Download citation
Download citation
link to html
The crystal structure of Rb_2CoBr_4 at 295 and 200 K has been determined. At these temperatures Rb_2CoBr_4 exhibits an incommensurately modulated structure with wavevector {\bf q} = (1/3+\delta){\bf a}^*. At room temperature only the average structure was refined. Lattice parameters are a = 9.732 (3), b = 13.328 (4), c = 7.654 (3) Å, space group Pnam. The R(F) value was 0.0414 for 286 observed reflections (0.0778 for all 477 reflections). At 200 K the lattice parameters are a = 9.691 (4), b = 13.278 (5), c = 7.630 (6) Å, superspace group P:Pnam:\overline{1}ss. Main reflections and satellite reflections of first order were measured. The refinement converged at R(F) = 0.052 for 309 observed reflections (255 main reflections and 54 satellites) and 0.2971 for all reflections (1849; 695 main reflections and 1154 satellites). Amplitudes and phases of the modulation function as well as bond distances show close relationships to those observed in the incommensurately modulated phase of Rb_2ZnBr_4.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768199010629/sh0133sup1.cif
Contains datablocks default, rcb110, rbcobr

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108768199010629/sh0133rbcobrsup2.sft
Supplementary material

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108768199010629/sh0133rcb110sup3.sft
Supplementary material

Computing details top

For both compounds, data collection: STOE IPDS; cell refinement: STOE IPDS. Data reduction: X-RED (STOE & CIE, GmbH 1998) for rcb110. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for rcb110. Program(s) used to refine structure: JANA98 (Petricek & Dusek,1998) for rbcobr; SHELXL97 (Sheldrick, 1997) for rcb110.

(rbcobr) top
Crystal data top
Rb2CoBr4F(000) = 964
Mr = 549.5Dx = 3.717 Mg m3
Orthorhombic, PnamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c -2nCell parameters from 707 reflections
a = 9.691 (4) Åθ = 2.5–45°
b = 13.278 (5) ŵ = 27.79 mm1
c = 7.630 (6) ÅT = 200 K
V = 981.8 (16) Å3Irregular, blue-green
Z = 40.12 × 0.08 × 0.02 mm
Data collection top
IPDS Stoe
diffractometer
309 reflections with I > 2σ(I)
θ–dependant scansRint = 0.485
Absorption correction: gaussian
XRED (STOE & CIE GmbH, 1998)
θmax = 23.8°, θmin = 2.6°
Tmin = 0.024, Tmax = 0.069h = 1010
15154 measured reflectionsk = 1413
1849 independent reflectionsl = 88
Refinement top
Refinement on F56 parameters
R[F > 3σ(F)] = 0.297Weighting scheme based on measured s.u.'s w = 1/σ2(F)
wR(F) = 0.038(Δ/σ)max = 0.0001
S = 1.77Δρmax = 5.43 e Å3
1849 reflectionsΔρmin = 6.05 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.0132 (4)0.6755 (3)0.250.038 (2)
Rb20.3736 (5)0.4025 (4)0.250.063 (2)
Co0.7760 (4)0.4232 (4)0.250.035 (2)
Br11.0196 (4)0.4160 (4)0.250.056 (3)
Br20.6771 (4)0.5864 (4)0.250.050 (3)
Br30.6870 (4)0.3395 (3)0.5003 (6)0.062 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.033 (2)0.036 (2)0.043 (3)0.002 (2)00
Rb20.045 (3)0.098 (5)0.044 (4)0.007 (3)00
Co0.037 (3)0.046 (4)0.020 (3)0.003 (3)00
Br10.035 (3)0.066 (4)0.068 (6)0.003 (3)00
Br20.033 (3)0.045 (3)0.071 (8)0.005 (3)00
Br30.063 (3)0.090 (5)0.033 (2)0.030 (4)0.005 (3)0.028 (3)
(rcb110) Rubidium Tetra Bromo Cobaltate top
Crystal data top
Rb2CoBr4Dx = 3.676 Mg m3
Mr = 274.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnamCell parameters from 1204 reflections
Hall symbol: -P 2c -2nθ = 2–40°
a = 9.732 (3) ŵ = 27.48 mm1
b = 13.328 (4) ÅT = 293 K
c = 7.654 (3) ÅIrregular, blue-green
V = 992.8 (6) Å30.12 × 0.08 × 0.02 mm
F(000) = 964
Data collection top
STOE IPDS
diffractometer
477 independent reflections
Radiation source: fine-focus sealed tube286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
Imaging plate scansθmax = 19.5°, θmin = 2.6°
Absorption correction: gaussian
XRED (STOE & CIE GmbH, 1998)
h = 99
Tmin = 0.024, Tmax = 0.069k = 1211
2800 measured reflectionsl = 77
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: model
R[F2 > 2σ(F2)] = 0.041Secondary atom site location: difference Fourier map
wR(F2) = 0.100Calculated w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
477 reflectionsΔρmax = 0.66 e Å3
40 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.0149 (3)0.6764 (3)0.250.0570 (9)
Rb20.3712 (3)0.4028 (3)0.250.081 (1)
Co0.7742 (4)0.4231 (3)0.250.039 (1)
Br10.0183 (3)0.4149 (3)0.250.087 (1)
Br20.6802 (4)0.5881 (3)0.250.101 (2)
Br30.6840 (3)0.3414 (2)0.5013 (3)0.102 (1)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.043 (2)0.052 (2)0.076 (2)0.0016 (18)0.0000.000
Rb20.046 (2)0.127 (3)0.087 (2)0.001 (3)0.0000.000
Co10.034 (2)0.041 (3)0.0400 (19)0.002 (2)0.0000.000
Br10.036 (2)0.074 (3)0.151 (3)0.011 (2)0.0000.000
Br20.052 (2)0.048 (2)0.202 (4)0.011 (2)0.0000.000
Br30.0781 (18)0.165 (3)0.0627 (14)0.042 (2)0.0134 (13)0.0546 (17)
Geometric parameters (Å, º) top
Rb1—Br2i3.464 (5)Rb2—Br3iv3.941 (5)
Rb1—Br13.486 (5)Rb2—Br3v3.941 (5)
Rb1—Br3ii3.494 (4)Rb2—Rb1xii4.998 (4)
Rb1—Br3iii3.494 (4)Rb2—Rb1xiii4.998 (4)
Rb1—Br3iv3.502 (4)Co1—Br22.381 (5)
Rb1—Br3v3.502 (4)Co1—Br3x2.378 (3)
Rb1—Br2vi3.527 (5)Co1—Br32.378 (3)
Rb1—Br1vii4.029 (2)Co1—Br1xiv2.378 (5)
Rb1—Br1viii4.029 (2)Co1—Rb1xiv4.109 (5)
Rb1—Co1i4.109 (5)Br1—Co1i2.378 (5)
Rb1—Rb2ix4.998 (4)Br1—Rb1vii4.029 (2)
Rb1—Rb2iii4.998 (4)Br1—Rb1viii4.029 (2)
Rb2—Br13.439 (5)Br2—Rb1xiv3.464 (5)
Rb2—Br33.693 (4)Br2—Rb1xv3.527 (5)
Rb2—Br3x3.693 (4)Br2—Rb2xi3.8615 (16)
Rb2—Br2xi3.8615 (16)Br2—Rb2iv3.8615 (16)
Rb2—Br2iv3.8615 (16)Br3—Rb1xiii3.494 (4)
Rb2—Br23.891 (5)Br3—Rb1iv3.502 (4)
Rb2—Co13.931 (5)Br3—Rb2iv3.941 (5)
Br2i—Rb1—Br170.66 (10)Br2iv—Rb2—Br3iv58.43 (7)
Br2i—Rb1—Br3ii72.11 (9)Br2—Rb2—Br3iv63.68 (8)
Br1—Rb1—Br3ii129.39 (10)Co1—Rb2—Br3iv94.39 (10)
Br2i—Rb1—Br3iii72.11 (9)Br1—Rb2—Br3v79.82 (10)
Br1—Rb1—Br3iii129.39 (10)Br3—Rb2—Br3v123.77 (11)
Br3ii—Rb1—Br3iii66.03 (11)Br3x—Rb2—Br3v93.02 (9)
Br2i—Rb1—Br3iv139.79 (7)Br2xi—Rb2—Br3v58.43 (7)
Br1—Rb1—Br3iv85.65 (9)Br2iv—Rb2—Br3v115.72 (12)
Br3ii—Rb1—Br3iv102.13 (8)Br2—Rb2—Br3v63.68 (8)
Br3iii—Rb1—Br3iv143.37 (10)Co1—Rb2—Br3v94.39 (10)
Br2i—Rb1—Br3v139.79 (7)Br3iv—Rb2—Br3v57.77 (9)
Br1—Rb1—Br3v85.65 (9)Br1—Rb2—Rb1xii104.46 (8)
Br3ii—Rb1—Br3v143.37 (10)Br3—Rb2—Rb1xii94.71 (9)
Br3iii—Rb1—Br3v102.13 (8)Br3x—Rb2—Rb1xii44.33 (6)
Br3iv—Rb1—Br3v65.86 (10)Br2xi—Rb2—Rb1xii44.67 (7)
Br2i—Rb1—Br2vi137.01 (12)Br2iv—Rb2—Rb1xii143.76 (12)
Br1—Rb1—Br2vi152.33 (13)Br2—Rb2—Rb1xii102.23 (7)
Br3ii—Rb1—Br2vi72.10 (9)Co1—Rb2—Rb1xii79.65 (7)
Br3iii—Rb1—Br2vi72.10 (9)Br3iv—Rb2—Rb1xii157.27 (9)
Br3iv—Rb1—Br2vi71.27 (9)Br3v—Rb2—Rb1xii100.52 (5)
Br3v—Rb1—Br2vi71.27 (9)Br1—Rb2—Rb1xiii104.46 (8)
Br2i—Rb1—Br1vii79.74 (6)Br3—Rb2—Rb1xiii44.33 (6)
Br1—Rb1—Br1vii72.47 (7)Br3x—Rb2—Rb1xiii94.71 (9)
Br3ii—Rb1—Br1vii131.55 (9)Br2xi—Rb2—Rb1xiii143.76 (12)
Br3iii—Rb1—Br1vii68.17 (7)Br2iv—Rb2—Rb1xiii44.67 (7)
Br3iv—Rb1—Br1vii124.26 (10)Br2—Rb2—Rb1xiii102.23 (7)
Br3v—Rb1—Br1vii61.97 (6)Co1—Rb2—Rb1xiii79.65 (7)
Br2vi—Rb1—Br1vii107.78 (6)Br3iv—Rb2—Rb1xiii100.52 (5)
Br2i—Rb1—Br1viii79.74 (6)Br3v—Rb2—Rb1xiii157.27 (9)
Br1—Rb1—Br1viii72.47 (7)Rb1xii—Rb2—Rb1xiii99.94 (10)
Br3ii—Rb1—Br1viii68.17 (7)Br1—Rb2—Rb143.76 (9)
Br3iii—Rb1—Br1viii131.55 (9)Br3—Rb2—Rb1136.78 (10)
Br3iv—Rb1—Br1viii61.97 (6)Br3x—Rb2—Rb1136.78 (10)
Br3v—Rb1—Br1viii124.26 (10)Br2xi—Rb2—Rb183.57 (8)
Br2vi—Rb1—Br1viii107.78 (6)Br2iv—Rb2—Rb183.57 (8)
Br1vii—Rb1—Br1viii143.58 (13)Br2—Rb2—Rb194.17 (11)
Br2i—Rb1—Co1i35.36 (8)Co1—Rb2—Rb1129.61 (12)
Br1—Rb1—Co1i35.30 (8)Br3iv—Rb2—Rb143.88 (6)
Br3ii—Rb1—Co1i101.60 (9)Br3v—Rb2—Rb143.88 (6)
Br3iii—Rb1—Co1i101.60 (9)Rb1xii—Rb2—Rb1126.18 (4)
Br3iv—Rb1—Co1i114.91 (9)Rb1xiii—Rb2—Rb1126.18 (4)
Br3v—Rb1—Co1i114.91 (9)Br2—Co1—Br3x106.33 (14)
Br2vi—Rb1—Co1i172.37 (12)bR2—Co1—Br3106.33 (14)
Br1vii—Rb1—Co1i72.91 (6)Br3x—Co1—Br3108.0 (2)
Br1viii—Rb1—Co1i72.91 (6)Br2—Co1—Br1xiv115.25 (19)
Br2i—Rb1—Rb2ix114.44 (6)Br3x—Co1—Br1xiv110.32 (13)
Br1—Rb1—Rb2ix126.99 (6)Br3—Co1—Br1xiv110.32 (13)
Br3ii—Rb1—Rb2ix47.60 (6)Br2—Co1—Rb271.36 (13)
Br3iii—Rb1—Rb2ix99.21 (10)Br3x—Co1—Rb266.45 (10)
Br3iv—Rb1—Rb2ix55.89 (7)Br3—Co1—Rb266.45 (10)
Br3v—Rb1—Rb2ix105.77 (8)Br1xiv—Co1—Rb2173.40 (17)
Br2vi—Rb1—Rb2ix50.32 (5)Br2—Co1—Rb1xiv57.35 (12)
Br1vii—Rb1—Rb2ix158.05 (9)Br3x—Co1—Rb1xiv125.91 (10)
Br1viii—Rb1—Rb2ix58.18 (6)Br3—Co1—Rb1xiv125.92 (10)
Co1i—Rb1—Rb2ix128.49 (5)Br1xiv—Co1—Rb1xiv57.89 (12)
Br2i—Rb1—Rb2iii114.44 (6)Rb2—Co1—Rb1xiv128.71 (12)
Br1—Rb1—Rb2iii126.99 (6)Co1i—Br1—Rb2179.98 (15)
Br3ii—Rb1—Rb2iii99.21 (10)Co1i—Br1—Rb186.81 (14)
Br3iii—Rb1—Rb2iii47.60 (6)Rb2—Br1—Rb193.22 (13)
Br3iv—Rb1—Rb2iii105.77 (8)Co1i—Br1—Rb1vii86.21 (7)
Br3v—Rb1—Rb2iii55.89 (7)Rb2—Br1—Rb1vii93.78 (7)
Br2vi—Rb1—Rb2iii50.32 (5)Rb1—Br1—Rb1vii107.54 (7)
Br1vii—Rb1—Rb2iii58.18 (6)Co1i—Br1—Rb1viii86.21 (7)
Br1viii—Rb1—Rb2iii158.05 (9)Rb2—Br1—Rb1viii93.78 (7)
Co1i—Rb1—Rb2iii128.49 (5)Rb1—Br1—Rb1viii107.54 (7)
Rb2ix—Rb1—Rb2iii99.94 (10)Rb1vii—Br1—Rb1viii143.58 (13)
Br1—Rb2—Br3146.50 (7)Co1—Br2—Rb1xiv87.28 (14)
Br1—Rb2—Br3x146.50 (7)Co1—Br2—Rb1xv175.46 (17)
Br3—Rb2—Br3x62.77 (10)Rb1xiv—Br2—Rb1xv97.26 (10)
Br1—Rb2—Br2xi82.48 (7)Co1—Br2—Rb2xi94.52 (9)
Br3—Rb2—Br2xi129.04 (10)Rb1xiv—Br2—Rb2xi96.38 (7)
Br3x—Rb2—Br2xi66.28 (7)Rb1xv—Br2—Rb2xi85.01 (8)
Br1—Rb2—Br2iv82.48 (7)Co1—Br2—Rb2iv94.52 (9)
Br3—Rb2—Br2iv66.27 (7)Rb1xiv—Br2—Rb2iv96.38 (7)
Br3x—Rb2—Br2iv129.04 (10)Rb1xv—Br2—Rb2iv85.01 (8)
Br2xi—Rb2—Br2iv164.68 (14)Rb2xi—Br2—Rb2iv164.67 (14)
Br1—Rb2—Br2137.93 (16)Co1—Br2—Rb273.20 (13)
Br3—Rb2—Br260.23 (8)Rb1xiv—Br2—Rb2160.49 (13)
Br3x—Rb2—Br260.23 (8)Rb1xv—Br2—Rb2102.25 (11)
Br2xi—Rb2—Br294.60 (8)Rb2xi—Br2—Rb285.40 (8)
Br2iv—Rb2—Br294.60 (8)Rb2iv—Br2—Rb285.40 (8)
Br1—Rb2—Co1173.37 (16)Co1—Br3—Rb1xiii158.96 (14)
Br3—Rb2—Co136.18 (5)Co1—Br3—Rb1iv99.34 (11)
Br3x—Rb2—Co136.18 (5)Rb1xiii—Br3—Rb1iv97.16 (7)
Br2xi—Rb2—Co197.30 (7)Co1—Br3—Rb277.37 (11)
Br2iv—Rb2—Co197.30 (7)Rb1xiii—Br3—Rb288.08 (9)
Br2—Rb2—Co135.44 (8)Rb1iv—Br3—Rb2171.06 (13)
Br1—Rb2—Br3iv79.82 (10)Co1—Br3—Rb2iv92.58 (13)
Br3—Rb2—Br3iv93.02 (9)Rb1xiii—Br3—Rb2iv101.86 (9)
Br3x—Rb2—Br3iv123.76 (11)Rb1iv—Br3—Rb2iv84.86 (9)
Br2xi—Rb2—Br3iv115.72 (12)Rb2—Br3—Rb2iv86.98 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z1/2; (vi) x1/2, y+3/2, z+1/2; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x+1/2, y+1/2, z+1/2; (x) x, y, z+1/2; (xi) x+1, y+1, z; (xii) x+1/2, y1/2, z1/2; (xiii) x+1/2, y1/2, z+1/2; (xiv) x+1, y, z; (xv) x+1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds