Download citation
Download citation
link to html
Precise X-ray and high-energy transmission electron diffraction methods were used for the study of electron density and electrostatic potential in MgO crystals. The structure amplitudes were determined and their accuracy estimated using ab initio Hartree–Fock structure amplitudes as criteria. The electrostatic potential distributions, reconstructed using Fourier series from both X-ray and electron diffraction data, are in satisfactory mutual agreement and are similar to the theory. They, however, suffer from restricted experimental resolution and, therefore, the reconstruction of the electrostatic potential via an analytical structural model is preferable. The κ model of electron density was adjusted to X-ray experimental structure amplitudes and those calculated by the Hartree–Fock method. The electrostatic potential, deformation electron density and the Laplacian of the electron density were calculated with this model. The critical points in both experimental and theoretical model electron densities were found and compared with those for procrystals from spherical atoms and ions. A disagreement concerning the type of critical point at (1\over 4,1\over 4,0) in the area of low, near-uniform electron density is observed. It is noted that topological analysis of the electron density in crystals can be related with a close-packing concept.

Supporting information

fcf

Structure factor file (CIF format)
Supplementary material

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds