Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C18H23NO5, is a potential potent new herbicide containing the pyrrolidine-2,4-dione ring system. In the crystalline state, the mol­ecular skeleton contains one enol grouping, which is intra­molecularly hydrogen bonded to a neighbouring keto O atom. The dihedral angle between the six-membered ring formed by the enol group and the benzene ring is 41.29 (10)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030759/si2023sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030759/si2023Isup2.hkl
Contains datablock I

CCDC reference: 657671

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.052
  • wR factor = 0.155
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.65 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Many compounds containing the 3-acylpyrrolidine-2,4-dione system belong to heterocycles with antibiotic activity, such as tenuazonic acid (Stickings, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (MacKellar et al., 1971), malonomycin (Van Der Baan et al., 1978), α-cyclopiazonic acid (Stickings, 1959; van Rooyen et al., 1992) and β- cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid grouping as a tricarbonylmethane fragment. Most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu, Hu & Yang et al., 2004). In order to develop new herbicides, we synthesized the title compound. The molecular structure of the title compound is shown in Fig. 1. Atom H3, involved in intramolecular hydrogen bonding between atoms O3 and O4, was assigned to O3 rather than to O4. The C15=O4 distance is 1.264 (2) Å, which is longer than the normal carbonyl bond length (C13=O1) of 1.227 (3) Å. In contrast, the C11=O3 distance [1.320 (2) Å] is intermediate between a normal carbonyl C=O double bond and a C—O single-bond length (Allen et al., 1987) (Table 1). A similar situation was reported for 3-(1- hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione (Ellis & Spek, 2001), 1-benzyl-3-(α-hydroxybenzylidene)pyrrolidine- 2,4-dione, (I) (Zhu, Song, Li et al., 2004), 1-tert-butyl-3- (α-hydroxy-4-isopropylbenzylidene)pyrrolidine-2,4-dione, (II) (Xu, 2005), and 3-(α-hydroxyl-2-methoxylbenzylidene)-1- isopropylpyrrolidine-2,4-dione, (III) (Zhu, Song, Yao et al., 2004). The dihedral angle formed by the enol ring A with the benzene ring is 41.29 (10) °, which is larger than the dihedral angles for (I), (II) (10 and 21 °, respectively) and smaller than the dihedral angle for (III) (53 °). The crystal structure of the title compound also involves two weak intramolecular C—H···O hydrogenbonding interactions (Table 2).

Related literature top

For related literature, see: Allen et al. (1987); Ellis & Spek (2001); Holzapfel et al. (1970); MacKellar et al. (1971); Matsuo et al. (1980); Rinehart et al. (1963); van Rooyen et al. (1992); Stickings (1959); Xu (2005); Zhu, Hu & Yang (2004); Zhu, Song, Li et al. (2004); Zhu, Song, Yao et al. (2004); Van Der Baan et al. (1978).

Experimental top

The title compound was obtained according to the procedure reported by Matsuo et al. (1980). Colourless single crystals of the title compound were obtained by recrystallization of 1-isopropyl-3-(α-hydroxy-2,4-diethoxylbenzylidene) pyrrolidine-2,4-dione from petroleum ether and ethyl acetate (1:3).

Refinement top

The hydroxyl H atom (O3)H3 was was found in a difference map and the coordinates were fixed. The other H atoms were placed in calculated positions, with C—H=0.93–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H)=1.2Ueq(C).

Structure description top

Many compounds containing the 3-acylpyrrolidine-2,4-dione system belong to heterocycles with antibiotic activity, such as tenuazonic acid (Stickings, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (MacKellar et al., 1971), malonomycin (Van Der Baan et al., 1978), α-cyclopiazonic acid (Stickings, 1959; van Rooyen et al., 1992) and β- cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid grouping as a tricarbonylmethane fragment. Most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu, Hu & Yang et al., 2004). In order to develop new herbicides, we synthesized the title compound. The molecular structure of the title compound is shown in Fig. 1. Atom H3, involved in intramolecular hydrogen bonding between atoms O3 and O4, was assigned to O3 rather than to O4. The C15=O4 distance is 1.264 (2) Å, which is longer than the normal carbonyl bond length (C13=O1) of 1.227 (3) Å. In contrast, the C11=O3 distance [1.320 (2) Å] is intermediate between a normal carbonyl C=O double bond and a C—O single-bond length (Allen et al., 1987) (Table 1). A similar situation was reported for 3-(1- hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione (Ellis & Spek, 2001), 1-benzyl-3-(α-hydroxybenzylidene)pyrrolidine- 2,4-dione, (I) (Zhu, Song, Li et al., 2004), 1-tert-butyl-3- (α-hydroxy-4-isopropylbenzylidene)pyrrolidine-2,4-dione, (II) (Xu, 2005), and 3-(α-hydroxyl-2-methoxylbenzylidene)-1- isopropylpyrrolidine-2,4-dione, (III) (Zhu, Song, Yao et al., 2004). The dihedral angle formed by the enol ring A with the benzene ring is 41.29 (10) °, which is larger than the dihedral angles for (I), (II) (10 and 21 °, respectively) and smaller than the dihedral angle for (III) (53 °). The crystal structure of the title compound also involves two weak intramolecular C—H···O hydrogenbonding interactions (Table 2).

For related literature, see: Allen et al. (1987); Ellis & Spek (2001); Holzapfel et al. (1970); MacKellar et al. (1971); Matsuo et al. (1980); Rinehart et al. (1963); van Rooyen et al. (1992); Stickings (1959); Xu (2005); Zhu, Hu & Yang (2004); Zhu, Song, Li et al. (2004); Zhu, Song, Yao et al. (2004); Van Der Baan et al. (1978).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the title compound with 30% probability ellipsoid.
3-[(2,4-Diethoxyphenyl)(hydroxy)methylene]-1-isopropylpyrrolidine-2,4-dione top
Crystal data top
C18H23NO5F(000) = 712
Mr = 333.37Dx = 1.252 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2383 reflections
a = 13.513 (7) Åθ = 2.8–23.7°
b = 8.135 (4) ŵ = 0.09 mm1
c = 16.312 (8) ÅT = 294 K
β = 99.518 (9)°Prism, colorless
V = 1768.5 (15) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3612 independent reflections
Radiation source: fine-focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 916
Tmin = 0.975, Tmax = 0.982k = 108
9501 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.2597P]
where P = (Fo2 + 2Fc2)/3
3612 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H23NO5V = 1768.5 (15) Å3
Mr = 333.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.513 (7) ŵ = 0.09 mm1
b = 8.135 (4) ÅT = 294 K
c = 16.312 (8) Å0.28 × 0.24 × 0.20 mm
β = 99.518 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2072 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.052
9501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
3612 reflectionsΔρmin = 0.21 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71221 (12)0.20692 (19)0.38809 (10)0.0520 (5)
O20.96831 (12)0.2405 (2)0.21363 (10)0.0562 (5)
O30.78362 (14)0.06279 (19)0.53402 (10)0.0586 (5)
H30.76910.01170.57370.088*
O40.76454 (13)0.16486 (19)0.63361 (10)0.0558 (5)
O50.88238 (16)0.3662 (2)0.39616 (10)0.0679 (6)
N10.81988 (15)0.4165 (2)0.59623 (11)0.0468 (5)
C10.85415 (16)0.0350 (3)0.41169 (12)0.0375 (5)
C20.80068 (16)0.1612 (3)0.36515 (13)0.0390 (5)
C30.83646 (17)0.2313 (3)0.29811 (13)0.0432 (6)
H3A0.79960.31260.26660.052*
C40.92752 (17)0.1795 (3)0.27832 (13)0.0415 (5)
C50.98245 (17)0.0563 (3)0.32420 (13)0.0435 (6)
H51.04370.02210.31120.052*
C60.94493 (16)0.0141 (3)0.38891 (13)0.0414 (5)
H60.98130.09780.41890.050*
C70.65284 (19)0.3318 (3)0.34169 (16)0.0567 (7)
H7A0.69180.43150.34000.068*
H7B0.62990.29520.28510.068*
C80.5653 (2)0.3624 (4)0.38525 (19)0.0799 (10)
H8A0.58910.40070.44070.120*
H8B0.52230.44400.35540.120*
H8C0.52840.26220.38760.120*
C90.9102 (2)0.3523 (3)0.15804 (17)0.0652 (8)
H9A0.84440.30630.13810.078*
H9B0.90180.45510.18620.078*
C100.9652 (3)0.3810 (4)0.08683 (19)0.0993 (12)
H10A0.96950.27980.05740.149*
H10B0.92970.46110.04990.149*
H10C1.03150.42060.10750.149*
C110.82072 (16)0.0394 (3)0.48406 (13)0.0397 (5)
C120.82908 (16)0.2029 (3)0.50607 (12)0.0383 (5)
C130.85927 (18)0.3479 (3)0.46522 (14)0.0468 (6)
C140.8572 (2)0.4900 (3)0.52583 (14)0.0521 (6)
H14A0.92380.53520.54280.062*
H14B0.81280.57660.50100.062*
C150.80136 (16)0.2574 (3)0.58414 (13)0.0416 (6)
C160.79723 (19)0.5096 (3)0.66811 (14)0.0510 (6)
H160.79150.43130.71270.061*
C170.8813 (2)0.6273 (4)0.69922 (18)0.0773 (9)
H17A0.94330.56770.71160.116*
H17B0.86770.68090.74860.116*
H17C0.88630.70810.65720.116*
C180.6977 (2)0.5972 (4)0.64567 (19)0.0783 (9)
H18A0.70120.67320.60120.118*
H18B0.68290.65580.69330.118*
H18C0.64570.51810.62820.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0456 (9)0.0513 (10)0.0616 (10)0.0146 (8)0.0164 (8)0.0173 (8)
O20.0573 (10)0.0580 (11)0.0573 (10)0.0122 (9)0.0220 (9)0.0213 (8)
O30.0876 (13)0.0431 (10)0.0493 (10)0.0178 (10)0.0238 (10)0.0030 (8)
O40.0748 (12)0.0498 (10)0.0489 (9)0.0123 (9)0.0276 (9)0.0002 (8)
O50.1104 (16)0.0489 (11)0.0530 (11)0.0001 (10)0.0384 (11)0.0057 (8)
N10.0619 (13)0.0400 (11)0.0428 (11)0.0033 (10)0.0213 (10)0.0041 (9)
C10.0396 (12)0.0346 (12)0.0370 (12)0.0010 (10)0.0027 (10)0.0004 (9)
C20.0370 (12)0.0358 (12)0.0439 (12)0.0028 (10)0.0056 (10)0.0020 (10)
C30.0450 (13)0.0390 (13)0.0447 (13)0.0064 (11)0.0048 (10)0.0084 (10)
C40.0464 (13)0.0398 (13)0.0385 (12)0.0009 (11)0.0075 (10)0.0036 (10)
C50.0395 (12)0.0457 (14)0.0448 (13)0.0032 (11)0.0057 (10)0.0027 (11)
C60.0434 (13)0.0379 (12)0.0408 (12)0.0053 (10)0.0012 (10)0.0038 (10)
C70.0503 (14)0.0570 (16)0.0634 (16)0.0183 (13)0.0112 (13)0.0172 (13)
C80.0602 (18)0.091 (2)0.094 (2)0.0343 (17)0.0280 (17)0.0295 (18)
C90.0723 (18)0.0656 (18)0.0611 (16)0.0120 (15)0.0208 (14)0.0276 (14)
C100.116 (3)0.108 (3)0.086 (2)0.037 (2)0.052 (2)0.053 (2)
C110.0410 (12)0.0398 (13)0.0376 (12)0.0057 (10)0.0047 (10)0.0028 (10)
C120.0418 (12)0.0383 (12)0.0350 (11)0.0009 (10)0.0068 (10)0.0004 (9)
C130.0560 (15)0.0431 (13)0.0438 (13)0.0018 (12)0.0155 (11)0.0014 (11)
C140.0705 (17)0.0396 (14)0.0508 (14)0.0038 (12)0.0237 (13)0.0017 (11)
C150.0445 (13)0.0407 (14)0.0402 (12)0.0008 (11)0.0082 (10)0.0005 (10)
C160.0675 (17)0.0460 (14)0.0444 (13)0.0033 (13)0.0236 (13)0.0085 (11)
C170.0680 (19)0.095 (2)0.0686 (18)0.0088 (17)0.0092 (15)0.0351 (17)
C180.0592 (17)0.095 (2)0.087 (2)0.0036 (17)0.0316 (16)0.0250 (18)
Geometric parameters (Å, º) top
O1—C21.362 (3)C8—H8A0.96
O1—C71.431 (3)C8—H8B0.96
O2—C41.362 (3)C8—H8C0.96
O2—C91.425 (3)C9—C101.497 (4)
O3—C111.320 (2)C9—H9A0.97
O3—H30.82C9—H9B0.97
O4—C151.264 (2)C10—H10A0.96
O5—C131.227 (3)C10—H10B0.96
N1—C151.327 (3)C10—H10C0.96
N1—C141.456 (3)C11—C121.378 (3)
N1—C161.470 (3)C12—C131.446 (3)
C1—C61.397 (3)C12—C151.455 (3)
C1—C21.404 (3)C13—C141.524 (3)
C1—C111.463 (3)C14—H14A0.97
C2—C31.389 (3)C14—H14B0.97
C3—C41.388 (3)C16—C171.508 (4)
C3—H3A0.93C16—C181.513 (4)
C4—C51.390 (3)C16—H160.98
C5—C61.370 (3)C17—H17A0.96
C5—H50.93C17—H17B0.96
C6—H60.93C17—H17C0.96
C7—C81.498 (3)C18—H18A0.96
C7—H7A0.97C18—H18B0.96
C7—H7B0.97C18—H18C0.96
C2—O1—C7119.30 (17)C9—C10—H10A109.5
C4—O2—C9118.34 (18)C9—C10—H10B109.5
C11—O3—H3109.5H10A—C10—H10B109.5
C15—N1—C14111.37 (17)C9—C10—H10C109.5
C15—N1—C16124.19 (18)H10A—C10—H10C109.5
C14—N1—C16124.24 (19)H10B—C10—H10C109.5
C6—C1—C2117.45 (19)O3—C11—C12118.06 (19)
C6—C1—C11119.89 (19)O3—C11—C1115.94 (19)
C2—C1—C11122.59 (19)C12—C11—C1125.92 (19)
O1—C2—C3122.64 (19)C11—C12—C13133.2 (2)
O1—C2—C1116.61 (18)C11—C12—C15120.02 (19)
C3—C2—C1120.7 (2)C13—C12—C15106.74 (19)
C4—C3—C2119.7 (2)O5—C13—C12131.0 (2)
C4—C3—H3A120.1O5—C13—C14122.6 (2)
C2—C3—H3A120.1C12—C13—C14106.41 (18)
O2—C4—C3123.9 (2)N1—C14—C13104.27 (18)
O2—C4—C5115.5 (2)N1—C14—H14A110.9
C3—C4—C5120.6 (2)C13—C14—H14A110.9
C6—C5—C4118.9 (2)N1—C14—H14B110.9
C6—C5—H5120.5C13—C14—H14B110.9
C4—C5—H5120.5H14A—C14—H14B108.9
C5—C6—C1122.6 (2)O4—C15—N1124.8 (2)
C5—C6—H6118.7O4—C15—C12124.3 (2)
C1—C6—H6118.7N1—C15—C12110.95 (19)
O1—C7—C8106.6 (2)N1—C16—C17110.5 (2)
O1—C7—H7A110.4N1—C16—C18110.1 (2)
C8—C7—H7A110.4C17—C16—C18111.9 (2)
O1—C7—H7B110.4N1—C16—H16108.1
C8—C7—H7B110.4C17—C16—H16108.1
H7A—C7—H7B108.6C18—C16—H16108.1
C7—C8—H8A109.5C16—C17—H17A109.5
C7—C8—H8B109.5C16—C17—H17B109.5
H8A—C8—H8B109.5H17A—C17—H17B109.5
C7—C8—H8C109.5C16—C17—H17C109.5
H8A—C8—H8C109.5H17A—C17—H17C109.5
H8B—C8—H8C109.5H17B—C17—H17C109.5
O2—C9—C10107.6 (2)C16—C18—H18A109.5
O2—C9—H9A110.2C16—C18—H18B109.5
C10—C9—H9A110.2H18A—C18—H18B109.5
O2—C9—H9B110.2C16—C18—H18C109.5
C10—C9—H9B110.2H18A—C18—H18C109.5
H9A—C9—H9B108.5H18B—C18—H18C109.5
C7—O1—C2—C30.2 (3)C1—C11—C12—C138.0 (4)
C7—O1—C2—C1178.3 (2)O3—C11—C12—C152.6 (3)
C6—C1—C2—O1179.79 (19)C1—C11—C12—C15174.09 (19)
C11—C1—C2—O13.1 (3)C11—C12—C13—O53.6 (5)
C6—C1—C2—C31.3 (3)C15—C12—C13—O5174.5 (3)
C11—C1—C2—C3178.3 (2)C11—C12—C13—C14177.0 (2)
O1—C2—C3—C4179.7 (2)C15—C12—C13—C144.8 (2)
C1—C2—C3—C41.9 (3)C15—N1—C14—C130.1 (3)
C9—O2—C4—C36.3 (3)C16—N1—C14—C13174.9 (2)
C9—O2—C4—C5172.4 (2)O5—C13—C14—N1176.3 (2)
C2—C3—C4—O2179.7 (2)C12—C13—C14—N13.1 (3)
C2—C3—C4—C51.0 (3)C14—N1—C15—O4176.9 (2)
O2—C4—C5—C6178.33 (19)C16—N1—C15—O41.9 (4)
C3—C4—C5—C60.4 (3)C14—N1—C15—C123.0 (3)
C4—C5—C6—C11.1 (3)C16—N1—C15—C12178.0 (2)
C2—C1—C6—C50.2 (3)C11—C12—C15—O43.5 (3)
C11—C1—C6—C5176.9 (2)C13—C12—C15—O4174.9 (2)
C2—O1—C7—C8176.1 (2)C11—C12—C15—N1176.5 (2)
C4—O2—C9—C10172.0 (2)C13—C12—C15—N15.1 (2)
C6—C1—C11—O3136.5 (2)C15—N1—C16—C17139.1 (2)
C2—C1—C11—O340.5 (3)C14—N1—C16—C1746.6 (3)
C6—C1—C11—C1240.2 (3)C15—N1—C16—C1896.8 (3)
C2—C1—C11—C12142.8 (2)C14—N1—C16—C1877.5 (3)
O3—C11—C12—C13175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.742.505 (2)154
C6—H6···O50.932.562.994 (3)109
C16—H16···O40.982.522.880 (3)102

Experimental details

Crystal data
Chemical formulaC18H23NO5
Mr333.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)13.513 (7), 8.135 (4), 16.312 (8)
β (°) 99.518 (9)
V3)1768.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
9501, 3612, 2072
Rint0.052
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.156, 1.00
No. of reflections3612
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.742.505 (2)153.5
C6—H6···O50.932.562.994 (3)109
C16—H16···O40.982.522.880 (3)102
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds