Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, C11H10N4, mol­ecules form dimers , which form a zigzag pattern in the crystal. The hydrogen-bond network can be described by graph-set notation as R22(14).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023203/sg2161sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023203/sg2161Isup2.hkl
Contains datablock I

CCDC reference: 651532

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.047
  • Data-to-parameter ratio = 20.4

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level B PLAT021_ALERT_1_B Ratio Unique / Expected Reflections too High ... 1.19 PLAT411_ALERT_2_B Short Inter H...H Contact H1 .. H11 .. 2.06 Ang.
Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.660 Test value = 0.525 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT097_ALERT_2_C Maximum (Positive) Residual Density ............ 0.66 e/A    PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H1 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H2 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H3 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H4 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H5 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H6 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H8 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H9 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H10 PLAT166_ALERT_4_C S.U's Given on Coordinates for calc-flagged .... H11 PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 - C5 .. 5.63 su PLAT353_ALERT_3_C Long N-H Bond (0.87A) N2 - H2 ... 1.03 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

2-Pyridylhydrazone (2-pyridinylhydrazone 3-Pyridinecarboxaldehyde, I) belongs to the class of heterocyclic hydrazones, which have an anti-tuberculosis activity (Cory et al., 1994; Seydel et al., 1994). These compounds show some inhibitory activity towards ribonucleotide reductase and anticonvulsant activity as well (Popp, 1989). Crystal structure of (I) has not been solved before. Therefore the aim of the work was to fill this gap. A view of molecule (I) with the atomic numbering is presented in Fig 1. The parameters of the hydrogen bond geometry are shown in Table 1. The bond lengths are within the normal range of such bonds (Allen et al., 1987). The conformational state of the molecule in the crystal structure can be characterized in the following way. The torsion angle N1—C1—C2—C3, which characterizes the orientation of the one pyridine fragment Py1 [N4—C6–C2—C3—C4—C5] with respect to bridge group (C1—N1—N2), is 3.5 (2) °. At other side, he torsion angle C8—C7—N2—N1, which describes the orientation of the second pyridine ring Py2 [N3—C7–C8—C9—C10—C11] with respect to the bridge group, is 0.9 (2) °. The torsion angle C2–C1—N1—N2, which characterize a planarity of bridge group, is 178.86 (13) °. The pyridine fragments are rotated relatively o each other by 8.2 (2)°. The molecular packing architecture is shown in Figs. 2 & 3. The molecules of (I) form dimers by hydrogen bonds N2—H2···N3. The hydrogen-bond network can be described by the graph-set assignment introduced by Etter (1990) as R22(14). The dimers are packed in cups where interact to each other by van-der-Waals forces.

Related literature top

For related literature, see: Allen et al. (1987); Cory et al. (1994); Etter (1990); Popp (1989); Seydel et al. (1994).

Experimental top

The chemical synthesis of the title compound was performed by analogy to procedures described previously (Popp, 1989). Generally, the compound was recrystallized from methanol/water. The 2-Pyridylhydrazone crystal was grown by slow evaporation from methanol solution.

Structure description top

2-Pyridylhydrazone (2-pyridinylhydrazone 3-Pyridinecarboxaldehyde, I) belongs to the class of heterocyclic hydrazones, which have an anti-tuberculosis activity (Cory et al., 1994; Seydel et al., 1994). These compounds show some inhibitory activity towards ribonucleotide reductase and anticonvulsant activity as well (Popp, 1989). Crystal structure of (I) has not been solved before. Therefore the aim of the work was to fill this gap. A view of molecule (I) with the atomic numbering is presented in Fig 1. The parameters of the hydrogen bond geometry are shown in Table 1. The bond lengths are within the normal range of such bonds (Allen et al., 1987). The conformational state of the molecule in the crystal structure can be characterized in the following way. The torsion angle N1—C1—C2—C3, which characterizes the orientation of the one pyridine fragment Py1 [N4—C6–C2—C3—C4—C5] with respect to bridge group (C1—N1—N2), is 3.5 (2) °. At other side, he torsion angle C8—C7—N2—N1, which describes the orientation of the second pyridine ring Py2 [N3—C7–C8—C9—C10—C11] with respect to the bridge group, is 0.9 (2) °. The torsion angle C2–C1—N1—N2, which characterize a planarity of bridge group, is 178.86 (13) °. The pyridine fragments are rotated relatively o each other by 8.2 (2)°. The molecular packing architecture is shown in Figs. 2 & 3. The molecules of (I) form dimers by hydrogen bonds N2—H2···N3. The hydrogen-bond network can be described by the graph-set assignment introduced by Etter (1990) as R22(14). The dimers are packed in cups where interact to each other by van-der-Waals forces.

For related literature, see: Allen et al. (1987); Cory et al. (1994); Etter (1990); Popp (1989); Seydel et al. (1994).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SIR88 (Burla et al., 1989 Reference OK?); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. A view of I with the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Projection of crystal lattice molecular packing of (I) along OX axis.
[Figure 3] Fig. 3. Projection of crystal lattice molecular packing of (I) along OY axis.
Pyridine-3-carbaldehyde 2-pyridylhydrazone top
Crystal data top
C11H10N4F(000) = 416.00
Mr = 198.23Dx = 1.325 Mg m3
Monoclinic, P21/nMelting point: 449 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71070 Å
a = 10.896 (5) ÅCell parameters from 1851 reflections
b = 4.0270 (17) Åθ = 3.2–30.0°
c = 22.710 (9) ŵ = 0.09 mm1
β = 94.304 (8)°T = 293 K
V = 993.6 (7) Å3Prism, colorless
Z = 40.40 × 0.30 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
2273 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.037
ω scansθmax = 30.4°
Absorption correction: multi-scan
Jacobson (1998)
h = 1414
Tmin = 0.892, Tmax = 0.992k = 35
9025 measured reflectionsl = 3231
3614 independent reflections
Refinement top
Refinement on F Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979) 88.1628 106.9210 44.1569
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max = 0.006
wR(F2) = 0.048Δρmax = 0.66 e Å3
S = 0.97Δρmin = 0.52 e Å3
3614 reflectionsExtinction correction: Larson (1970) Crystallographic Computing eq. 22
177 parametersExtinction coefficient: 41 (21)
All H-atom parameters refined
Crystal data top
C11H10N4V = 993.6 (7) Å3
Mr = 198.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.896 (5) ŵ = 0.09 mm1
b = 4.0270 (17) ÅT = 293 K
c = 22.710 (9) Å0.40 × 0.30 × 0.10 mm
β = 94.304 (8)°
Data collection top
Rigaku Saturn
diffractometer
3614 independent reflections
Absorption correction: multi-scan
Jacobson (1998)
2273 reflections with F2 > 2σ(F2)
Tmin = 0.892, Tmax = 0.992Rint = 0.037
9025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045177 parameters
wR(F2) = 0.048All H-atom parameters refined
S = 0.97Δρmax = 0.66 e Å3
3614 reflectionsΔρmin = 0.52 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using reflections with F2 > 3.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58600 (12)0.1829 (3)0.62487 (5)0.0552 (4)
N20.57422 (12)0.2776 (3)0.56706 (5)0.0583 (4)
N30.64083 (11)0.2790 (3)0.47412 (5)0.0573 (4)
N40.39775 (16)0.1814 (4)0.80823 (6)0.0817 (6)
C10.49701 (17)0.2595 (4)0.65614 (6)0.0565 (5)
C20.50216 (14)0.1730 (4)0.71847 (6)0.0508 (5)
C30.60286 (18)0.0237 (4)0.74843 (6)0.0572 (5)
C40.6002 (2)0.0391 (4)0.80754 (8)0.0679 (6)
C50.4975 (2)0.0415 (5)0.83536 (9)0.0752 (7)
C60.40282 (18)0.2461 (5)0.75060 (8)0.0685 (6)
C70.66146 (14)0.1757 (4)0.53006 (6)0.0501 (5)
C80.76185 (16)0.0184 (4)0.54956 (8)0.0579 (5)
C90.84375 (19)0.1077 (4)0.50947 (9)0.0680 (6)
C100.82507 (18)0.0028 (4)0.45175 (8)0.0669 (6)
C110.72443 (17)0.1861 (4)0.43666 (8)0.0614 (6)
H10.4229 (13)0.386 (3)0.6392 (5)0.059 (4)*
H20.4999 (17)0.419 (4)0.5523 (7)0.101 (6)*
H30.6766 (12)0.036 (3)0.7269 (5)0.058 (4)*
H40.6726 (14)0.133 (4)0.8288 (6)0.075 (5)*
H50.4973 (14)0.002 (4)0.8809 (7)0.092 (5)*
H60.3308 (14)0.349 (3)0.7279 (6)0.078 (5)*
H80.7715 (12)0.100 (3)0.5907 (6)0.061 (4)*
H90.9192 (14)0.251 (4)0.5233 (6)0.078 (5)*
H100.8840 (13)0.067 (3)0.4231 (6)0.069 (4)*
H110.7058 (13)0.271 (3)0.3930 (6)0.071 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0598 (9)0.0669 (10)0.0390 (7)0.0061 (7)0.0043 (6)0.0036 (6)
N20.0522 (9)0.0841 (11)0.0390 (7)0.0041 (8)0.0049 (7)0.0107 (7)
N30.0558 (8)0.0752 (10)0.0411 (7)0.0023 (7)0.0056 (6)0.0025 (7)
N40.0849 (12)0.1059 (13)0.0575 (10)0.0055 (10)0.0267 (9)0.0024 (9)
C10.0503 (11)0.0746 (14)0.0447 (10)0.0025 (10)0.0046 (8)0.0070 (9)
C20.0500 (10)0.0583 (11)0.0445 (8)0.0014 (8)0.0070 (8)0.0002 (8)
C30.0602 (11)0.0648 (12)0.0472 (10)0.0018 (10)0.0072 (9)0.0035 (9)
C40.0756 (14)0.0746 (13)0.0529 (12)0.0008 (11)0.0003 (11)0.0077 (10)
C50.0966 (17)0.0823 (15)0.0478 (11)0.0209 (13)0.0121 (12)0.0046 (11)
C60.0600 (12)0.0914 (16)0.0552 (11)0.0032 (11)0.0129 (10)0.0052 (11)
C70.0486 (10)0.0576 (11)0.0445 (9)0.0085 (9)0.0056 (8)0.0009 (8)
C80.0608 (12)0.0626 (12)0.0499 (10)0.0022 (9)0.0026 (9)0.0042 (10)
C90.0669 (13)0.0690 (14)0.0688 (13)0.0071 (10)0.0104 (10)0.0033 (10)
C100.0723 (14)0.0683 (13)0.0626 (11)0.0054 (11)0.0224 (10)0.0035 (10)
C110.0668 (12)0.0700 (13)0.0483 (10)0.0022 (10)0.0107 (9)0.0009 (9)
Geometric parameters (Å, º) top
N1—N21.3640 (16)C8—C91.370 (2)
N1—C11.282 (2)C9—C101.378 (2)
N2—C71.378 (2)C10—C111.357 (2)
N3—C71.3396 (19)N2—H21.026 (18)
N3—C111.345 (2)C1—H11.007 (14)
N4—C51.334 (2)C3—H31.001 (14)
N4—C61.340 (2)C4—H40.971 (15)
C1—C21.455 (2)C5—H51.048 (17)
C2—C31.384 (2)C6—H60.996 (15)
C2—C61.382 (2)C8—H80.988 (14)
C3—C41.368 (2)C9—H91.034 (16)
C4—C51.364 (3)C10—H100.981 (15)
C7—C81.390 (2)C11—H111.054 (14)
N2—N1—C1116.45 (13)C7—N2—H2122.0 (9)
N1—N2—C7118.97 (13)N1—C1—H1122.0 (8)
C7—N3—C11116.11 (13)C2—C1—H1117.6 (8)
C5—N4—C6116.20 (18)C2—C3—H3120.0 (7)
N1—C1—C2120.39 (15)C4—C3—H3120.8 (7)
C1—C2—C3123.61 (15)C3—C4—H4118.9 (9)
C1—C2—C6119.24 (15)C5—C4—H4121.8 (9)
C3—C2—C6117.15 (15)N4—C5—H5117.3 (8)
C2—C3—C4119.20 (17)C4—C5—H5119.0 (8)
C3—C4—C5119.28 (19)N4—C6—H6119.8 (9)
N4—C5—C4123.69 (18)C2—C6—H6115.7 (9)
N4—C6—C2124.47 (17)C7—C8—H8120.8 (8)
N2—C7—N3114.31 (13)C9—C8—H8120.9 (8)
N2—C7—C8122.40 (14)C8—C9—H9119.2 (8)
N3—C7—C8123.29 (15)C10—C9—H9121.1 (8)
C7—C8—C9118.19 (16)C9—C10—H10119.5 (8)
C8—C9—C10119.65 (18)C11—C10—H10122.4 (8)
C9—C10—C11118.10 (18)N3—C11—H11114.5 (8)
N3—C11—C10124.66 (16)C10—C11—H11120.9 (8)
N1—N2—H2119.0 (9)
N2—N1—C1—C2179.10 (14)C1—C2—C3—C4178.10 (17)
C1—N1—N2—C7174.09 (15)C1—C2—C6—N4179.27 (17)
N1—N2—C7—N3179.33 (13)C3—C2—C6—N40.2 (2)
N1—N2—C7—C80.5 (2)C6—C2—C3—C41.0 (2)
C7—N3—C11—C100.5 (2)C2—C3—C4—C51.2 (2)
C11—N3—C7—N2179.64 (14)C3—C4—C5—N40.2 (3)
C11—N3—C7—C80.5 (2)N2—C7—C8—C9179.95 (14)
C5—N4—C6—C21.1 (2)N3—C7—C8—C90.1 (2)
C6—N4—C5—C40.8 (3)C7—C8—C9—C100.4 (2)
N1—C1—C2—C33.7 (2)C8—C9—C10—C110.4 (2)
N1—C1—C2—C6177.31 (16)C9—C10—C11—N30.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i1.026 (18)2.012 (18)3.0371 (18)176.5 (13)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H10N4
Mr198.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.896 (5), 4.0270 (17), 22.710 (9)
β (°) 94.304 (8)
V3)993.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
Jacobson (1998)
Tmin, Tmax0.892, 0.992
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9025, 3614, 2273
Rint0.037
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.048, 0.97
No. of reflections3614
No. of parameters177
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.66, 0.52

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), CrystalClear, CrystalStructure (Molecular Structure Corporation & Rigaku, 2005), SIR88 (Burla et al., 1989 Reference OK?), CRYSTALS (Watkin et al., 1996), CrystalStructure.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i1.026 (18)2.012 (18)3.0371 (18)176.5 (13)
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds