metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ2-benzyl­oxyacetato-κ3O,O′:O′′)cadmium(II)]

aCollege of Chemistry and Chemical Technology, Daqing Petroleum Institute, Daqing 163318, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 April 2008; accepted 18 April 2008; online 23 April 2008)

The title cadmium derivative of benzyl­oxyacetic acid, [Cd(C9H9O3)2]n, exists as a μ2-carboxyl­ate-bridged layer network. Two benzyl­oxyacetate units each chelate the metal through a carboxylate as well as through the ether O atoms; the metal is also coordinated by the double-bond carbonyl O atom of two adjacent benzyl­oxyacetate units in an octa­hedral geometry. The metal atom lies on a special position of 2 site symmetry. The phenyl group is disordered equally over two positions.

Related literature

There are no crystallographic examples of metal benzyl­oxyacetates although there are many examples of metal aryl­oxyacetates. For mononuclear diaquadi(phenoxy­acetato)cadmium, see: Mak et al. (1985[Mak, T. C. W., Yip, H.-W., O'Reilly, E. J., Smith, G. & Kennard, C. H. L. (1985). Inorg. Chim. Acta, 100, 267-273.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H9O3)2]

  • Mr = 442.72

  • Orthorhombic, P 21 21 2

  • a = 6.7430 (2) Å

  • b = 8.9449 (2) Å

  • c = 15.4736 (4) Å

  • V = 933.30 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 295 (2) K

  • 0.33 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.693, Tmax = 0.954

  • 5780 measured reflections

  • 1639 independent reflections

  • 1483 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.09

  • 1639 reflections

  • 108 parameters

  • 37 restraints

  • H-atom parameters constrained

  • Δρmax = 2.22 e Å−3

  • Δρmin = −0.88 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 501 Friedel pairs

  • Flack parameter: 0.03 (8)

Table 1
Selected geometric parameters (Å, °)

Cd1—O1 2.268 (4)
Cd1—O1i 2.268 (4)
Cd1—O2ii 2.226 (5)
Cd1—O2iii 2.226 (5)
Cd1—O3 2.379 (4)
Cd1—O3i 2.379 (4)
O1—Cd1—O1i 161.2 (3)
O1—Cd1—O2ii 105.9 (2)
O1—Cd1—O2iii 87.2 (2)
O1—Cd1—O3 69.6 (2)
O1—Cd1—O3i 95.5 (2)
O1i—Cd1—O2ii 87.2 (2)
O1i—Cd1—O2iii 105.9 (2)
O1i—Cd1—O3i 69.6 (2)
O1i—Cd1—O3 95.5 (2)
O2ii—Cd1—O2iii 93.3 (3)
O2ii—Cd1—O3 98.3 (2)
O2ii—Cd1—O3i 156.2 (2)
O2iii—Cd1—O3 156.2 (2)
O2iii—Cd1—O3i 98.3 (2)
O3—Cd1—O3i 79.1 (2)
Symmetry codes: (i) -x+2, -y+2, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structures of a large number of metal derivatives of aryloxyacetic acids have been reported; in some structures, the ether oxygen also engages in bonding so that the carboxylate unit functions both as a chelate as well as a bridge. The cadmium derivative of phenyoxyacetic acid exists as a diaqua, carboxylate-chelated compound. The carboxyl –CO2 portion engages in chelation instead (Mak et al., 1985). The title cadmium analog has a benzyl group in place of the phenyl group, which is probably less crowded; this feature permits the ether linkage to bind to the metal atom. The compound (Scheme I) is an anhydrous compound; the carboxylate group chelates to the metal atom. It also bridges adjacent metal atoms (Fig. 1); the bridges lead to the formation of a layer motif (Fig. 2).

Related literature top

There are no crystallographic examples of metal benzyloxyacetates although there are many examples of metal aryloxyacetates. For mononuclear diaquadi(phenoxyacetato)cadmium, see: Mak et al. (1985).

Experimental top

Cadmium dinitrate tetrahydrate (0.31 g, 1 mmol) and 2,2'-bipyridine (0.16 g, 1 mmol) were added to a hot aqueous solution of benzyloxyacetic acid (0.17 g, 1 mmol). The pH of the solution was adjusted to 6 with 0.1 M sodium hydroxide. The solution was allowed to evaporate at room temperature. Colorless single crystals are separated from the filtered solution after several days.

Refinement top

Hydrogen atoms were treated as riding, with C–H = 0.93 to 0.97 Å and were included in the refinement with U(H) set to 1.2 times Ueq(C). The phenyl ring is disordered over two sites; the occupancy could not be refined, and each component was arbitrarily assigned 0.5 occupancy. The ring was refined as a rigid hexagon; the temperature factors of the primed atoms were constrained to those of the unprimed ones. The anisotropic temperature factors of the ring were retrained to be nearly isotropic. The C3–C4 and C3–C4' distances were restrained to within 0.01 Å of each other.

The final difference Fourier map had a large peak at about 1 Å from Cd1.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal displacement ellipsoid plot (Barbour, 2001) illustrating the coordination geometry of Cd in [Cd(C9H9O3)2]n. Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii.
[Figure 2] Fig. 2. OLEX (Dolomanov et al., 2003) representation of the layer structure.
Poly[bis(µ2-benzyloxyacetato-κ3O,O':\<i>O'')cadmium(II)] top
Crystal data top
[Cd(C9H9O3)2]F(000) = 444
Mr = 442.72Dx = 1.575 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2270 reflections
a = 6.7430 (2) Åθ = 2.6–23.6°
b = 8.9449 (2) ŵ = 1.20 mm1
c = 15.4736 (4) ÅT = 295 K
V = 933.30 (4) Å3Block, colorless
Z = 20.33 × 0.13 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
1639 independent reflections
Radiation source: fine-focus sealed tube1483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.693, Tmax = 0.954k = 109
5780 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0833P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1639 reflectionsΔρmax = 2.22 e Å3
108 parametersΔρmin = 0.88 e Å3
37 restraintsAbsolute structure: Flack (1983), 501 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
[Cd(C9H9O3)2]V = 933.30 (4) Å3
Mr = 442.72Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 6.7430 (2) ŵ = 1.20 mm1
b = 8.9449 (2) ÅT = 295 K
c = 15.4736 (4) Å0.33 × 0.13 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
1639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1483 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.954Rint = 0.039
5780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125Δρmax = 2.22 e Å3
S = 1.09Δρmin = 0.88 e Å3
1639 reflectionsAbsolute structure: Flack (1983), 501 Friedel pairs
108 parametersAbsolute structure parameter: 0.03 (8)
37 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd11.00001.00000.01184 (4)0.0405 (3)
O11.2315 (7)0.8208 (5)0.0358 (3)0.0481 (12)
O21.2948 (7)0.5938 (5)0.0869 (3)0.0495 (12)
O30.9048 (6)0.8466 (5)0.1304 (3)0.0443 (11)
C11.1913 (10)0.7127 (7)0.0819 (4)0.0385 (15)
C21.0100 (14)0.7103 (6)0.1367 (4)0.0427 (13)
H2A0.92480.62870.11860.051*
H2B1.04720.69310.19640.051*
C30.7017 (11)0.8363 (9)0.1615 (5)0.059 (2)
H3A0.64230.74630.13810.070*
H3B0.62760.92090.13920.070*
C40.680 (3)0.834 (2)0.2552 (5)0.060 (3)0.50
C50.567 (2)0.7180 (17)0.2895 (9)0.100 (5)0.50
H50.50610.64940.25290.119*0.50
C60.545 (3)0.705 (2)0.3785 (10)0.124 (6)0.50
H60.46890.62760.40140.149*0.50
C70.636 (3)0.807 (2)0.4332 (5)0.127 (8)0.50
H70.62060.79860.49270.152*0.50
C80.749 (4)0.923 (2)0.3989 (9)0.135 (5)0.50
H80.80960.99150.43550.162*0.50
C90.771 (4)0.936 (2)0.3099 (10)0.108 (5)0.50
H90.84681.01330.28700.130*0.50
C4'0.704 (3)0.8030 (19)0.2550 (5)0.060 (3)0.50
C5'0.682 (3)0.6579 (16)0.2856 (9)0.100 (5)0.50
H5'0.66020.57980.24710.119*0.50
C6'0.691 (3)0.6296 (17)0.3739 (10)0.124 (6)0.50
H6'0.67550.53250.39430.149*0.50
C7'0.723 (3)0.746 (2)0.4315 (6)0.127 (8)0.50
H7'0.72880.72730.49050.152*0.50
C8'0.745 (4)0.891 (2)0.4009 (9)0.135 (5)0.50
H8'0.76670.96950.43950.162*0.50
C9'0.736 (4)0.9198 (16)0.3127 (10)0.108 (5)0.50
H9'0.75141.01680.29220.130*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0336 (4)0.0237 (3)0.0641 (4)0.0012 (3)0.0000.000
O10.041 (3)0.033 (3)0.070 (3)0.010 (2)0.012 (2)0.006 (3)
O20.048 (3)0.030 (2)0.070 (3)0.010 (2)0.006 (2)0.003 (2)
O30.037 (2)0.028 (2)0.068 (3)0.0084 (19)0.012 (2)0.008 (2)
C10.036 (4)0.027 (3)0.053 (4)0.006 (3)0.003 (3)0.005 (3)
C20.037 (3)0.028 (3)0.063 (3)0.007 (4)0.006 (6)0.004 (2)
C30.033 (4)0.056 (4)0.087 (6)0.016 (4)0.015 (4)0.008 (4)
C40.054 (6)0.054 (6)0.072 (5)0.009 (6)0.014 (4)0.012 (4)
C50.109 (10)0.098 (9)0.092 (7)0.006 (7)0.031 (7)0.016 (7)
C60.126 (11)0.126 (9)0.120 (8)0.006 (8)0.019 (8)0.020 (8)
C70.132 (11)0.134 (11)0.114 (9)0.012 (9)0.018 (8)0.004 (8)
C80.134 (9)0.152 (9)0.119 (8)0.005 (8)0.001 (7)0.031 (7)
C90.091 (9)0.122 (8)0.112 (7)0.008 (7)0.007 (6)0.025 (6)
C4'0.054 (6)0.054 (6)0.072 (5)0.009 (6)0.014 (4)0.012 (4)
C5'0.109 (10)0.098 (9)0.092 (7)0.006 (7)0.031 (7)0.016 (7)
C6'0.126 (11)0.126 (9)0.120 (8)0.006 (8)0.019 (8)0.020 (8)
C7'0.132 (11)0.134 (11)0.114 (9)0.012 (9)0.018 (8)0.004 (8)
C8'0.134 (9)0.152 (9)0.119 (8)0.005 (8)0.001 (7)0.031 (7)
C9'0.091 (9)0.122 (8)0.112 (7)0.008 (7)0.007 (6)0.025 (6)
Geometric parameters (Å, º) top
Cd1—O12.268 (4)C5—C61.3900
Cd1—O1i2.268 (4)C5—H50.9300
Cd1—O2ii2.226 (5)C6—C71.3900
Cd1—O2iii2.226 (5)C6—H60.9300
Cd1—O32.379 (4)C7—C81.3900
Cd1—O3i2.379 (4)C7—H70.9300
O1—C11.232 (8)C8—C91.3900
O2—C11.274 (7)C8—H80.9300
O2—Cd1iv2.226 (5)C9—H90.9300
O3—C21.414 (7)C4'—C5'1.3900
O3—C31.455 (8)C4'—C9'1.3900
C1—C21.488 (11)C5'—C6'1.3900
C2—H2A0.9700C5'—H5'0.9300
C2—H2B0.9700C6'—C7'1.3900
C3—C41.457 (11)C6'—H6'0.9300
C3—C4'1.477 (11)C7'—C8'1.3900
C3—H3A0.9700C7'—H7'0.9300
C3—H3B0.9700C8'—C9'1.3900
C4—C51.3900C8'—H8'0.9300
C4—C91.3900C9'—H9'0.9300
O1—Cd1—O1i161.2 (3)H3A—C3—H3B107.5
O1—Cd1—O2ii105.9 (2)C5—C4—C9120.0
O1—Cd1—O2iii87.2 (2)C5—C4—C3116.6 (12)
O1—Cd1—O369.6 (2)C9—C4—C3123.4 (12)
O1—Cd1—O3i95.5 (2)C6—C5—C4120.0
O1i—Cd1—O2ii87.2 (2)C6—C5—H5120.0
O1i—Cd1—O2iii105.9 (2)C4—C5—H5120.0
O1i—Cd1—O3i69.6 (2)C5—C6—C7120.0
O1i—Cd1—O395.5 (2)C5—C6—H6120.0
O2ii—Cd1—O2iii93.3 (3)C7—C6—H6120.0
O2ii—Cd1—O398.3 (2)C6—C7—C8120.0
O2ii—Cd1—O3i156.2 (2)C6—C7—H7120.0
O2iii—Cd1—O3156.2 (2)C8—C7—H7120.0
O2iii—Cd1—O3i98.3 (2)C9—C8—C7120.0
O3—Cd1—O3i79.1 (2)C9—C8—H8120.0
C1—O1—Cd1119.9 (4)C7—C8—H8120.0
C1—O2—Cd1iv127.8 (5)C8—C9—C4120.0
C2—O3—C3113.3 (6)C8—C9—H9120.0
C2—O3—Cd1114.5 (4)C4—C9—H9120.0
C3—O3—Cd1123.1 (4)C5'—C4'—C9'120.0
O1—C1—O2124.7 (6)C5'—C4'—C3121.4 (12)
O1—C1—C2121.5 (5)C9'—C4'—C3118.6 (12)
O2—C1—C2113.8 (6)C6'—C5'—C4'120.0
O3—C2—C1111.1 (5)C6'—C5'—H5'120.0
O3—C2—H2A109.4C4'—C5'—H5'120.0
C1—C2—H2A109.4C5'—C6'—C7'120.0
O3—C2—H2B109.4C5'—C6'—H6'120.0
C1—C2—H2B109.4C7'—C6'—H6'120.0
H2A—C2—H2B108.0C6'—C7'—C8'120.0
O3—C3—C4115.1 (10)C6'—C7'—H7'120.0
O3—C3—C4'109.0 (11)C8'—C7'—H7'120.0
O3—C3—H3A108.5C9'—C8'—C7'120.0
C4—C3—H3A108.5C9'—C8'—H8'120.0
C4'—C3—H3A101.8C7'—C8'—H8'120.0
O3—C3—H3B108.5C8'—C9'—C4'120.0
C4—C3—H3B108.5C8'—C9'—H9'120.0
C4'—C3—H3B120.9C4'—C9'—H9'120.0
O2ii—Cd1—O1—C178.1 (6)Cd1—O3—C2—C115.2 (7)
O2iii—Cd1—O1—C1170.7 (5)O1—C1—C2—O32.7 (10)
O1i—Cd1—O1—C154.5 (5)O2—C1—C2—O3178.2 (6)
O3i—Cd1—O1—C191.2 (6)C2—O3—C3—C476.0 (10)
O3—Cd1—O1—C115.0 (5)Cd1—O3—C3—C4139.0 (9)
O2ii—Cd1—O3—C288.3 (5)C2—O3—C3—C4'64.4 (10)
O2iii—Cd1—O3—C229.9 (7)Cd1—O3—C3—C4'150.7 (8)
O1i—Cd1—O3—C2176.3 (5)O3—C3—C4—C5128.2 (12)
O1—Cd1—O3—C215.6 (4)C4'—C3—C4—C565 (6)
O3i—Cd1—O3—C2115.7 (5)O3—C3—C4—C949.7 (12)
O2ii—Cd1—O3—C356.3 (6)C4'—C3—C4—C9113 (7)
O2iii—Cd1—O3—C3174.5 (5)C3—C4—C5—C6178.0 (15)
O1i—Cd1—O3—C331.7 (5)C3—C4—C9—C8177.8 (16)
O1—Cd1—O3—C3160.2 (6)O3—C3—C4'—C5'97.6 (15)
O3i—Cd1—O3—C399.7 (5)C4—C3—C4'—C5'141 (8)
Cd1—O1—C1—O2166.5 (5)O3—C3—C4'—C9'80.5 (10)
Cd1—O1—C1—C212.5 (9)C4—C3—C4'—C9'41 (7)
Cd1iv—O2—C1—O125.2 (10)C3—C4'—C5'—C6'178.1 (17)
Cd1iv—O2—C1—C2153.9 (4)C3—C4'—C9'—C8'178.1 (17)
C3—O3—C2—C1163.3 (6)
Symmetry codes: (i) x+2, y+2, z; (ii) x1/2, y+3/2, z; (iii) x+5/2, y+1/2, z; (iv) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Cd(C9H9O3)2]
Mr442.72
Crystal system, space groupOrthorhombic, P21212
Temperature (K)295
a, b, c (Å)6.7430 (2), 8.9449 (2), 15.4736 (4)
V3)933.30 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.33 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.693, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
5780, 1639, 1483
Rint0.039
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.09
No. of reflections1639
No. of parameters108
No. of restraints37
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.22, 0.88
Absolute structureFlack (1983), 501 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001); OLEX (Dolomanov et al., 2003).

Selected geometric parameters (Å, º) top
Cd1—O12.268 (4)Cd1—O2iii2.226 (5)
Cd1—O1i2.268 (4)Cd1—O32.379 (4)
Cd1—O2ii2.226 (5)Cd1—O3i2.379 (4)
O1—Cd1—O1i161.2 (3)O1i—Cd1—O395.5 (2)
O1—Cd1—O2ii105.9 (2)O2ii—Cd1—O2iii93.3 (3)
O1—Cd1—O2iii87.2 (2)O2ii—Cd1—O398.3 (2)
O1—Cd1—O369.6 (2)O2ii—Cd1—O3i156.2 (2)
O1—Cd1—O3i95.5 (2)O2iii—Cd1—O3156.2 (2)
O1i—Cd1—O2ii87.2 (2)O2iii—Cd1—O3i98.3 (2)
O1i—Cd1—O2iii105.9 (2)O3—Cd1—O3i79.1 (2)
O1i—Cd1—O3i69.6 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x1/2, y+3/2, z; (iii) x+5/2, y+1/2, z.
 

Acknowledgements

The authors thank Daqing Petroleum Institute and the University of Malaya for generously supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMak, T. C. W., Yip, H.-W., O'Reilly, E. J., Smith, G. & Kennard, C. H. L. (1985). Inorg. Chim. Acta, 100, 267–273.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds