Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu3(C9H23N3)3(C3N3S3)](ClO4)3, the three CuII centres, related by the body-diagonal threefold rotation symmetry along [111], are bridged by a trithio­cyanurate(3−) anion (ttc), with each centre having a considerably distorted trigonal–bipyramidal geometry and bonded to three N atoms of a tridentate N,N,N′,N′′,N′′-penta­methyl­diethylenetriamine ligand, and one S and one N atoms of the ttc ligand. The secondary structure is stabilized by a variety of weak hydrogen bonds of the type C—H...O (H...A < 2.7 Å) connecting the cation and perchlorate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024026/si2015sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024026/si2015Isup2.hkl
Contains datablock I

CCDC reference: 651358

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.007 Å
  • Disorder in main residue
  • R factor = 0.034
  • wR factor = 0.072
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl3 PLAT301_ALERT_3_C Main Residue Disorder ......................... 24.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT432_ALERT_2_C Short Inter X...Y Contact O6 .. C10 .. 2.98 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O6 .. C10 .. 2.98 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O6 .. C10 .. 2.98 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5A .. O1 .. 2.84 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5A2 .. O1 .. 2.84 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H9A3 .. O1 .. 2.66 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H9A2 .. N1 .. 2.96 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10B .. N1 .. 2.81 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10D .. O1 .. 2.84 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5A2 .. O1 .. 2.84 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5A2 .. O1 .. 2.84 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H9A2 .. N1 .. 2.96 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H9A3 .. O1 .. 2.66 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6C .. O3 .. 2.76 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6B .. O4 .. 2.72 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6C .. O3 .. 2.76 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6B .. O4 .. 2.72 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6B .. N1 .. 2.83 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6C .. O3 .. 2.76 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2B .. O1 .. 2.84 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3B .. O1 .. 2.62 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. O2 .. 2.86 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. O2 .. 2.86 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. O2 .. 2.86 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H7C .. O5 .. 2.64 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H9A .. O5 .. 2.70 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H7C .. O5 .. 2.91 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H8C .. O3 .. 2.91 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H9C .. O1 .. 2.93 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10F .. O3 .. 2.96 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H8A .. O3 .. 2.69 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10B .. O6 .. 2.68 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10E .. O6 .. 2.82 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10B .. O6 .. 2.68 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10E .. O6 .. 2.82 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10B .. O6 .. 2.68 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10E .. O6 .. 2.82 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C10A .. O3 .. 3.82 Ang. PLAT482_ALERT_4_C Small D-H..A Angle Rep for C6 .. O3 .. 97.40 Deg. PLAT482_ALERT_4_C Small D-H..A Angle Rep for C6 .. O3 .. 97.40 Deg. PLAT482_ALERT_4_C Small D-H..A Angle Rep for C6 .. O3 .. 97.40 Deg. PLAT482_ALERT_4_C Small D-H..A Angle Rep for C10 .. O6 .. 98.50 Deg. PLAT482_ALERT_4_C Small D-H..A Angle Rep for C10 .. O6 .. 98.50 Deg. PLAT482_ALERT_4_C Small D-H..A Angle Rep for C10 .. O6 .. 98.50 Deg. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 63.00 A   3 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 7
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.04 From the CIF: _reflns_number_total 3461 Count of symmetry unique reflns 1906 Completeness (_total/calc) 181.58% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1555 Fraction of Friedel pairs measured 0.816 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 53
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 51 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 45 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

This paper relates to our preceeding contributions describing X-ray structures of transition metal complexes bearing variously deprotonated trithiocyanuric acid (ttcHn, n = 0–3) (see e.g. Marek et al., 2007).

The molecular structure of the title compound, (I), is depicted in Fig. 1. The structure consists of a trinuclear CuII cation and three perchlorate anions. The three CuII metal centres are related by the body-diagonal threefold symmetry along [111] and bridged by an essentially planar [out-of-plane (C3N3) deviation is -0.009 (4) Å for C1 atom and 0.006 (3) Å for N1 atom (Brandenburg, 2006)] trithiocyanurate(3-) anion (ttc). Each CuII ion adopts a considerably distorted trigonal bipyramidal geometry (τ = 0.62) (Addison et al., 1984) and is bonded by three N atoms of pmdien, and one S and one N atoms of the ttc ligand. For comparison, ZnII ions in similar recently published trinuclear Zn complex (II) (Marek et al., 2007) have τ=0.82. A different degree of the polyhedron deformation in (I) as compared to (II) can be also seen from the metal-S distances which differ significantly (Cu—S = 2.4824 (11) and Zn—S = 2.3793 (8) Å). The separation of Cu···Cu = 5.9235 (5) Å, while the distance of Zn···Zn = 6.0283 (5) Å in (II) and the Ru···Ru distances in a similar, but nonsymmetrical, trinuclear Ru complex bridged by the ttc (Kar et al., 2004) are in the range of 5.838 (3)—5.894 (2) Å. The bond distances Cu—N are in the range of 2.073 (3)—2.118 (3) Å. The bond length C1—S = 1.705 (4) Å in (I), while the average value of a double C=S bond is 1.655 (11) Å (Cambridge Structural Database Version 5.27.1; Allen, 2002).

Mutual orientation of dinuclear cations and perchlorate anions causes the formation of the spherical voids in the crystal structure of (I) (Fig. 2). These cavities are in the distance of 3.84 Å from S1, and their volume is 63 (6) Å3 (Spek, 2003). There is no evidence for presence of any molecules of the crystal water neither in peaks of difference electron density, nor in results of FT—IR spectroscopy (Kopel et al., 2007). The secondary structure of the title compound (I) is stabilized by variety of interactions of the type C—H···O, connecting the cation and perchlorate anions [see Fig. 3 and Table 1 with the list prepared by PARST(Nardelli, 1995) and cut-off value H···A=2.7 Å). These non classic hydrogen bonds (the term from Spek, 2003) could be probably classified as weak hydrogen bonds (using terminology of Desiraju, 1996).

Related literature top

For related literature, see: Kar et al. (2004); Marek et al. (2007).

For related literature, see: Addison et al. (1984); Allen (2002); Desiraju (1996); Kopel et al. (2007).

Experimental top

Crystals of (I) were prepared by a recently described method (Kopel et al., 2007). Safety note: Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive. Even a small amount of these materials should be handled with great caution.

Refinement top

The measurement of low-angle reflection (112) was affected by shielding by the beam stopper, therefore this reflection was removed from further calculations. A part of pmdien ligand (namely atoms C4, C5, N4, C9 and C10) has been refined as disordered between two positions [the site occupancy factors refined to 0.792 (6) and 0.208 (6)] defined by approx. 25–40° angular rotation of disordered fragment around the Cu—N4 bond. All H atoms were located in a difference map and refined using the riding model with C–H distances of 0.98 (Cmethyl) and 0.99 Å (CH2), and with Uiso(H) values of 1.2Ueq(CH2) or 1.5Ueq(Cmethyl).

Structure description top

This paper relates to our preceeding contributions describing X-ray structures of transition metal complexes bearing variously deprotonated trithiocyanuric acid (ttcHn, n = 0–3) (see e.g. Marek et al., 2007).

The molecular structure of the title compound, (I), is depicted in Fig. 1. The structure consists of a trinuclear CuII cation and three perchlorate anions. The three CuII metal centres are related by the body-diagonal threefold symmetry along [111] and bridged by an essentially planar [out-of-plane (C3N3) deviation is -0.009 (4) Å for C1 atom and 0.006 (3) Å for N1 atom (Brandenburg, 2006)] trithiocyanurate(3-) anion (ttc). Each CuII ion adopts a considerably distorted trigonal bipyramidal geometry (τ = 0.62) (Addison et al., 1984) and is bonded by three N atoms of pmdien, and one S and one N atoms of the ttc ligand. For comparison, ZnII ions in similar recently published trinuclear Zn complex (II) (Marek et al., 2007) have τ=0.82. A different degree of the polyhedron deformation in (I) as compared to (II) can be also seen from the metal-S distances which differ significantly (Cu—S = 2.4824 (11) and Zn—S = 2.3793 (8) Å). The separation of Cu···Cu = 5.9235 (5) Å, while the distance of Zn···Zn = 6.0283 (5) Å in (II) and the Ru···Ru distances in a similar, but nonsymmetrical, trinuclear Ru complex bridged by the ttc (Kar et al., 2004) are in the range of 5.838 (3)—5.894 (2) Å. The bond distances Cu—N are in the range of 2.073 (3)—2.118 (3) Å. The bond length C1—S = 1.705 (4) Å in (I), while the average value of a double C=S bond is 1.655 (11) Å (Cambridge Structural Database Version 5.27.1; Allen, 2002).

Mutual orientation of dinuclear cations and perchlorate anions causes the formation of the spherical voids in the crystal structure of (I) (Fig. 2). These cavities are in the distance of 3.84 Å from S1, and their volume is 63 (6) Å3 (Spek, 2003). There is no evidence for presence of any molecules of the crystal water neither in peaks of difference electron density, nor in results of FT—IR spectroscopy (Kopel et al., 2007). The secondary structure of the title compound (I) is stabilized by variety of interactions of the type C—H···O, connecting the cation and perchlorate anions [see Fig. 3 and Table 1 with the list prepared by PARST(Nardelli, 1995) and cut-off value H···A=2.7 Å). These non classic hydrogen bonds (the term from Spek, 2003) could be probably classified as weak hydrogen bonds (using terminology of Desiraju, 1996).

For related literature, see: Kar et al. (2004); Marek et al. (2007).

For related literature, see: Addison et al. (1984); Allen (2002); Desiraju (1996); Kopel et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: VMD 1.8.5 (Humphrey et al., 1996) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PARST (Nardelli, 1995) and DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound (I). The non-H atoms are drawn as 50% probability displacement ellipsoids. The major part of the disordered fragment of pmdien ligand is shown only for better clarity. The H-atoms have been omitted for clarity. [Symmetry codes: (i) 1 - y, 1/2 + z, 1/2 - x; (ii) 1/2 - z, 1 - x, -1/2 + y; (iii) 1/2 - y, 1 - z, 1/2 + x; (iv) -1/2 + z, 1/2 - x, 1 - y; (v) y, z, x; (vi) z, x y].
[Figure 2] Fig. 2. : Part of the crystal structure of (I), showing the formation of voids. The cavities generated by VMD 1.8.5 (Humphrey et al., 1996) and probe with radius 1.5 Å are demonstrated by mauve colour.
[Figure 3] Fig. 3. : Part of the crystal structure of (I), showing C—H···O non-bonding interactions as dashed lines. Minor disordered pmdien fragments and H atoms not involved in hydrogen bonding have been omitted for clarity.
3-Trithiocyanurato-κ6N1,S2:N3,S4: N5,S6)tris[(N,N,N',N'',\<i>N''- pentamethyldiethylenetriamine-κ3N,N',N'')copper(II)] tris(perchlorate) top
Crystal data top
[Cu3(C9H23N3)3(C3N3S3)](ClO4)3Dx = 1.502 Mg m3
Mr = 1183.12Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 29540 reflections
Hall symbol: P 2ac 2ab 3θ = 2.6–31.9°
a = 17.3590 (4) ŵ = 1.54 mm1
V = 5230.9 (2) Å3T = 120 K
Z = 4Prism, blue
F(000) = 24600.35 × 0.3 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur2 + CCD
diffractometer
3461 independent reflections
Radiation source: fine-focus sealed tube2802 reflections with I > 2σ(I)
Enhance (Oxford Diffraction) monochromatorRint = 0.095
Detector resolution: 8.3611 pixels mm-1θmax = 26.0°, θmin = 2.6°
rotation method, ω–scanh = 2121
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1421
Tmin = 0.568, Tmax = 0.680l = 2121
38778 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3460 reflectionsΔρmax = 0.41 e Å3
213 parametersΔρmin = 0.38 e Å3
53 restraintsAbsolute structure: Flack (1983), 1556 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.050 (15)
Crystal data top
[Cu3(C9H23N3)3(C3N3S3)](ClO4)3Z = 4
Mr = 1183.12Mo Kα radiation
Cubic, P213µ = 1.54 mm1
a = 17.3590 (4) ÅT = 120 K
V = 5230.9 (2) Å30.35 × 0.3 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur2 + CCD
diffractometer
3461 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2802 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 0.680Rint = 0.095
38778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.41 e Å3
S = 1.10Δρmin = 0.38 e Å3
3460 reflectionsAbsolute structure: Flack (1983), 1556 Friedel pairs
213 parametersAbsolute structure parameter: 0.050 (15)
53 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.19495 (2)0.58035 (2)0.52012 (2)0.01962 (11)
Cl10.06784 (5)0.93216 (5)0.43216 (5)0.0264 (4)
Cl20.20500 (5)0.29500 (5)0.70500 (5)0.0288 (4)
Cl30.15427 (6)0.15427 (6)0.15427 (6)0.0304 (4)
O10.02855 (15)0.86131 (14)0.41485 (18)0.0390 (7)
O20.02011 (16)0.97989 (16)0.47989 (16)0.0502 (14)
O30.26501 (16)0.34143 (16)0.73923 (16)0.0351 (7)
O40.15686 (15)0.34314 (15)0.65686 (15)0.0336 (11)
O50.17414 (18)0.11298 (17)0.22363 (16)0.0433 (8)
O60.10716 (18)0.10716 (18)0.10716 (18)0.0575 (16)
S0.18225 (6)0.46540 (5)0.43600 (6)0.0289 (2)
N10.10373 (16)0.50747 (17)0.55558 (17)0.0210 (7)
N20.26446 (17)0.57110 (19)0.61687 (17)0.0262 (7)
N30.28906 (19)0.63870 (18)0.47013 (18)0.0297 (8)
C10.1078 (2)0.4533 (2)0.4988 (2)0.0222 (8)
C20.3432 (2)0.5844 (3)0.5876 (3)0.0423 (11)
H2A0.36150.53750.56090.051*
H2B0.37820.59450.63140.051*
C30.3456 (2)0.6511 (3)0.5331 (2)0.0359 (10)
H3A0.33310.69930.56100.043*
H3B0.39800.65630.51120.043*
N40.1269 (4)0.6697 (5)0.4766 (4)0.0233 (11)0.792 (6)
C40.2575 (5)0.7153 (4)0.4453 (3)0.0280 (19)0.792 (6)
H4A0.29010.73690.40370.034*0.792 (6)
H4B0.25850.75160.48930.034*0.792 (6)
C50.1761 (3)0.7064 (3)0.4167 (3)0.0310 (13)0.792 (6)
H5A0.15480.75770.40340.037*0.792 (6)
H5B0.17580.67440.36950.037*0.792 (6)
C90.1072 (4)0.7230 (3)0.5388 (4)0.0352 (17)0.792 (6)
H9A0.15460.74390.56130.053*0.792 (6)
H9B0.07800.69560.57850.053*0.792 (6)
H9C0.07600.76530.51820.053*0.792 (6)
C100.0541 (3)0.6435 (3)0.4398 (3)0.0379 (15)0.792 (6)
H10A0.02920.68720.41420.057*0.792 (6)
H10B0.01960.62260.47920.057*0.792 (6)
H10C0.06560.60340.40170.057*0.792 (6)
N4A0.1346 (17)0.673 (2)0.4844 (15)0.0233 (11)0.208 (6)
C4A0.260 (2)0.7058 (18)0.4241 (18)0.0280 (19)0.208 (6)
H4A10.24290.68920.37220.034*0.208 (6)
H4A20.29970.74600.41860.034*0.208 (6)
C5A0.1920 (12)0.7356 (11)0.4703 (12)0.0310 (13)0.208 (6)
H5A10.21060.75590.52030.037*0.208 (6)
H5A20.16700.77830.44210.037*0.208 (6)
C9A0.0754 (16)0.7019 (16)0.5375 (17)0.0352 (17)0.208 (6)
H9A10.09870.71210.58790.053*0.208 (6)
H9A20.03480.66300.54320.053*0.208 (6)
H9A30.05320.74950.51700.053*0.208 (6)
C10A0.0956 (13)0.6583 (13)0.4096 (14)0.0379 (15)0.208 (6)
H10D0.07620.70690.38850.057*0.208 (6)
H10E0.05240.62280.41760.057*0.208 (6)
H10F0.13240.63540.37350.057*0.208 (6)
C60.2592 (3)0.4946 (3)0.6536 (3)0.0447 (12)
H6A0.26480.45450.61430.067*
H6B0.20900.48930.67880.067*
H6C0.30020.48930.69200.067*
C70.2447 (2)0.6301 (3)0.6766 (2)0.0417 (11)
H7A0.27950.62460.72070.063*
H7B0.19140.62260.69350.063*
H7C0.25030.68180.65450.063*
C80.3237 (3)0.5950 (2)0.4064 (2)0.0430 (11)
H8A0.28490.58580.36650.064*
H8B0.34290.54550.42570.064*
H8C0.36660.62450.38450.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0182 (2)0.0188 (2)0.0218 (2)0.00134 (19)0.00067 (19)0.0043 (2)
Cl10.0264 (4)0.0264 (4)0.0264 (4)0.0045 (4)0.0045 (4)0.0045 (4)
Cl20.0288 (4)0.0288 (4)0.0288 (4)0.0013 (4)0.0013 (4)0.0013 (4)
Cl30.0304 (4)0.0304 (4)0.0304 (4)0.0034 (5)0.0034 (5)0.0034 (5)
O10.0327 (16)0.0213 (14)0.0630 (19)0.0087 (13)0.0155 (16)0.0091 (15)
O20.0502 (14)0.0502 (14)0.0502 (14)0.0107 (16)0.0107 (16)0.0107 (16)
O30.0312 (15)0.0408 (17)0.0331 (16)0.0108 (14)0.0046 (13)0.0004 (14)
O40.0336 (11)0.0336 (11)0.0336 (11)0.0049 (13)0.0049 (13)0.0049 (13)
O50.0482 (19)0.0508 (19)0.0309 (16)0.0163 (16)0.0076 (14)0.0168 (14)
O60.0575 (16)0.0575 (16)0.0575 (16)0.0089 (17)0.0089 (17)0.0089 (17)
S0.0283 (5)0.0250 (5)0.0333 (6)0.0017 (4)0.0108 (4)0.0013 (4)
N10.0197 (16)0.0210 (16)0.0222 (16)0.0015 (13)0.0019 (13)0.0016 (13)
N20.0203 (16)0.0294 (18)0.0291 (18)0.0009 (15)0.0012 (14)0.0085 (15)
N30.035 (2)0.0268 (17)0.0276 (18)0.0007 (15)0.0019 (16)0.0042 (15)
C10.023 (2)0.0214 (19)0.022 (2)0.0035 (16)0.0009 (16)0.0034 (16)
C20.021 (2)0.068 (3)0.037 (2)0.004 (2)0.004 (2)0.013 (3)
C30.027 (2)0.045 (3)0.035 (2)0.011 (2)0.0054 (19)0.009 (2)
N40.026 (2)0.0246 (19)0.020 (2)0.0019 (16)0.0016 (19)0.0021 (18)
C40.033 (2)0.025 (3)0.026 (4)0.005 (2)0.001 (3)0.006 (3)
C50.038 (3)0.025 (3)0.030 (3)0.004 (2)0.008 (3)0.005 (2)
C90.048 (5)0.028 (4)0.029 (3)0.013 (3)0.001 (3)0.001 (3)
C100.027 (3)0.037 (3)0.049 (4)0.003 (3)0.013 (3)0.006 (3)
N4A0.026 (2)0.0246 (19)0.020 (2)0.0019 (16)0.0016 (19)0.0021 (18)
C4A0.033 (2)0.025 (3)0.026 (4)0.005 (2)0.001 (3)0.006 (3)
C5A0.038 (3)0.025 (3)0.030 (3)0.004 (2)0.008 (3)0.005 (2)
C9A0.048 (5)0.028 (4)0.029 (3)0.013 (3)0.001 (3)0.001 (3)
C10A0.027 (3)0.037 (3)0.049 (4)0.003 (3)0.013 (3)0.006 (3)
C60.039 (3)0.046 (3)0.049 (3)0.002 (2)0.010 (2)0.022 (2)
C70.035 (3)0.065 (3)0.025 (2)0.004 (2)0.001 (2)0.000 (2)
C80.050 (3)0.035 (2)0.044 (3)0.006 (2)0.010 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu—N4A2.02 (4)N4—C51.489 (8)
Cu—S2.4824 (11)C4—C51.507 (9)
Cu—N12.118 (3)C4—H4A0.9900
Cu—N22.074 (3)C4—H4B0.9900
Cu—N32.109 (3)C5—H5A0.9900
Cu—N42.091 (11)C5—H5B0.9900
Cl1—O21.435 (5)C9—H9A0.9800
Cl1—O1i1.438 (2)C9—H9B0.9800
Cl1—O11.438 (2)C9—H9C0.9800
Cl1—O1ii1.438 (2)C10—H10A0.9800
Cl2—O31.445 (3)C10—H10B0.9800
Cl2—O3iii1.445 (3)C10—H10C0.9800
Cl2—O3iv1.445 (3)N4A—C9A1.467 (18)
Cl2—O41.447 (5)N4A—C10A1.487 (18)
Cl3—O61.416 (6)N4A—C5A1.492 (18)
Cl3—O5v1.443 (3)C4A—C5A1.512 (18)
Cl3—O5vi1.443 (3)C4A—H4A10.9900
Cl3—O51.443 (3)C4A—H4A20.9900
S—C11.705 (4)C5A—H5A10.9900
N1—C1iv1.346 (4)C5A—H5A20.9900
N1—C11.364 (5)C9A—H9A10.9800
N2—C61.475 (5)C9A—H9A20.9800
N2—C21.476 (5)C9A—H9A30.9800
N2—C71.497 (5)C10A—H10D0.9800
N3—C81.470 (5)C10A—H10E0.9800
N3—C31.484 (5)C10A—H10F0.9800
N3—C41.502 (6)C6—H6A0.9800
N3—C4A1.503 (17)C6—H6B0.9800
C1—N1iii1.346 (4)C6—H6C0.9800
C2—C31.497 (6)C7—H7A0.9800
C2—H2A0.9900C7—H7B0.9800
C2—H2B0.9900C7—H7C0.9800
C3—H3A0.9900C8—H8A0.9800
C3—H3B0.9900C8—H8B0.9800
N4—C91.463 (7)C8—H8C0.9800
N4—C101.486 (7)
N4A—Cu—N2127.7 (7)C9—N4—C10108.2 (6)
N4A—Cu—N45.2 (8)C9—N4—C5112.2 (6)
N4A—Cu—N383.8 (7)C10—N4—C5108.6 (5)
N2—Cu—N385.39 (12)C9—N4—Cu109.5 (5)
N4—Cu—N386.1 (2)C10—N4—Cu114.1 (5)
N4A—Cu—N1100.2 (6)C5—N4—Cu104.3 (5)
N2—Cu—N198.82 (12)N3—C4—C5110.2 (6)
N4—Cu—N197.22 (19)N3—C4—H4A109.6
N1—Cu—S67.95 (8)C5—C4—H4A109.6
N1—Cu—N3170.23 (12)N3—C4—H4B109.6
N2—Cu—N4132.8 (2)C5—C4—H4B109.6
N4A—Cu—S114.5 (7)H4A—C4—H4B108.1
N2—Cu—S117.75 (10)N4—C5—C4110.6 (5)
N4—Cu—S109.46 (18)N4—C5—H5A109.5
N3—Cu—S102.29 (9)C4—C5—H5A109.5
O2—Cl1—O1i109.91 (14)N4—C5—H5B109.5
O2—Cl1—O1109.91 (14)C4—C5—H5B109.5
O1i—Cl1—O1109.03 (14)H5A—C5—H5B108.1
O2—Cl1—O1ii109.91 (14)C9A—N4A—C10A107 (3)
O1i—Cl1—O1ii109.03 (14)C9A—N4A—C5A109 (2)
O1—Cl1—O1ii109.03 (14)C10A—N4A—C5A107 (2)
O3—Cl2—O3iii109.57 (12)C9A—N4A—Cu116 (2)
O3—Cl2—O3iv109.57 (12)C10A—N4A—Cu111 (2)
O3iii—Cl2—O3iv109.57 (12)C5A—N4A—Cu106 (2)
O3—Cl2—O4109.37 (12)N3—C4A—C5A104.3 (15)
O3iii—Cl2—O4109.37 (12)N3—C4A—H4A1110.9
O3iv—Cl2—O4109.37 (13)C5A—C4A—H4A1110.9
O6—Cl3—O5v109.45 (15)N3—C4A—H4A2110.9
O6—Cl3—O5vi109.45 (15)C5A—C4A—H4A2110.9
O5v—Cl3—O5vi109.49 (15)H4A1—C4A—H4A2108.9
O6—Cl3—O5109.45 (15)N4A—C5A—C4A111 (2)
O5v—Cl3—O5109.49 (15)N4A—C5A—H5A1109.4
O5vi—Cl3—O5109.49 (15)C4A—C5A—H5A1109.4
C1—S—Cu77.88 (13)N4A—C5A—H5A2109.4
C1iv—N1—C1117.9 (3)C4A—C5A—H5A2109.4
C1iv—N1—Cu142.5 (3)H5A1—C5A—H5A2108.0
C1—N1—Cu99.4 (2)N4A—C9A—H9A1109.5
C6—N2—C2110.3 (3)N4A—C9A—H9A2109.5
C6—N2—C7107.6 (3)H9A1—C9A—H9A2109.5
C2—N2—C7110.1 (3)N4A—C9A—H9A3109.5
C6—N2—Cu112.5 (3)H9A1—C9A—H9A3109.5
C2—N2—Cu104.3 (2)H9A2—C9A—H9A3109.5
C7—N2—Cu112.0 (2)N4A—C10A—H10D109.5
C8—N3—C3111.0 (3)N4A—C10A—H10E109.5
C8—N3—C4113.0 (3)H10D—C10A—H10E109.5
C3—N3—C4108.9 (4)N4A—C10A—H10F109.5
C8—N3—C4A98.0 (12)H10D—C10A—H10F109.5
C3—N3—C4A120.3 (18)H10E—C10A—H10F109.5
C8—N3—Cu112.3 (2)N2—C6—H6A109.5
C3—N3—Cu106.2 (2)N2—C6—H6B109.5
C4—N3—Cu105.2 (4)H6A—C6—H6B109.5
C4A—N3—Cu109.1 (13)N2—C6—H6C109.5
N1iii—C1—N1122.1 (3)H6A—C6—H6C109.5
N1iii—C1—S123.3 (3)H6B—C6—H6C109.5
N1—C1—S114.6 (3)N2—C7—H7A109.5
N2—C2—C3111.4 (3)N2—C7—H7B109.5
N2—C2—H2A109.4H7A—C7—H7B109.5
C3—C2—H2A109.4N2—C7—H7C109.5
N2—C2—H2B109.4H7A—C7—H7C109.5
C3—C2—H2B109.4H7B—C7—H7C109.5
H2A—C2—H2B108.0N3—C8—H8A109.5
N3—C3—C2109.6 (3)N3—C8—H8B109.5
N3—C3—H3A109.8H8A—C8—H8B109.5
C2—C3—H3A109.8N3—C8—H8C109.5
N3—C3—H3B109.8H8A—C8—H8C109.5
C2—C3—H3B109.8H8B—C8—H8C109.5
H3A—C3—H3B108.2
N4A—Cu—S—C189.2 (7)Cu—N2—C2—C344.3 (4)
N2—Cu—S—C190.77 (15)C8—N3—C3—C287.9 (4)
N4—Cu—S—C187.8 (2)C4—N3—C3—C2147.1 (4)
N3—Cu—S—C1177.99 (15)C4A—N3—C3—C2158.7 (11)
N1—Cu—S—C12.27 (15)Cu—N3—C3—C234.4 (4)
N4A—Cu—N1—C1iv65.1 (8)N2—C2—C3—N355.0 (5)
N2—Cu—N1—C1iv66.0 (4)N4A—Cu—N4—C939 (9)
N4—Cu—N1—C1iv69.5 (4)N2—Cu—N4—C922.4 (5)
S—Cu—N1—C1iv177.6 (4)N3—Cu—N4—C9102.4 (4)
N4A—Cu—N1—C1109.6 (8)N1—Cu—N4—C986.8 (4)
N2—Cu—N1—C1119.3 (2)S—Cu—N4—C9155.9 (4)
N4—Cu—N1—C1105.3 (3)N4A—Cu—N4—C10160 (10)
S—Cu—N1—C12.81 (18)N2—Cu—N4—C10143.8 (4)
N4A—Cu—N2—C6143.0 (9)N3—Cu—N4—C10136.1 (5)
N4—Cu—N2—C6141.2 (3)N1—Cu—N4—C1034.7 (5)
N3—Cu—N2—C6138.4 (3)S—Cu—N4—C1034.4 (5)
N1—Cu—N2—C632.7 (3)N4A—Cu—N4—C581 (9)
S—Cu—N2—C637.0 (3)N2—Cu—N4—C597.9 (4)
N4A—Cu—N2—C297.4 (9)N3—Cu—N4—C517.8 (4)
N4—Cu—N2—C299.3 (4)N1—Cu—N4—C5153.0 (4)
N3—Cu—N2—C218.9 (3)S—Cu—N4—C583.9 (4)
N1—Cu—N2—C2152.3 (3)C8—N3—C4—C586.6 (5)
S—Cu—N2—C282.6 (3)C3—N3—C4—C5149.6 (4)
N4A—Cu—N2—C721.7 (9)C4A—N3—C4—C571 (7)
N4—Cu—N2—C719.8 (4)Cu—N3—C4—C536.2 (4)
N3—Cu—N2—C7100.2 (3)C9—N4—C5—C475.1 (8)
N1—Cu—N2—C788.7 (3)C10—N4—C5—C4165.3 (6)
S—Cu—N2—C7158.3 (2)Cu—N4—C5—C443.3 (5)
N4A—Cu—N3—C8118.2 (8)N3—C4—C5—N455.8 (7)
N2—Cu—N3—C8113.1 (3)N2—Cu—N4A—C9A60.9 (19)
N4—Cu—N3—C8113.4 (3)N4—Cu—N4A—C9A104 (10)
S—Cu—N3—C84.3 (3)N3—Cu—N4A—C9A140.2 (18)
N4A—Cu—N3—C3120.4 (8)N1—Cu—N4A—C9A48.8 (18)
N2—Cu—N3—C38.4 (3)S—Cu—N4A—C9A119.1 (17)
N4—Cu—N3—C3125.1 (3)N2—Cu—N4A—C10A176.5 (12)
S—Cu—N3—C3125.8 (2)N4—Cu—N4A—C10A19 (9)
N4A—Cu—N3—C45.0 (8)N3—Cu—N4A—C10A97.2 (16)
N2—Cu—N3—C4123.7 (3)N1—Cu—N4A—C10A73.8 (16)
N4—Cu—N3—C49.8 (4)S—Cu—N4A—C10A3.5 (18)
S—Cu—N3—C4118.8 (3)N2—Cu—N4A—C5A60.6 (19)
N4A—Cu—N3—C4A10.6 (18)N4—Cu—N4A—C5A135 (11)
N2—Cu—N3—C4A139.4 (16)N3—Cu—N4A—C5A18.7 (15)
N4—Cu—N3—C4A5.9 (16)N1—Cu—N4A—C5A170.3 (14)
S—Cu—N3—C4A103.2 (16)S—Cu—N4A—C5A119.4 (14)
C1iv—N1—C1—N1iii2.1 (7)C8—N3—C4A—C5A153 (2)
Cu—N1—C1—N1iii174.3 (3)C3—N3—C4A—C5A86 (3)
C1iv—N1—C1—S179.42 (16)C4—N3—C4A—C5A41 (5)
Cu—N1—C1—S4.2 (3)Cu—N3—C4A—C5A36 (3)
Cu—S—C1—N1iii174.8 (3)C9A—N4A—C5A—C4A173 (2)
Cu—S—C1—N13.6 (2)C10A—N4A—C5A—C4A72 (3)
C6—N2—C2—C3165.3 (4)Cu—N4A—C5A—C4A47 (2)
C7—N2—C2—C376.1 (4)N3—C4A—C5A—N4A56 (3)
Symmetry codes: (i) z+1/2, x+1, y1/2; (ii) y+1, z+1/2, x+1/2; (iii) z1/2, x+1/2, y+1; (iv) y+1/2, z+1, x+1/2; (v) y, z, x; (vi) z, x, y.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.992.843.713 (6)147
C5A—H5A2···O10.992.843.71 (2)146
C9—H9C···O10.982.583.501 (7)156
C3—H3A···O5iv0.992.553.353 (5)138
C9A—H9A3···O10.982.663.59 (3)157
C9A—H9A2···N10.982.963.42 (3)110
C10—H10B···N10.982.813.218 (6)106
C10A—H10D···O10.982.843.71 (2)148
C5A—H5A2···O10.992.843.71 (2)146
C5A—H5A2···O10.992.843.71 (2)146
C9A—H9A2···N10.982.963.42 (3)110
C9A—H9A3···O10.982.663.59 (3)157
C6—H6C···O30.982.763.049 (5)97
C6—H6B···O40.982.723.174 (5)109
C6—H6C···O30.982.763.049 (5)97
C6—H6B···O40.982.723.174 (5)109
C6—H6B···N10.982.833.198 (5)103
C6—H6C···O30.982.763.049 (5)97
C2—H2B···O1vii0.992.843.354 (5)113
C3—H3B···O1vii0.992.623.310 (5)127
C2—H2A···O2vii0.992.863.472 (4)121
C2—H2A···O2viii0.992.863.472 (4)121
C2—H2A···O2ix0.992.863.472 (4)121
C3—H3A···O5x0.992.573.545 (6)168
C4—H4B···O5x0.992.523.502 (7)170
C7—H7C···O5x0.982.643.615 (6)172
C9—H9A···O5x0.982.703.669 (7)170
C5A—H5A1···O5x0.992.323.28 (2)163
C7—H7C···O5iv0.982.913.543 (6)124
C4—H4A···O3v0.992.573.476 (6)153
C8—H8C···O3v0.982.913.519 (5)121
C5A—H5A2···O1ii0.992.473.247 (18)135
C9—H9C···O1ii0.982.933.571 (7)124
C5—H5B···O3xi0.992.503.350 (6)144
C10A—H10F···O3xi0.982.963.82 (3)147
C8—H8A···O3xi0.982.693.466 (5)137
C4A—H4A1···O3xi0.992.373.34 (4)166
C10—H10B···O6xii0.982.682.983 (6)99
C10A—H10E···O6xii0.982.823.64 (2)142
C10—H10B···O6xiii0.982.682.983 (6)99
C10A—H10E···O6xiii0.982.823.64 (2)142
C10—H10B···O6xiv0.982.682.983 (6)99
C10A—H10E···O6xiv0.982.823.64 (2)142
Symmetry codes: (ii) y+1, z+1/2, x+1/2; (iv) y+1/2, z+1, x+1/2; (v) y, z, x; (vii) x+1/2, y+3/2, z+1; (viii) z+1, x+1/2, y+3/2; (ix) y+3/2, z+1, x+1/2; (x) z+1/2, x+1, y+1/2; (xi) x+1/2, y+1, z1/2; (xii) y, z+1/2, x+1/2; (xiii) x, y+1/2, z+1/2; (xiv) z, x+1/2, y+1/2.

Experimental details

Crystal data
Chemical formula[Cu3(C9H23N3)3(C3N3S3)](ClO4)3
Mr1183.12
Crystal system, space groupCubic, P213
Temperature (K)120
a (Å)17.3590 (4)
V3)5230.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.35 × 0.3 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur2 + CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.568, 0.680
No. of measured, independent and
observed [I > 2σ(I)] reflections
38778, 3461, 2802
Rint0.095
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.072, 1.10
No. of reflections3460
No. of parameters213
No. of restraints53
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.38
Absolute structureFlack (1983), 1556 Friedel pairs
Absolute structure parameter0.050 (15)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1990), VMD 1.8.5 (Humphrey et al., 1996) and DIAMOND (Brandenburg, 2006), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PARST (Nardelli, 1995) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Cu—S2.4824 (11)Cu—N42.091 (11)
Cu—N12.118 (3)S—C11.705 (4)
Cu—N22.074 (3)N1—C1i1.346 (4)
Cu—N32.109 (3)N1—C11.364 (5)
N1—Cu—S67.95 (8)N2—Cu—S117.75 (10)
N1—Cu—N3170.23 (12)N4—Cu—S109.46 (18)
N2—Cu—N4132.8 (2)
Symmetry code: (i) y+1/2, z+1, x+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O10.982.583.501 (7)155.9
C3—H3A···O5i0.992.553.353 (5)137.6
C3—H3B···O1ii0.992.623.310 (5)126.6
C3—H3A···O5iii0.992.573.545 (6)167.7
C4—H4B···O5iii0.992.523.502 (7)169.5
C7—H7C···O5iii0.982.643.615 (6)171.9
C9—H9A···O5iii0.982.703.669 (7)169.7
C5A—H5A1···O5iii0.992.323.28 (2)162.9
C4—H4A···O3iv0.992.573.476 (6)152.5
C5A—H5A2···O1v0.992.473.247 (18)134.7
C5—H5B···O3vi0.992.503.350 (6)144.0
C8—H8A···O3vi0.982.693.466 (5)136.6
C4A—H4A1···O3vi0.992.373.34 (4)165.6
C10—H10B···O6vii0.982.682.983 (6)98.5
C10—H10B···O6viii0.982.682.983 (6)98.5
C10—H10B···O6ix0.982.682.983 (6)98.5
Symmetry codes: (i) y+1/2, z+1, x+1/2; (ii) x+1/2, y+3/2, z+1; (iii) z+1/2, x+1, y+1/2; (iv) y, z, x; (v) y+1, z+1/2, x+1/2; (vi) x+1/2, y+1, z1/2; (vii) y, z+1/2, x+1/2; (viii) x, y+1/2, z+1/2; (ix) z, x+1/2, y+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds