Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new tetra­nuclear mixed-valence cobalt complex, namely di-[mu]2-azido-di­azido­diethanol­bis­{[mu]2-2-[(hy­droxy­imino)­methyl]-6-methoxy­phenolato}bis{[mu]3-6-meth­oxy-2-[(oxido­imino)­methyl]­phenolato}dicobalt(II)dicobalt(III) ethanol disolvate, [CoII2CoIII2(C8H7NO3)2(C8H8NO3)2(N3)4(C2H5OH)2]·2C2H5OH, has been synthesized by the reaction of Co(OAc)2·4H2O (OAc is acetate) with 3-meth­oxy­salicylaldoxime (H2mosao) in an ethanol solution. In the complex, the four Co cations all display distorted octa­hedral coordination environments and they are bridged by two [kappa]2,[kappa]1,[kappa]1;[mu]3-mosao2- ligands, two [kappa]2,[kappa]2;[mu]2-Hmosao- ligands and two [mu]2-N3- anions to form a tetra­nuclear [Co4N4O4] cluster. Adjacent clusters are connected through weak C-H...N and C-H...O inter­actions, resulting in a two-dimensional supra­molecular network parallel to the ac plane. The magnetic properties of the complex have also been studied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614005245/sf3224sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614005245/sf3224Isup2.hkl
Contains datablock I

CCDC reference: 990518

Introduction top

There are many reasons for the continuing inter­est in the synthesis and study of multinuclear 3d molecular metal clusters (Koumousi et al., 2013). In particular, clusters containing MnIII, FeIII, CoII and NiII usually show fascinating structures and attractive magnetic properties, containing high-spin (S) ground-state values and single-molecule magnetic (SMM) behaviour (Aromi & Brechin, 2006). Owing to their strong coordination ability (Milions et al., 2006; Chaudhuri, 2003; Kukushkin & Pombeiro, 1999) and multiple coordination modes, oxime ligands, as old and evergreen ligands, can easily coordinate to metal cations to form complexes with five- or six-membered rings, as well as mono-, di- and multinuclear complexes with inter­esting structures. These complexes have potential applications in organic chemistry, coordination chemistry and materials and biological science, due to their special chemical properties, biological activities and magnetic properties (Koumousi et al., 2012; Hołyńska et al., 2013; Esteban et al., 2012). Therefore, studies of oxime coordination complexes are significant. Given these considerations, we were inter­ested in the syntheses and properties of oxime coordination complexes and reported a novel enneanuclear manganese coordination complex, [Mn9O4(Me-sao)6(MeO)3(O2CMe)3(OH)(MeOH)2].2.5DMF (Me-saoH2 = 2-hy­droxy­phenyl­ethano­neoxime and DMF is di­methyl­formamide), which contains 9-MC-3 and 15-MC-6 (MC denotes a metallacrown) onset-stacked MCs and shows SMM properties (Wang et al., 2011). As part of our continuing investigation of oxime coordination complexes, we have now synthesized a new cobalt complex, [Co2IICo2III(mosao)2(Hmosao)2(N3)4(EtOH)2].2EtOH, (I), which is a novel example of a mixed-valence Co4 cluster coordinated by oxime ligands, from the reaction of Co(OAc)2.4H2O (OAc is acetate) with the polydentate 3-meth­oxy­salicylaldoxime (H2mosao) ligand in ethanol solution through the solvent evaporation method.

Experimental top

Synthesis and crystallization top

All analytical grade chemicals were obtained commercially and used without further purification. H2mosao was synthesized as described in the literature (Xu et al. 2004). Complex (I) was prepared by the solvent evaporation method. H2mosao (0.0334 g, 0.2 mmol) and Co(OAc)2.4H2O (OAc is acetate; 0.0498 g, 0.2 mmol) were dissolved in ethanol (20 ml). The solution was then stirred for 0.5 h and NaN3 (0.0130 g, 0.2 mmol) was added. After stirring for 6 h, the solution was filtered and the filtrate was left undisturbed to give black crystals of (I) (yield 0.0266 g, 42.6% based on Co). Analysis, calculated for C40H54Co4N16O16 (%): H 4.35, C 38.41, N 17.92; found: H 4.42, C 38.37, N 17.88.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms of the H2mosao and hy­droxy groups were located in difference Fourier maps but were allowed to ride in the refinement, with aryl C—H = 0.93 Å and O—H = 0.85 Å, and Uiso(H) = 1.2Ueq(C,O), and with methyl C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The remaining H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with methyl­ene C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), and with methyl C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Results and discussion top

As shown in Fig. 1, in complex (I) the asymmetric unit contains two crystallographically independent cobalt cations (Co1 and Co2), one mosao2- ligand, one Hmosao- ligand, two N3- anions, one coordinated ethanol molecule and one free ethanol molecule. Atom Co1 is present in a distorted six-coordinated o­cta­hedral coordination environment, where the equatorial plane is occupied by two phenolate O atoms (O2 and O5), and by two oxime N atoms (N1 and N8) from one mosao2- ligand and one Hmosao- ligand. The axial positions are occupied by two N atoms (N2 and N5) from two N3- anions. Atom Co2 also adopts a distorted o­cta­hedral geometry and exhibits an NO5 environment, utilizing two O atoms (O5 and O6) from one Hmosao- ligand, two O atoms [O1 and O1i; symmetry code: (i) -x + 1, -y + 1, -z + 1] from two mosao2- ligands, one N atom (N2i) from an N3- anion and one O atom (O7) from an ethanol molecule. The mosao2- ligand bridges three Co centres (Co1, Co2 and Co2i) through phenolate and oxime O atoms, adopting a [κ2,κ1,κ13-mosao]2- coordination mode (shown in Fig. 2a). The Hmosao- ligand bridges two Co centres (Co1 and Co2) through phenolate O, oxime N and meth­oxy O atoms, adopting a [κ2,κ22-Hmosao]- coordination mode (shown in Fig. 2b). There are two kinds of N3- anion, one of which bridges Co1 and Co2i through one N atom, adopting a µ2-coordination mode, while the other coordinates to Co1 as a monodentate terminal ligand. Thus, atoms Co1 and Co2 and their symmetry-related counterparts (Co1i and Co2i) are connected by two mosao2- ligands, two Hmosao- ligands and two µ2-N3- anions to form a tetra­nuclear [Co4N4O4] cluster.

The Co—O and Co—N bond lengths for atom Co1 (Table 2) average 1.927 Å, which is close to the previously reported bond lengths for CoIII cations (Ferguson et al., 2007; Chibotaru et al., 2008), indicating that Co1 is in a 3+ valence state. The Co—O and Co—N bond lengths for Co2 (Table 2) average 2.074 Å, which is close to the previously reported bond lengths for CoII cations (Ferguson et al., 2007; Chibotaru et al., 2008), suggesting that Co2 has a 2+ valence state. In order to confirm these valence-state attributions, bond-valence sum (BVS) calculations (Brown & Altermatt, 1985; Thorp, 1992) were performed for these two Co centres. The BVS calculation for Co1 (3.38) indicates a 3+ valence state, whereas that for Co2 (2.09) agrees with a 2+ valence state. As the complex is neutral, it follows from the charge balance that two H2mosao ligands should be mono-deprotonated (i.e. Hmosao-) and the other two should be doubly deprotonated (i.e. mosao2-), leading to the formula [CoII2CoIII2(mosao)2(Hmosao)2(N3)4(EtOH)2].2EtOH. To confirm the above conclusion further, BVS calculations were performed for the O atoms of the hy­droxy groups of the H2mosao ligands, which revealed minor deviations from the expected values of 2 valence units (v.u.) for atoms O1 (1.68), O2 (1.85) and O5 (2.05) and 1 v.u. for atom O4 (0.94). Thus, uncoordinated atom O4 is protonated, which is similar to previously reported results (Guo et al., 2011).

Among the previously reported cobalt complexes, most Co4 clusters are based on carbonyl ligands (Fliedel et al. 2010; De Silva et al. 2001; Darensbourg et al. 1986). However, oxime ligands usually coordinate to cobalt to form mononuclear complexes (Karabocek et al., 2012; Dutta & Gupta, 2011) and examples of multinuclear complexes are relatively scarce (Stamatatos et al. 2005, 2007). In addition, Co cations exist in a single oxidation state (CoII or CoIII) in most cobalt complexes based on oxime ligands (Liu et al. 2003; Wei et al., 2011). Complex (I) is a novel example of mixed-valence Co4 cluster coordinated by oxime ligands.

Complex (I) shows a two-dimensional supra­molecular network formed by weak C—H···N and C—H···O inter­actions. As shown in Fig. 3, adjacent clusters are connected to each other by weak C—H···N inter­actions and extend along the a axis to give a supra­molecular chain, with C···N3ii = 3.567 (12) Å [symmetry code: (ii) x - 1, y, z]. Adjacent supra­molecular chains are further linked by weak C—H···O inter­actions and expand along the c axis to yield a two-dimensional supra­molecular network. The C8···O4iii distance is 3.231 (12) Å [symmetry code: (iii) -x, -y, -z]. In addition, there are two kinds of hydrogen bond (O8—H8···N5 and O7—H7A···O8) between the Co4 cluster and the free ethanol molecule (Fig. 4). The O8···N5 and O7···O8 distances are 2.969 (10) and 2.619 (10) Å, respectively. Full geometric details of the hydrogen bonds are given in Table 3.

On the basis of the structure of (I), the only unpaired electrons will be on the CoII centres, as the CoIII ions are low-spin (t2g6, S = 0). Therefore, from a magnetic viewpoint, the complex is effectively dinuclear (Stamatatos et al., 2005). Direct-current magnetic susceptibility measurements were performed on polycrystalline samples of (I) in the temperature range 2–300 K in an applied field of 0.1 T. As shown in Fig. 5, the value of χMT at 300 K is equal to 6.00 cm3 mol-1 K (3.00 cm3 mol-1 K per CoII), which is within the usual range for o­cta­hedral CoII in the 4T1g state (Murrie, 2010; Lloret et al., 2008). Upon lowering the temperature, χMT remains nearly constant until approximately 160 K. Below 160 K, a slight increase up to a maximum of 6.29 cm3 mol-1 K at 48 K and a drop to 3.19 cm3 mol-1 K at 2 K are observed. The increase in χMT reveals prevailing ferromagnetic inter­actions between the CoII centres. The 1/χM = f(T) curve fits well the Curie–Weiss law at high temperature (50–300 K), with C = 5.92 cm3 mol-1 K and θ = 2.93 K (Fig. 5, inset). The positive θ value also indicates ferromagnetic inter­actions between the two CoII centres. The final decrease is caused by zero-field splitting effects and/or weak inter­molecular anti­ferromagnetic inter­actions.

In summary, a new tetra­nuclear mixed-valence cobalt complex, (I), has been synthesized through the solvent evaporation method. The complex contains two CoII cations and two CoIII cations. The four Co cations all display distorted six-coordinated o­cta­hedral coordination environments and are bridged by two [κ2,κ1,κ13-mosao]2- ligands, two [κ2,κ22-Hmosao]- ligands and two µ2-N3- anions to form a tetra­nuclear [Co4N4O4] cluster. Adjacent clusters are connected through weak C—H···N and C—H···O inter­actions, resulting in a two-dimensional supra­molecular network parallel to the ac plane.

Related literature top

For related literature, see:Aromi & Brechin (2006); Brown & Altermatt (1985); Chaudhuri (2003); Chibotaru et al. (2008); Darensbourg et al. (1986); De Silva et al. (2001); Dutta & Gupta (2011); Esteban et al. (2012); Ferguson et al. (2007); Fliedel et al. (2010); Hołyńska et al. (2013); Karabocek et al. (2012); Koumousi et al. (2012, 2013); Kukushkin & Pombeiro (1999); Liu et al. (2003); Milions et al. (2006); Thorp (1992); Stamatatos et al. (2005, 2007); Wang et al. (2011); Wei et al. (2011); Xu et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The coordination modes of (a) the mosao2- ligand and (b) the Hmosao- ligand.
[Figure 3] Fig. 3. The two-dimensional supramolecular network of complex (I). Dashed lines indicate hydrogen bonds. [Symmetry codes: (ii) x - 1, y, z; (iii) -x, -y, -z.]
[Figure 4] Fig. 4. The hydrogen bonds (dashed lines) between the Co4 cluster and the free ethanol molecule.
[Figure 5] Fig. 5. The temperature dependence of χMT and 1/χM (inset) for complex (I). Colour code: measured values, black; calculated curve, red.
Di-µ2-azido-diazidodiethanolbis{µ2-2-[(hydroxyimino)methyl]-6-methoxyphenolato}bis{µ3-2-[(oxidoimino)methyl]-6-methoxyphenolato}dicobalt(II)dicobalt(III) ethanol disolvate top
Crystal data top
[Co4(C8H7NO3)2(C8H8NO3)2(N3)4(C2H6O)2]·2C2H6OZ = 1
Mr = 1250.71F(000) = 642
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.605 (7) ÅCell parameters from 931 reflections
b = 10.749 (7) Åθ = 2.2–21.7°
c = 13.010 (9) ŵ = 1.36 mm1
α = 91.524 (11)°T = 298 K
β = 107.539 (10)°Block, black
γ = 93.855 (10)°0.21 × 0.12 × 0.07 mm
V = 1276.3 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4419 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.763, Tmax = 0.911k = 712
6405 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
4419 reflections(Δ/σ)max = 0.003
353 parametersΔρmax = 0.57 e Å3
3 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Co4(C8H7NO3)2(C8H8NO3)2(N3)4(C2H6O)2]·2C2H6Oγ = 93.855 (10)°
Mr = 1250.71V = 1276.3 (15) Å3
Triclinic, P1Z = 1
a = 9.605 (7) ÅMo Kα radiation
b = 10.749 (7) ŵ = 1.36 mm1
c = 13.010 (9) ÅT = 298 K
α = 91.524 (11)°0.21 × 0.12 × 0.07 mm
β = 107.539 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4419 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2144 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.911Rint = 0.058
6405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0633 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.57 e Å3
4419 reflectionsΔρmin = 0.62 e Å3
353 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.31990 (11)0.37207 (9)0.28225 (8)0.0316 (3)
Co20.48291 (11)0.62148 (9)0.44723 (8)0.0316 (3)
N10.2476 (7)0.4263 (5)0.3953 (5)0.0329 (16)
N20.4660 (7)0.2903 (6)0.3983 (5)0.0377 (17)
N30.4717 (7)0.1788 (7)0.3861 (5)0.0386 (17)
N40.4791 (9)0.0735 (7)0.3738 (6)0.066 (2)
N50.1814 (8)0.4664 (6)0.1783 (5)0.047 (2)
N60.0900 (8)0.4107 (6)0.1048 (6)0.0504 (19)
N70.0010 (10)0.3587 (8)0.0354 (6)0.088 (3)
N80.3885 (7)0.3070 (6)0.1684 (5)0.0410 (18)
O10.3453 (5)0.4931 (4)0.4826 (4)0.0331 (13)
O20.1930 (5)0.2284 (4)0.2579 (4)0.0372 (13)
O30.0106 (6)0.0481 (5)0.1475 (4)0.0573 (17)
O40.3189 (7)0.1964 (6)0.1148 (5)0.0611 (18)
H4A0.260 (8)0.185 (8)0.150 (6)0.073*
O50.4567 (5)0.5176 (4)0.3076 (4)0.0320 (12)
O60.6325 (6)0.7183 (4)0.3801 (4)0.0426 (14)
O70.3360 (7)0.7451 (6)0.3747 (4)0.0501 (15)
H7A0.326 (9)0.744 (8)0.3083 (16)0.060*
O80.2758 (11)0.7325 (7)0.1642 (6)0.111 (3)
H80.207 (9)0.676 (9)0.148 (10)0.133*
C10.0143 (9)0.3062 (7)0.3314 (6)0.040 (2)
C20.0575 (9)0.2228 (7)0.2650 (6)0.038 (2)
C30.0446 (9)0.1256 (7)0.2075 (6)0.040 (2)
C40.1835 (10)0.1149 (8)0.2144 (7)0.058 (3)
H40.25000.05070.17590.070*
C50.2263 (10)0.2015 (9)0.2802 (8)0.067 (3)
H50.32130.19420.28460.080*
C60.1282 (9)0.2971 (8)0.3384 (7)0.054 (3)
H60.15670.35430.38150.065*
C70.1210 (6)0.3976 (5)0.4027 (5)0.037 (2)
H70.09430.43770.45740.044*
C80.0795 (6)0.0604 (5)0.0950 (5)0.073 (3)
H8A0.11000.10760.14720.110*
H8B0.02480.11100.06170.110*
H8C0.16410.03560.04090.110*
C90.5779 (9)0.4673 (8)0.1744 (6)0.047 (2)
C100.5617 (8)0.5414 (7)0.2598 (6)0.038 (2)
C110.6599 (9)0.6477 (7)0.2967 (6)0.041 (2)
C120.7683 (10)0.6792 (8)0.2536 (7)0.063 (3)
H120.83250.74930.28070.076*
C130.7832 (11)0.6055 (8)0.1676 (8)0.072 (3)
H130.85630.62690.13640.087*
C140.6895 (10)0.5023 (9)0.1303 (8)0.067 (3)
H140.70010.45350.07340.080*
C150.4884 (9)0.3535 (8)0.1312 (7)0.048 (2)
H150.50440.31160.07280.058*
C160.7177 (10)0.8318 (7)0.4188 (7)0.068 (3)
H16A0.81920.81600.44540.101*
H16B0.68780.86840.47610.101*
H16C0.70390.88810.36110.101*
C170.1994 (11)0.7570 (10)0.3958 (9)0.080 (3)
H17A0.20640.72640.46650.097*
H17B0.12330.70490.34300.097*
C180.1577 (12)0.8835 (10)0.3922 (10)0.101 (4)
H18A0.23690.93720.43860.151*
H18B0.07270.88750.41610.151*
H18C0.13570.91010.31960.151*
C190.3144 (17)0.7972 (17)0.0928 (11)0.170 (8)
H19A0.22960.84000.05460.204*
H19B0.32990.73720.04110.204*
C200.4329 (14)0.8852 (11)0.1172 (10)0.115 (5)
H20A0.44750.92330.18760.173*
H20B0.41450.94800.06470.173*
H20C0.51910.84540.11630.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0354 (7)0.0309 (7)0.0251 (6)0.0074 (5)0.0065 (5)0.0047 (5)
Co20.0381 (7)0.0288 (7)0.0242 (6)0.0073 (5)0.0064 (5)0.0034 (5)
N10.032 (4)0.034 (4)0.029 (4)0.008 (3)0.007 (3)0.005 (3)
N20.043 (4)0.026 (4)0.041 (4)0.001 (3)0.010 (3)0.006 (3)
N30.050 (5)0.032 (4)0.036 (4)0.002 (4)0.017 (3)0.002 (4)
N40.084 (6)0.040 (5)0.070 (6)0.009 (5)0.020 (5)0.008 (4)
N50.055 (5)0.043 (5)0.033 (4)0.010 (4)0.001 (4)0.012 (3)
N60.054 (5)0.042 (5)0.052 (5)0.002 (4)0.010 (4)0.014 (4)
N70.094 (7)0.074 (7)0.060 (6)0.025 (5)0.024 (5)0.008 (5)
N80.051 (5)0.033 (4)0.034 (4)0.014 (3)0.011 (4)0.014 (3)
O10.041 (3)0.030 (3)0.023 (3)0.011 (2)0.005 (2)0.003 (2)
O20.033 (3)0.038 (3)0.037 (3)0.013 (3)0.010 (3)0.008 (2)
O30.066 (4)0.051 (4)0.048 (4)0.029 (3)0.015 (3)0.017 (3)
O40.075 (5)0.050 (4)0.060 (4)0.021 (3)0.032 (4)0.034 (3)
O50.034 (3)0.028 (3)0.034 (3)0.005 (2)0.013 (3)0.002 (2)
O60.052 (4)0.035 (3)0.040 (3)0.015 (3)0.018 (3)0.010 (3)
O70.050 (4)0.053 (4)0.048 (4)0.002 (3)0.016 (3)0.004 (3)
O80.168 (9)0.084 (7)0.047 (5)0.028 (5)0.011 (5)0.010 (4)
C10.036 (5)0.040 (5)0.043 (5)0.012 (4)0.013 (4)0.006 (4)
C20.034 (5)0.046 (5)0.031 (5)0.006 (4)0.006 (4)0.002 (4)
C30.047 (6)0.049 (6)0.021 (4)0.020 (4)0.010 (4)0.004 (4)
C40.050 (6)0.057 (6)0.058 (6)0.034 (5)0.012 (5)0.008 (5)
C50.045 (6)0.081 (8)0.066 (7)0.018 (5)0.012 (5)0.012 (6)
C60.048 (6)0.062 (6)0.052 (6)0.007 (5)0.017 (5)0.014 (5)
C70.038 (5)0.036 (5)0.036 (5)0.009 (4)0.013 (4)0.002 (4)
C80.087 (8)0.061 (7)0.066 (7)0.036 (6)0.028 (6)0.023 (5)
C90.058 (6)0.048 (6)0.040 (5)0.015 (5)0.029 (5)0.011 (4)
C100.040 (5)0.038 (5)0.034 (5)0.007 (4)0.011 (4)0.002 (4)
C110.050 (6)0.037 (5)0.036 (5)0.008 (4)0.018 (4)0.003 (4)
C120.066 (7)0.060 (7)0.068 (7)0.027 (5)0.035 (6)0.013 (5)
C130.082 (8)0.060 (7)0.088 (8)0.032 (6)0.056 (7)0.015 (6)
C140.074 (7)0.058 (7)0.081 (8)0.016 (5)0.049 (6)0.011 (5)
C150.053 (6)0.054 (6)0.045 (6)0.006 (5)0.029 (5)0.009 (4)
C160.084 (8)0.041 (6)0.076 (7)0.029 (5)0.030 (6)0.014 (5)
C170.071 (8)0.077 (9)0.102 (9)0.016 (6)0.037 (7)0.014 (7)
C180.082 (9)0.069 (9)0.156 (13)0.017 (7)0.040 (9)0.004 (8)
C190.154 (15)0.25 (2)0.074 (10)0.112 (14)0.012 (10)0.025 (11)
C200.116 (12)0.096 (10)0.115 (11)0.014 (9)0.012 (9)0.023 (8)
Geometric parameters (Å, º) top
Co1—O21.860 (5)C2—C31.411 (10)
Co1—N11.900 (6)C3—C41.362 (11)
Co1—N81.927 (6)C4—C51.411 (11)
Co1—O51.928 (5)C4—H40.9300
Co1—N51.948 (7)C5—C61.384 (11)
Co1—N21.995 (7)C5—H50.9300
Co2—O12.005 (5)C6—H60.9300
Co2—O72.041 (6)C7—H70.9300
Co2—O52.047 (5)C8—H8A0.9600
Co2—N2i2.103 (6)C8—H8B0.9600
Co2—O1i2.121 (5)C8—H8C0.9600
Co2—O62.124 (5)C9—C141.397 (10)
Co2—Co2i2.975 (3)C9—C101.403 (10)
N1—C71.267 (7)C9—C151.443 (10)
N1—O11.382 (6)C10—C111.406 (10)
N2—N31.212 (8)C11—C121.354 (10)
N2—Co2i2.103 (6)C12—C131.402 (11)
N3—N41.148 (8)C12—H120.9300
N5—N61.199 (8)C13—C141.360 (11)
N6—N71.151 (9)C13—H130.9300
N8—C151.278 (9)C14—H140.9300
N8—O41.384 (7)C15—H150.9300
O1—Co2i2.121 (5)C16—H16A0.9600
O2—C21.330 (8)C16—H16B0.9600
O3—C31.362 (9)C16—H16C0.9600
O3—C81.429 (7)C17—C181.441 (12)
O4—H4A0.840 (10)C17—H17A0.9700
O5—C101.349 (8)C17—H17B0.9700
O6—C111.406 (8)C18—H18A0.9600
O6—C161.413 (8)C18—H18B0.9600
O7—C171.432 (10)C18—H18C0.9600
O7—H7A0.839 (10)C19—C201.383 (14)
O8—C191.301 (14)C19—H19A0.9700
O8—H80.839 (10)C19—H19B0.9700
C1—C21.396 (10)C20—H20A0.9600
C1—C61.396 (10)C20—H20B0.9600
C1—C71.455 (8)C20—H20C0.9600
O2—Co1—N190.1 (2)C4—C3—C2120.8 (8)
O2—Co1—N886.6 (2)O3—C3—C2113.6 (7)
N1—Co1—N8176.5 (3)C3—C4—C5119.8 (8)
O2—Co1—O5178.1 (2)C3—C4—H4120.1
N1—Co1—O591.2 (2)C5—C4—H4120.1
N8—Co1—O592.1 (2)C6—C5—C4120.7 (9)
O2—Co1—N593.8 (2)C6—C5—H5119.7
N1—Co1—N591.4 (3)C4—C5—H5119.7
N8—Co1—N590.0 (3)C5—C6—C1118.9 (8)
O5—Co1—N587.6 (2)C5—C6—H6120.5
O2—Co1—N290.2 (2)C1—C6—H6120.5
N1—Co1—N284.8 (3)N1—C7—C1124.5 (6)
N8—Co1—N294.1 (3)N1—C7—H7117.8
O5—Co1—N288.5 (2)C1—C7—H7117.8
N5—Co1—N2174.4 (2)O3—C8—H8A109.5
O1—Co2—O799.1 (2)O3—C8—H8B109.5
O1—Co2—O587.59 (18)H8A—C8—H8B109.5
O7—Co2—O594.2 (2)O3—C8—H8C109.5
O1—Co2—N2i91.5 (2)H8A—C8—H8C109.5
O7—Co2—N2i94.5 (2)H8B—C8—H8C109.5
O5—Co2—N2i171.3 (2)C14—C9—C10118.8 (7)
O1—Co2—O1i87.8 (2)C14—C9—C15117.5 (7)
O7—Co2—O1i173.1 (2)C10—C9—C15123.7 (7)
O5—Co2—O1i85.44 (18)O5—C10—C9123.9 (7)
N2i—Co2—O1i85.9 (2)O5—C10—C11118.2 (7)
O1—Co2—O6164.47 (18)C9—C10—C11117.9 (7)
O7—Co2—O686.8 (2)C12—C11—C10122.4 (7)
O5—Co2—O677.60 (18)C12—C11—O6123.7 (7)
N2i—Co2—O6102.5 (2)C10—C11—O6113.9 (7)
O1i—Co2—O686.4 (2)C11—C12—C13119.5 (8)
O1—Co2—Co2i45.44 (15)C11—C12—H12120.2
O7—Co2—Co2i144.54 (18)C13—C12—H12120.2
O5—Co2—Co2i85.12 (15)C14—C13—C12119.2 (8)
N2i—Co2—Co2i88.06 (19)C14—C13—H13120.4
O1i—Co2—Co2i42.34 (13)C12—C13—H13120.4
O6—Co2—Co2i127.23 (16)C13—C14—C9122.2 (8)
C7—N1—O1116.4 (5)C13—C14—H14118.9
C7—N1—Co1125.8 (4)C9—C14—H14118.9
O1—N1—Co1117.4 (4)N8—C15—C9123.9 (7)
N3—N2—Co1116.9 (5)N8—C15—H15118.1
N3—N2—Co2i121.5 (5)C9—C15—H15118.1
Co1—N2—Co2i114.9 (3)O6—C16—H16A109.5
N4—N3—N2178.7 (8)O6—C16—H16B109.5
N6—N5—Co1118.8 (6)H16A—C16—H16B109.5
N7—N6—N5177.9 (10)O6—C16—H16C109.5
C15—N8—O4113.4 (6)H16A—C16—H16C109.5
C15—N8—Co1129.2 (5)H16B—C16—H16C109.5
O4—N8—Co1117.3 (5)O7—C17—C18113.2 (9)
N1—O1—Co2115.7 (4)O7—C17—H17A108.9
N1—O1—Co2i107.8 (4)C18—C17—H17A108.9
Co2—O1—Co2i92.2 (2)O7—C17—H17B108.9
C2—O2—Co1125.1 (5)C18—C17—H17B108.9
C3—O3—C8117.7 (6)H17A—C17—H17B107.7
N8—O4—H4A97 (6)C17—C18—H18A109.5
C10—O5—Co1126.9 (4)C17—C18—H18B109.5
C10—O5—Co2115.0 (4)H18A—C18—H18B109.5
Co1—O5—Co2115.8 (2)C17—C18—H18C109.5
C11—O6—C16119.0 (6)H18A—C18—H18C109.5
C11—O6—Co2112.4 (4)H18B—C18—H18C109.5
C16—O6—Co2127.9 (5)O8—C19—C20124.2 (12)
C17—O7—Co2123.8 (6)O8—C19—H19A106.3
C17—O7—H7A112 (6)C20—C19—H19A106.3
Co2—O7—H7A110 (6)O8—C19—H19B106.3
C19—O8—H8123 (9)C20—C19—H19B106.3
C2—C1—C6121.1 (7)H19A—C19—H19B106.4
C2—C1—C7120.4 (7)C19—C20—H20A109.5
C6—C1—C7118.3 (7)C19—C20—H20B109.5
O2—C2—C1122.3 (7)H20A—C20—H20B109.5
O2—C2—C3119.0 (7)C19—C20—H20C109.5
C1—C2—C3118.7 (7)H20A—C20—H20C109.5
C4—C3—O3125.6 (7)H20B—C20—H20C109.5
O2—Co1—N1—C727.2 (6)O1—Co2—O5—Co13.1 (3)
N8—Co1—N1—C747 (5)O7—Co2—O5—Co195.9 (3)
O5—Co1—N1—C7154.2 (6)N2i—Co2—O5—Co187.1 (14)
N5—Co1—N1—C766.6 (6)O1i—Co2—O5—Co191.1 (3)
N2—Co1—N1—C7117.4 (6)O6—Co2—O5—Co1178.4 (3)
O2—Co1—N1—O1146.2 (5)Co2i—Co2—O5—Co148.6 (2)
N8—Co1—N1—O1127 (4)O1—Co2—O6—C113.4 (10)
O5—Co1—N1—O132.4 (5)O7—Co2—O6—C11109.4 (5)
N5—Co1—N1—O1120.0 (5)O5—Co2—O6—C1114.4 (5)
N2—Co1—N1—O156.0 (5)N2i—Co2—O6—C11156.7 (5)
O2—Co1—N2—N333.5 (6)O1i—Co2—O6—C1171.7 (5)
N1—Co1—N2—N3123.5 (6)Co2i—Co2—O6—C1159.5 (5)
N8—Co1—N2—N353.2 (6)O1—Co2—O6—C16167.2 (8)
O5—Co1—N2—N3145.2 (6)O7—Co2—O6—C1680.0 (7)
N5—Co1—N2—N3170 (3)O5—Co2—O6—C16175.0 (7)
O2—Co1—N2—Co2i118.4 (3)N2i—Co2—O6—C1613.9 (7)
N1—Co1—N2—Co2i28.4 (3)O1i—Co2—O6—C1698.9 (7)
N8—Co1—N2—Co2i154.9 (3)Co2i—Co2—O6—C16111.0 (7)
O5—Co1—N2—Co2i62.9 (3)O1—Co2—O7—C1725.4 (7)
N5—Co1—N2—Co2i18 (3)O5—Co2—O7—C17113.6 (7)
Co1—N2—N3—N494 (41)N2i—Co2—O7—C1766.8 (7)
Co2i—N2—N3—N4116 (41)O1i—Co2—O7—C17159.7 (15)
O2—Co1—N5—N626.2 (7)O6—Co2—O7—C17169.1 (7)
N1—Co1—N5—N6116.3 (7)Co2i—Co2—O7—C1726.1 (8)
N8—Co1—N5—N660.5 (7)Co1—O2—C2—C126.9 (11)
O5—Co1—N5—N6152.5 (7)Co1—O2—C2—C3156.3 (6)
N2—Co1—N5—N6163 (2)C6—C1—C2—O2179.1 (8)
Co1—N5—N6—N7120 (26)C7—C1—C2—O24.9 (12)
O2—Co1—N8—C15178.9 (8)C6—C1—C2—C32.2 (13)
N1—Co1—N8—C15160 (4)C7—C1—C2—C3172.0 (7)
O5—Co1—N8—C150.4 (8)C8—O3—C3—C46.1 (12)
N5—Co1—N8—C1587.2 (8)C8—O3—C3—C2173.9 (6)
N2—Co1—N8—C1589.0 (8)O2—C2—C3—C4178.6 (8)
O2—Co1—N8—O43.6 (6)C1—C2—C3—C41.6 (13)
N1—Co1—N8—O423 (5)O2—C2—C3—O31.4 (11)
O5—Co1—N8—O4177.8 (6)C1—C2—C3—O3178.4 (7)
N5—Co1—N8—O490.2 (6)O3—C3—C4—C5179.6 (8)
N2—Co1—N8—O493.6 (6)C2—C3—C4—C50.3 (14)
C7—N1—O1—Co2144.1 (5)C3—C4—C5—C60.3 (15)
Co1—N1—O1—Co241.8 (6)C4—C5—C6—C10.3 (15)
C7—N1—O1—Co2i114.3 (5)C2—C1—C6—C51.6 (14)
Co1—N1—O1—Co2i59.7 (5)C7—C1—C6—C5172.7 (8)
O7—Co2—O1—N168.4 (4)O1—N1—C7—C1166.2 (6)
O5—Co2—O1—N125.5 (4)Co1—N1—C7—C17.3 (10)
N2i—Co2—O1—N1163.2 (4)C2—C1—C7—N115.0 (12)
O1i—Co2—O1—N1111.0 (5)C6—C1—C7—N1170.7 (8)
O6—Co2—O1—N142.9 (10)Co1—O5—C10—C96.7 (11)
Co2i—Co2—O1—N1111.0 (5)Co2—O5—C10—C9169.0 (7)
O7—Co2—O1—Co2i179.39 (19)Co1—O5—C10—C11174.1 (5)
O5—Co2—O1—Co2i85.53 (18)Co2—O5—C10—C1111.8 (9)
N2i—Co2—O1—Co2i85.8 (2)C14—C9—C10—O5179.0 (8)
O1i—Co2—O1—Co2i0.0C15—C9—C10—O53.1 (14)
O6—Co2—O1—Co2i68.1 (8)C14—C9—C10—C110.2 (13)
N1—Co1—O2—C236.9 (6)C15—C9—C10—C11177.7 (8)
N8—Co1—O2—C2144.2 (6)O5—C10—C11—C12179.8 (8)
O5—Co1—O2—C2168 (6)C9—C10—C11—C120.5 (13)
N5—Co1—O2—C254.4 (6)O5—C10—C11—O61.2 (11)
N2—Co1—O2—C2121.7 (6)C9—C10—C11—O6178.1 (7)
O2—Co1—O5—C1043 (7)C16—O6—C11—C122.9 (12)
N1—Co1—O5—C10174.2 (6)Co2—O6—C11—C12168.6 (7)
N8—Co1—O5—C104.6 (6)C16—O6—C11—C10175.7 (7)
N5—Co1—O5—C1094.5 (6)Co2—O6—C11—C1012.8 (9)
N2—Co1—O5—C1089.4 (6)C10—C11—C12—C131.1 (15)
O2—Co1—O5—Co2119 (6)O6—C11—C12—C13177.4 (9)
N1—Co1—O5—Co212.0 (3)C11—C12—C13—C141.0 (16)
N8—Co1—O5—Co2166.7 (3)C12—C13—C14—C90.3 (17)
N5—Co1—O5—Co2103.4 (3)C10—C9—C14—C130.3 (16)
N2—Co1—O5—Co272.7 (3)C15—C9—C14—C13177.7 (9)
O1—Co2—O5—C10161.2 (5)O4—N8—C15—C9179.1 (8)
O7—Co2—O5—C1099.8 (5)Co1—N8—C15—C93.4 (13)
N2i—Co2—O5—C1077.2 (15)C14—C9—C15—N8175.7 (9)
O1i—Co2—O5—C1073.3 (5)C10—C9—C15—N82.2 (15)
O6—Co2—O5—C1014.1 (5)Co2—O7—C17—C18144.9 (8)
Co2i—Co2—O5—C10115.7 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O80.84 (1)1.79 (2)2.620 (10)171 (9)
O8—H8···N50.84 (1)2.31 (9)2.970 (10)136 (12)
C5—H5···N3ii0.932.703.565 (12)156
C8—H8C···O4iii0.962.643.229 (8)120
Symmetry codes: (ii) x1, y, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Co4(C8H7NO3)2(C8H8NO3)2(N3)4(C2H6O)2]·2C2H6O
Mr1250.71
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.605 (7), 10.749 (7), 13.010 (9)
α, β, γ (°)91.524 (11), 107.539 (10), 93.855 (10)
V3)1276.3 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.21 × 0.12 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.763, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
6405, 4419, 2144
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.158, 0.98
No. of reflections4419
No. of parameters353
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.62

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O21.860 (5)Co2—O12.005 (5)
Co1—N11.900 (6)Co2—O72.041 (6)
Co1—N81.927 (6)Co2—O52.047 (5)
Co1—O51.928 (5)Co2—N2i2.103 (6)
Co1—N51.948 (7)Co2—O1i2.121 (5)
Co1—N21.995 (7)Co2—O62.124 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O80.839 (10)1.787 (19)2.620 (10)171 (9)
O8—H8···N50.839 (10)2.31 (9)2.970 (10)136 (12)
C5—H5···N3ii0.932.703.565 (12)155.5
C8—H8C···O4iii0.962.643.229 (8)120.3
Symmetry codes: (ii) x1, y, z; (iii) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds