)0.3638 (8)0.054 (3)
H6A0.38570.28360.42920.081*
H6B0.45980.21710.37690.081*
H6C0.34820.21680.33420.081*
C70.5703 (7)0.3580 (7)0.3175 (9)0.055 (3)
H7A0.58170.40260.37510.082*
H7B0.60940.37560.26180.082*
H7C0.58800.29450.34200.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0258 (3)0.0422 (3)0.0296 (3)0.0000.0016 (2)0.000
Pt20.0380 (3)0.0323 (2)0.0361 (3)0.0000.0144 (2)0.000
Pt30.0380 (2)0.03095 (18)0.0316 (2)0.00585 (14)0.00579 (16)0.00379 (14)
Br10.0270 (6)0.0359 (6)0.0242 (6)0.0000.0049 (5)0.000
Br20.0397 (7)0.0398 (6)0.0237 (6)0.0000.0027 (5)0.000
Br30.0328 (5)0.0284 (4)0.0363 (5)0.0031 (3)0.0093 (4)0.0019 (3)
C10.026 (7)0.087 (11)0.081 (13)0.0000.021 (8)0.000
C20.045 (6)0.066 (6)0.040 (6)0.004 (5)0.005 (5)0.011 (5)
C30.028 (7)0.050 (8)0.059 (10)0.0000.015 (7)0.000
C40.076 (8)0.051 (6)0.043 (7)0.012 (5)0.023 (6)0.011 (5)
C50.059 (7)0.039 (5)0.055 (7)0.008 (5)0.008 (5)0.001 (5)
C60.065 (7)0.050 (6)0.050 (7)0.001 (5)0.011 (5)0.024 (5)
C70.049 (7)0.061 (7)0.053 (7)0.017 (5)0.003 (5)0.001 (5)
Geometric parameters (Å, º) top
Pt1—C11.993 (13)C1—H1A0.9700
Pt1—C22.038 (9)C1—H1B0.9700
Pt1—C2i2.038 (9)C2—H2A0.9700
Pt1—Br12.6794 (12)C2—H2B0.9700
Pt1—Br3i2.7034 (9)C2—H2C0.9700
Pt1—Br32.7034 (9)C3—H3A0.9700
Pt2—C32.021 (12)C3—H3B0.9700
Pt2—C4i2.035 (9)C4—H4A0.9700
Pt2—C42.035 (9)C4—H4B0.9700
Pt2—Br22.6599 (13)C4—H4C0.9700
Pt2—Br32.7143 (9)C5—H5A0.9700
Pt2—Br3i2.7143 (9)C5—H5B0.9700
Pt3—C62.015 (8)C5—H5C0.9700
Pt3—C52.034 (9)C6—H6A0.9700
Pt3—C72.041 (10)C6—H6B0.9700
Pt3—Br12.6546 (8)C6—H6C0.9700
Pt3—Br22.6958 (9)C7—H7A0.9700
Pt3—Br32.7076 (9)C7—H7B0.9700
Br1—Pt3i2.6546 (8)C7—H7C0.9700
Br2—Pt3i2.6958 (9)
C1—Pt1—C288.1 (5)Pt3i—Br1—Pt395.58 (4)
C1—Pt1—C2i88.1 (5)Pt3i—Br1—Pt194.60 (3)
C2—Pt1—C2i88.1 (6)Pt3—Br1—Pt194.60 (3)
C1—Pt1—Br1177.9 (5)Pt2—Br2—Pt3i94.40 (3)
C2—Pt1—Br193.4 (3)Pt2—Br2—Pt394.40 (3)
C2i—Pt1—Br193.4 (3)Pt3i—Br2—Pt393.66 (4)
C1—Pt1—Br3i92.6 (4)Pt1—Br3—Pt392.85 (3)
C2—Pt1—Br3i178.8 (3)Pt1—Br3—Pt294.16 (3)
C2i—Pt1—Br3i92.9 (3)Pt3—Br3—Pt292.90 (3)
Br1—Pt1—Br3i85.87 (3)Pt1—C1—H1A109.5
C1—Pt1—Br392.6 (4)Pt1—C1—H1B109.5
C2—Pt1—Br392.9 (3)H1A—C1—H1B109.5
C2i—Pt1—Br3178.8 (3)Pt1—C2—H2A109.5
Br1—Pt1—Br385.87 (3)Pt1—C2—H2B109.5
Br3i—Pt1—Br386.01 (4)H2A—C2—H2B109.5
C3—Pt2—C4i87.9 (4)Pt1—C2—H2C109.5
C3—Pt2—C487.9 (4)H2A—C2—H2C109.5
C4i—Pt2—C486.4 (6)H2B—C2—H2C109.5
C3—Pt2—Br2179.5 (4)Pt2—C3—H3A109.5
C4i—Pt2—Br292.4 (3)Pt2—C3—H3B109.5
C4—Pt2—Br292.4 (3)H3A—C3—H3B109.5
C3—Pt2—Br393.1 (3)Pt2—C4—H4A109.5
C4i—Pt2—Br3178.9 (3)Pt2—C4—H4B109.5
C4—Pt2—Br394.0 (3)H4A—C4—H4B109.5
Br2—Pt2—Br386.49 (3)Pt2—C4—H4C109.5
C3—Pt2—Br3i93.1 (3)H4A—C4—H4C109.5
C4i—Pt2—Br3i94.0 (3)H4B—C4—H4C109.5
C4—Pt2—Br3i178.9 (3)Pt3—C5—H5A109.5
Br2—Pt2—Br3i86.49 (3)Pt3—C5—H5B109.5
Br3—Pt2—Br3i85.58 (4)H5A—C5—H5B109.5
C6—Pt3—C588.6 (4)Pt3—C5—H5C109.5
C6—Pt3—C789.1 (4)H5A—C5—H5C109.5
C5—Pt3—C789.4 (4)H5B—C5—H5C109.5
C6—Pt3—Br1177.4 (3)Pt3—C6—H6A109.5
C5—Pt3—Br192.4 (3)Pt3—C6—H6B109.5
C7—Pt3—Br193.3 (3)H6A—C6—H6B109.5
C6—Pt3—Br293.7 (3)Pt3—C6—H6C109.5
C5—Pt3—Br2177.3 (3)H6A—C6—H6C109.5
C7—Pt3—Br292.1 (3)H6B—C6—H6C109.5
Br1—Pt3—Br285.24 (3)Pt3—C7—H7A109.5
C6—Pt3—Br391.3 (3)Pt3—C7—H7B109.5
C5—Pt3—Br392.7 (3)H7A—C7—H7B109.5
C7—Pt3—Br3178.0 (3)Pt3—C7—H7C109.5
Br1—Pt3—Br386.28 (3)H7A—C7—H7C109.5
Br2—Pt3—Br385.92 (3)H7B—C7—H7C109.5
C5—Pt3—Br1—Pt3i177.2 (3)C6—Pt3—Br2—Pt3i178.4 (3)
C7—Pt3—Br1—Pt3i87.7 (3)C7—Pt3—Br2—Pt3i89.2 (3)
Br2—Pt3—Br1—Pt3i4.04 (4)Br1—Pt3—Br2—Pt3i3.97 (4)
Br3—Pt3—Br1—Pt3i90.25 (3)Br3—Pt3—Br2—Pt3i90.57 (3)
C5—Pt3—Br1—Pt187.7 (3)C1—Pt1—Br3—Pt3176.7 (4)
C7—Pt3—Br1—Pt1177.2 (3)C2—Pt1—Br3—Pt388.5 (3)
Br2—Pt3—Br1—Pt191.04 (3)Br1—Pt1—Br3—Pt34.74 (2)
Br3—Pt3—Br1—Pt14.84 (3)Br3i—Pt1—Br3—Pt390.88 (3)
C2—Pt1—Br1—Pt3i176.2 (3)C1—Pt1—Br3—Pt290.2 (4)
C2i—Pt1—Br1—Pt3i87.8 (3)C2—Pt1—Br3—Pt2178.4 (3)
Br3i—Pt1—Br1—Pt3i4.85 (3)Br1—Pt1—Br3—Pt288.37 (3)
Br3—Pt1—Br1—Pt3i91.14 (3)Br3i—Pt1—Br3—Pt22.23 (4)
C2—Pt1—Br1—Pt387.8 (3)C6—Pt3—Br3—Pt1176.1 (3)
C2i—Pt1—Br1—Pt3176.2 (3)C5—Pt3—Br3—Pt187.4 (3)
Br3i—Pt1—Br1—Pt391.14 (3)Br1—Pt3—Br3—Pt14.79 (3)
Br3—Pt1—Br1—Pt34.85 (3)Br2—Pt3—Br3—Pt190.27 (3)
C4i—Pt2—Br2—Pt3i89.7 (3)C6—Pt3—Br3—Pt289.6 (3)
C4—Pt2—Br2—Pt3i176.3 (3)C5—Pt3—Br3—Pt2178.2 (3)
Br3—Pt2—Br2—Pt3i89.90 (3)Br1—Pt3—Br3—Pt289.53 (3)
Br3i—Pt2—Br2—Pt3i4.12 (3)Br2—Pt3—Br3—Pt24.04 (3)
C4i—Pt2—Br2—Pt3176.3 (3)C3—Pt2—Br3—Pt190.7 (3)
C4—Pt2—Br2—Pt389.7 (3)C4—Pt2—Br3—Pt1178.8 (3)
Br3—Pt2—Br2—Pt34.12 (3)Br2—Pt2—Br3—Pt188.97 (3)
Br3i—Pt2—Br2—Pt389.90 (3)Br3i—Pt2—Br3—Pt12.23 (4)
C6—Pt3—Br2—Pt286.9 (3)C3—Pt2—Br3—Pt3176.2 (3)
C7—Pt3—Br2—Pt2176.1 (3)C4—Pt2—Br3—Pt388.1 (3)
Br1—Pt3—Br2—Pt290.73 (3)Br2—Pt2—Br3—Pt34.10 (3)
Br3—Pt3—Br2—Pt24.13 (3)Br3i—Pt2—Br3—Pt390.84 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pt4Br4(CH3)12]
Mr1280.41
Crystal system, space groupMonoclinic, C2/m
Temperature (K)243
a, b, c (Å)13.8146 (12), 14.0793 (12), 12.8194 (11)
β (°) 95.681 (2)
V3)2481.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)28.92
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.053, 0.099
No. of measured, independent and
observed [I > 2σ(I)] reflections
7252, 2655, 2189
Rint0.035
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 0.98
No. of reflections2655
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.86

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds