metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(1H-indole-3-carbaldehyde thio­semicarbazonato-κ2N1,S)nickel(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 April 2008; accepted 12 May 2008; online 17 May 2008)

The Ni atom in the centrosymmetric title compound, [Ni(C10H9N4S)2], is N,S-chelated by the deprotonated Schiff bases in a square-planar geometry. The –CH=N—N=C(S)—NH2 frament is planar. Adjacent mol­ecules are linked by hydrogen bonds between the indolyl –NH (donor) site and the double-bond =N– (acceptor) site of an adjacent mol­ecule, forming a layer motif.

Related literature

For the structure of the neutral Schiff base, see: Rizal et al. (2008[Rizal, R. M., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o919-o920.]). For background literature on the medicinal activity of metal complexes of the Schiff base and related compounds, see: Husain et al. (2007[Husain, K., Abid, M. & Azam, A. (2007). Eur. J. Med. Chem. 42, 1300-1308.]); Wilson et al. (2005[Wilson, B. A., Venkatraman, R., Whitaker, C. & Tillison, Q. (2005). Int. J. Env. Res. Pub. Health, 2, 170-174.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H9N4S)2]

  • Mr = 493.25

  • Monoclinic, P 21 /c

  • a = 10.4388 (3) Å

  • b = 5.2604 (1) Å

  • c = 19.1122 (5) Å

  • β = 104.803 (2)°

  • V = 1014.66 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 (2) K

  • 0.14 × 0.04 × 0.01 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.851, Tmax = 0.988

  • 12357 measured reflections

  • 2326 independent reflections

  • 1774 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.02

  • 2326 reflections

  • 154 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N2 1.918 (2)
Ni1—S1 2.1669 (6)
N2—Ni1—S1 85.72 (6)
N2—Ni1—S1i 94.28 (6)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3ii 0.88 (3) 2.06 (2) 2.876 (3) 155 (3)
Symmetry code: (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

A previous study reports the structure of 1H-indole-3-carboxaldehyde thiosemicarbazone (Rizal et al., 2008). The compound in its deprotonated form can function as a bidentate chelate, and this is confirmed in the present nickel(II) derivative (Scheme I, Fig. 1). The metal center lies on a center-of-inversion in a square planar coordination geometry. Adjacent molecules are linked by hydrogen bonds between the indolyl –NH (donor) site and the double-bond =N– (acceptor) site of an adjacent molecule to form a layer motif (Fig. 2).

Related literature top

For the structure of the neutral Schiff base, see: Rizal et al. (2008). For background literature on the medicinal activity of metal complexes of the Schiff base and related compounds, see: Husain et al. (2007); Wilson et al. (2005).

Experimental top

Nickel acetate tetrahydrate (0.06 g,0.22 mmol) and 1H-indole-3-carboxaldehyde thiosemicarbazone (0.10 g, 0.44 mmol), ethanol (4 ml) and water (10 ml) were sealed in a 15-ml, Teflon-lined, Parr bomb. The bomb was heated at 383 K for 2 days. The bomb when cooled to room temperature over a day to give orange plates.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The nitrogen-bound H-atoms were located in a difference Fourier map, and were refined with an N–H distance restraint of 0.88±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of Ni(C10H9N4S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies on a center-of-inversion. Unlabeled atoms are related to the labeled ones by this symmetry element.
[Figure 2] Fig. 2. OLEX (Dolomanov et al., 2003) representation of the hydrogen-bonded layer motif.
trans-Bis(1H-indole-3-carbaldehyde thiosemicarbazonato-κ2N1,S)nickel(II) top
Crystal data top
[Ni(C10H9N4S)2]F(000) = 508
Mr = 493.25Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1799 reflections
a = 10.4388 (3) Åθ = 2.6–24.7°
b = 5.2604 (1) ŵ = 1.19 mm1
c = 19.1122 (5) ÅT = 100 K
β = 104.803 (2)°Plate, orange
V = 1014.66 (4) Å30.14 × 0.04 × 0.01 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2326 independent reflections
Radiation source: fine-focus sealed tube1774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.851, Tmax = 0.988k = 66
12357 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.5143P]
where P = (Fo2 + 2Fc2)/3
2326 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(C10H9N4S)2]V = 1014.66 (4) Å3
Mr = 493.25Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.4388 (3) ŵ = 1.19 mm1
b = 5.2604 (1) ÅT = 100 K
c = 19.1122 (5) Å0.14 × 0.04 × 0.01 mm
β = 104.803 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2326 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1774 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.988Rint = 0.062
12357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.43 e Å3
2326 reflectionsΔρmin = 0.30 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01261 (12)
S10.33444 (6)0.74950 (12)0.45463 (3)0.01747 (15)
N10.6654 (2)1.1528 (4)0.78929 (11)0.0171 (5)
H1N0.637 (3)1.262 (5)0.8165 (14)0.045 (10)*
N20.52205 (19)0.6972 (4)0.58664 (10)0.0143 (4)
N30.42554 (19)0.8723 (4)0.59419 (10)0.0153 (4)
N40.2345 (2)1.0700 (4)0.53342 (12)0.0205 (5)
H4N10.240 (3)1.177 (5)0.5691 (12)0.042 (10)*
H4N20.184 (3)1.121 (6)0.4919 (10)0.043 (10)*
C10.7786 (2)0.8186 (5)0.76257 (12)0.0154 (5)
C20.8845 (2)0.6471 (5)0.77478 (13)0.0182 (5)
H20.88690.51590.74100.022*
C30.9859 (2)0.6731 (5)0.83732 (13)0.0195 (5)
H31.05880.55900.84600.023*
C40.9830 (2)0.8646 (5)0.88809 (13)0.0190 (5)
H41.05380.87660.93060.023*
C50.8795 (2)1.0361 (5)0.87760 (12)0.0178 (5)
H50.87741.16590.91180.021*
C60.7782 (2)1.0092 (5)0.81421 (12)0.0159 (5)
C70.5945 (2)1.0621 (5)0.72458 (12)0.0166 (5)
H70.51321.13090.69690.020*
C80.6586 (2)0.8537 (5)0.70493 (12)0.0166 (5)
C90.6276 (2)0.6972 (5)0.64112 (12)0.0163 (5)
H90.69350.57610.63810.020*
C100.3354 (2)0.9073 (5)0.53374 (13)0.0159 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0129 (2)0.0143 (2)0.0104 (2)0.00022 (19)0.00260 (16)0.00047 (18)
S10.0180 (3)0.0207 (3)0.0124 (3)0.0042 (3)0.0014 (2)0.0010 (2)
N10.0177 (11)0.0189 (11)0.0140 (10)0.0007 (9)0.0029 (8)0.0039 (9)
N20.0161 (10)0.0141 (10)0.0127 (9)0.0014 (8)0.0036 (8)0.0004 (8)
N30.0155 (11)0.0171 (11)0.0137 (10)0.0021 (9)0.0047 (8)0.0002 (8)
N40.0225 (12)0.0210 (12)0.0172 (11)0.0080 (9)0.0035 (9)0.0025 (9)
C10.0156 (12)0.0156 (12)0.0151 (11)0.0034 (10)0.0042 (10)0.0002 (9)
C20.0190 (13)0.0192 (13)0.0177 (12)0.0019 (10)0.0068 (10)0.0025 (10)
C30.0153 (13)0.0225 (14)0.0205 (12)0.0005 (11)0.0040 (10)0.0028 (11)
C40.0166 (13)0.0245 (14)0.0148 (11)0.0037 (11)0.0018 (10)0.0005 (10)
C50.0196 (13)0.0207 (14)0.0127 (11)0.0040 (11)0.0034 (10)0.0005 (10)
C60.0172 (12)0.0167 (12)0.0151 (11)0.0011 (11)0.0063 (9)0.0013 (10)
C70.0166 (12)0.0190 (14)0.0137 (11)0.0016 (10)0.0030 (10)0.0003 (9)
C80.0191 (13)0.0177 (13)0.0135 (11)0.0022 (10)0.0051 (10)0.0001 (10)
C90.0175 (12)0.0176 (13)0.0145 (11)0.0008 (10)0.0055 (10)0.0003 (10)
C100.0180 (13)0.0140 (12)0.0182 (12)0.0033 (10)0.0092 (10)0.0007 (10)
Geometric parameters (Å, º) top
Ni1—N2i1.919 (2)C1—C61.408 (3)
Ni1—N21.918 (2)C1—C81.453 (3)
Ni1—S1i2.1669 (6)C2—C31.386 (3)
Ni1—S12.1669 (6)C2—H20.9500
S1—C101.723 (2)C3—C41.404 (4)
N1—C71.355 (3)C3—H30.9500
N1—C61.377 (3)C4—C51.382 (4)
N1—H1n0.88 (3)C4—H40.9500
N2—C91.309 (3)C5—C61.397 (3)
N2—N31.399 (3)C5—H50.9500
N3—C101.303 (3)C7—C81.385 (3)
N4—C101.355 (3)C7—H70.9500
N4—H4n10.88 (3)C8—C91.438 (3)
N4—H4n20.88 (3)C9—H90.9500
C1—C21.400 (3)
N2i—Ni1—N2180.000 (1)C2—C3—H3119.3
N2i—Ni1—S1i85.72 (6)C4—C3—H3119.3
N2—Ni1—S185.72 (6)C5—C4—C3121.5 (2)
N2—Ni1—S1i94.28 (6)C5—C4—H4119.3
N2i—Ni1—S194.28 (6)C3—C4—H4119.3
S1i—Ni1—S1180.0C4—C5—C6116.8 (2)
C10—S1—Ni196.63 (9)C4—C5—H5121.6
C7—N1—C6110.0 (2)C6—C5—H5121.6
C7—N1—H1N126 (2)N1—C6—C5129.5 (2)
C6—N1—H1N123 (2)N1—C6—C1107.7 (2)
C9—N2—N3113.60 (19)C5—C6—C1122.9 (2)
C9—N2—Ni1125.30 (17)N1—C7—C8109.7 (2)
N3—N2—Ni1120.96 (14)N1—C7—H7125.1
C10—N3—N2112.16 (19)C8—C7—H7125.1
C10—N4—H4N1121 (2)C7—C8—C9131.6 (2)
C10—N4—H4N2119 (2)C7—C8—C1106.1 (2)
H4N1—N4—H4N2114 (3)C9—C8—C1122.2 (2)
C2—C1—C6119.1 (2)N2—C9—C8129.5 (2)
C2—C1—C8134.4 (2)N2—C9—H9115.3
C6—C1—C8106.5 (2)C8—C9—H9115.3
C3—C2—C1118.5 (2)N3—C10—N4118.5 (2)
C3—C2—H2120.8N3—C10—S1123.44 (19)
C1—C2—H2120.8N4—C10—S1118.03 (18)
C2—C3—C4121.3 (2)
N2i—Ni1—S1—C10172.73 (10)C8—C1—C6—N10.4 (3)
N2—Ni1—S1—C107.27 (10)C2—C1—C6—C50.1 (4)
S1i—Ni1—N2—C915.3 (2)C8—C1—C6—C5179.6 (2)
S1—Ni1—N2—C9164.7 (2)C6—N1—C7—C80.3 (3)
S1i—Ni1—N2—N3169.40 (16)N1—C7—C8—C9177.4 (2)
S1—Ni1—N2—N310.60 (16)N1—C7—C8—C10.5 (3)
C9—N2—N3—C10166.4 (2)C2—C1—C8—C7179.1 (3)
Ni1—N2—N3—C109.4 (3)C6—C1—C8—C70.6 (3)
C6—C1—C2—C30.5 (4)C2—C1—C8—C91.8 (4)
C8—C1—C2—C3179.2 (3)C6—C1—C8—C9177.8 (2)
C1—C2—C3—C40.6 (4)N3—N2—C9—C82.0 (4)
C2—C3—C4—C50.4 (4)Ni1—N2—C9—C8173.7 (2)
C3—C4—C5—C60.1 (4)C7—C8—C9—N27.0 (5)
C7—N1—C6—C5179.2 (2)C1—C8—C9—N2176.5 (2)
C7—N1—C6—C10.1 (3)N2—N3—C10—N4179.1 (2)
C4—C5—C6—N1178.9 (2)N2—N3—C10—S11.4 (3)
C4—C5—C6—C10.1 (4)Ni1—S1—C10—N35.4 (2)
C2—C1—C6—N1179.3 (2)Ni1—S1—C10—N4172.37 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···N3ii0.88 (3)2.06 (2)2.876 (3)155 (3)
Symmetry code: (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C10H9N4S)2]
Mr493.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.4388 (3), 5.2604 (1), 19.1122 (5)
β (°) 104.803 (2)
V3)1014.66 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.14 × 0.04 × 0.01
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.851, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12357, 2326, 1774
Rint0.062
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.02
No. of reflections2326
No. of parameters154
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Dolomanov et al., 2003), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Ni1—N21.918 (2)Ni1—S12.1669 (6)
N2—Ni1—S185.72 (6)N2—Ni1—S1i94.28 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···N3ii0.88 (3)2.06 (2)2.876 (3)155 (3)
Symmetry code: (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the Science Fund (12–02-03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHusain, K., Abid, M. & Azam, A. (2007). Eur. J. Med. Chem. 42, 1300–1308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRizal, R. M., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o919–o920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWilson, B. A., Venkatraman, R., Whitaker, C. & Tillison, Q. (2005). Int. J. Env. Res. Pub. Health, 2, 170–174.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds