Download citation
Download citation
link to html
In the title ZnII complex, [Zn(C2H4NO2)2(C6H6N4S2)]·2H2O, the ZnII ion is coordinated by two glycinate anions and a diamino­bithia­zole (DABT) mol­ecule in a distorted octa­hedral geometry. Two thia­zole rings of the same DABT are twisted with respect to each other with a dihedral angle of 10.56 (6)°. The glycinate chelates to the ZnII ion by the amino N and carboxylate O atoms; the chelating five-membered ring displays an envelope configuration. A twofold rotation axis passes through the Zn atom and the mid-point of the C—C bond linking the two thiazole rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040857/sg6043sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040857/sg6043Isup2.hkl
Contains datablock I

CCDC reference: 296647

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.021
  • wR factor = 0.054
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn - N3 .. 5.11 su PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

We are interested in metal complexes with diaminobithiazole (DABT) because of their potential magnetic properties (Sun et al., 1997). As part of an ongoing investigation of DABT complexes (Liu et al., 2001), we present here the X-ray structure of the title ZnII complex, (I).

The molecular structure of (I) is shown in Fig. 1. The ZnII complex has twofold symmetry. Two glycinate anions and one DABT molecule chelate to the ZnII ion in a distorted octahedral geometry (Table 1). Thiazole rings of the same DABT are twisted with respect to the each other with a dihedral angle of 10.56 (6)°, comparable to the CoII analogue [9.68 (6)°; Yu et al., 2005]. The chelating five-membered ring of the glycinate anion displays an envelope configuration, the N3 atom being displaced 0.390 (2) Å from the mean plane formed by other four atoms.

The classic O—H···O and N—H···O hydrogen-bonding network stabilizes the crystal structure (Table 2).

Experimental top

An aqueous solution (20 ml) containing DABT (1 mmol) and ZnCl2 (1 mmol) was mixed with another aqueous solution (10 ml) of glycine (2 mmol) and NaOH (1 mmol). The mixture was refluxed for 4 h. The solution was filtered after cooling to room temperature. Single crystals of (I) were obtained from the filtrate after one week.

Refinement top

H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene), and included in the final cycles of refinement as riding,with Uiso(H) = 1.2Ueq(C). Other H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(carrier).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds [symmetry code: (i) −x + 1,y,-z + 1/2].
(2,2'-Diamino-4,4'-bi-1,3-thiazole-κ2N,N')bis(glycinato-κ2N,O)zinc(II) dihydrate top
Crystal data top
[Zn(C2H4NO2)2(C6H6N4S2)]·2H2OF(000) = 920
Mr = 447.79Dx = 1.783 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5886 reflections
a = 13.121 (2) Åθ = 2.8–25.0°
b = 9.0063 (16) ŵ = 1.77 mm1
c = 14.124 (2) ÅT = 295 K
β = 92.365 (6)°Prism, colorless
V = 1667.7 (5) Å30.25 × 0.20 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1918 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1616
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1011
Tmin = 0.628, Tmax = 0.750l = 1818
7912 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0209P)2 + 2.0364P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1918 reflectionsΔρmax = 0.30 e Å3
115 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0134 (5)
Crystal data top
[Zn(C2H4NO2)2(C6H6N4S2)]·2H2OV = 1667.7 (5) Å3
Mr = 447.79Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.121 (2) ŵ = 1.77 mm1
b = 9.0063 (16) ÅT = 295 K
c = 14.124 (2) Å0.25 × 0.20 × 0.16 mm
β = 92.365 (6)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1918 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1808 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.750Rint = 0.018
7912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
1918 reflectionsΔρmin = 0.22 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.50000.71733 (3)0.25000.02228 (10)
S10.37183 (3)0.32835 (5)0.05293 (3)0.03481 (12)
N10.45516 (10)0.52922 (14)0.16024 (9)0.0238 (3)
N20.37698 (11)0.62134 (18)0.01891 (10)0.0373 (3)
H2A0.39610.71270.02850.056*
H2B0.33570.60140.02810.056*
N30.64785 (10)0.74766 (16)0.19830 (9)0.0271 (3)
H3A0.67600.66730.17610.041*
H3B0.64450.81000.14860.041*
O10.56307 (8)0.88290 (13)0.34761 (8)0.0300 (2)
O20.70924 (9)0.98783 (14)0.39740 (8)0.0342 (3)
O1W0.62155 (13)0.96997 (19)0.58049 (11)0.0597 (4)
H1A0.55710.99310.58520.090*
H1B0.64010.98320.52080.090*
C10.47278 (11)0.39244 (17)0.20349 (10)0.0244 (3)
C20.43515 (13)0.27356 (18)0.15629 (12)0.0318 (3)
H20.44230.17570.17660.038*
C30.40309 (12)0.51226 (18)0.07889 (11)0.0265 (3)
C40.71545 (13)0.8164 (2)0.27111 (13)0.0360 (4)
H4A0.76250.88240.24070.043*
H4B0.75520.73940.30340.043*
C50.65800 (11)0.90340 (17)0.34356 (10)0.0250 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02056 (14)0.02147 (15)0.02446 (14)0.0000.00306 (9)0.000
S10.0346 (2)0.0353 (2)0.0343 (2)0.00850 (17)0.00265 (16)0.01341 (17)
N10.0244 (6)0.0231 (6)0.0234 (6)0.0012 (5)0.0036 (5)0.0025 (5)
N20.0414 (8)0.0401 (8)0.0292 (7)0.0059 (7)0.0133 (6)0.0006 (6)
N30.0275 (7)0.0290 (7)0.0248 (6)0.0001 (5)0.0011 (5)0.0038 (5)
O10.0235 (5)0.0321 (6)0.0344 (6)0.0006 (5)0.0007 (4)0.0096 (5)
O20.0332 (6)0.0327 (6)0.0357 (6)0.0029 (5)0.0096 (5)0.0071 (5)
O1W0.0585 (10)0.0659 (11)0.0558 (9)0.0021 (8)0.0156 (8)0.0077 (8)
C10.0207 (7)0.0235 (7)0.0292 (8)0.0002 (6)0.0023 (6)0.0023 (6)
C20.0314 (8)0.0254 (8)0.0388 (9)0.0030 (6)0.0023 (7)0.0046 (7)
C30.0226 (7)0.0307 (8)0.0261 (7)0.0033 (6)0.0000 (6)0.0064 (6)
C40.0223 (7)0.0468 (10)0.0388 (9)0.0021 (7)0.0008 (6)0.0136 (8)
C50.0262 (7)0.0224 (7)0.0259 (7)0.0011 (6)0.0046 (6)0.0014 (5)
Geometric parameters (Å, º) top
Zn—O12.1714 (11)N3—C41.467 (2)
Zn—O1i2.1714 (11)N3—H3A0.8765
Zn—N12.1823 (13)N3—H3B0.8990
Zn—N1i2.1823 (13)O1—C51.2629 (19)
Zn—N3i2.1185 (13)O2—C51.2516 (19)
Zn—N32.1185 (13)O1W—H1A0.8763
S1—C21.7219 (19)O1W—H1B0.8952
S1—C31.7417 (17)C1—C21.344 (2)
N1—C11.3901 (19)C1—C1i1.469 (3)
N1—C31.3212 (19)C2—H20.9300
N2—C31.333 (2)C4—C51.514 (2)
N2—H2A0.8692C4—H4A0.9700
N2—H2B0.8585C4—H4B0.9700
N3i—Zn—N3165.18 (8)Zn—N3—H3A115.0
N3i—Zn—O191.32 (5)C4—N3—H3B107.0
N3—Zn—O178.46 (5)Zn—N3—H3B109.5
N3i—Zn—O1i78.46 (5)H3A—N3—H3B104.1
N3—Zn—O1i91.32 (5)C5—O1—Zn114.99 (10)
O1—Zn—O1i93.25 (7)H1A—O1W—H1B109.9
N3i—Zn—N194.11 (5)C2—C1—N1115.90 (14)
N3—Zn—N197.39 (5)C2—C1—C1i126.76 (10)
O1—Zn—N1171.33 (5)N1—C1—C1i117.31 (8)
O1i—Zn—N194.46 (5)C1—C2—S1110.28 (13)
N3i—Zn—N1i97.39 (5)C1—C2—H2124.9
N3—Zn—N1i94.11 (5)S1—C2—H2124.9
O1—Zn—N1i94.46 (5)N1—C3—N2125.29 (15)
O1i—Zn—N1i171.33 (5)N1—C3—S1113.69 (12)
N1—Zn—N1i78.15 (7)N2—C3—S1121.00 (12)
C2—S1—C389.59 (8)N3—C4—C5112.87 (13)
C3—N1—C1110.51 (13)N3—C4—H4A109.0
C3—N1—Zn135.43 (11)C5—C4—H4A109.0
C1—N1—Zn113.37 (9)N3—C4—H4B109.0
C3—N2—H2A122.3C5—C4—H4B109.0
C3—N2—H2B118.4H4A—C4—H4B107.8
H2A—N2—H2B119.2O2—C5—O1124.57 (15)
C4—N3—Zn110.40 (10)O2—C5—C4117.07 (14)
C4—N3—H3A110.4O1—C5—C4118.32 (14)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1ii0.882.182.976 (2)151
O1W—H1B···O20.902.002.878 (2)167
N2—H2A···O1i0.872.373.098 (2)141
N2—H2B···O2iii0.862.092.9059 (19)159
N3—H3A···O2iv0.882.473.3209 (19)165
N3—H3B···O1Wv0.902.223.051 (2)154
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C2H4NO2)2(C6H6N4S2)]·2H2O
Mr447.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)13.121 (2), 9.0063 (16), 14.124 (2)
β (°) 92.365 (6)
V3)1667.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.77
Crystal size (mm)0.25 × 0.20 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.628, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
7912, 1918, 1808
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.08
No. of reflections1918
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn—O12.1714 (11)N1—C11.3901 (19)
Zn—N12.1823 (13)N1—C31.3212 (19)
Zn—N32.1185 (13)N2—C31.333 (2)
S1—C21.7219 (19)C1—C21.344 (2)
S1—C31.7417 (17)C1—C1i1.469 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1ii0.882.182.976 (2)151
O1W—H1B···O20.902.002.878 (2)167
N2—H2A···O1i0.872.373.098 (2)141
N2—H2B···O2iii0.862.092.9059 (19)159
N3—H3A···O2iv0.882.473.3209 (19)165
N3—H3B···O1Wv0.902.223.051 (2)154
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y+2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds