Download citation
Download citation
link to html
The mol­ecules of both methyl 4-[2-(4-chloro­benzo­yl)hydrazin­yl]-3-nitro­benzoate, C15H12ClN3O5, (I), and methyl 4-[2-(2-fluoro­benzo­yl)hydrazin­yl]-3-nitro­benzoate, C15H12FN3O5, (II), contain an intra­molecular N-H...O hydrogen bond, and both show electronic polarization in the nitrated aryl ring. In both compounds, mol­ecules are linked by a combination of N-H...O and C-H...O hydrogen bonds to form sheets, which are built from R43(18) rings in (I) and from R44(28) rings in (II). In each of methyl 3-phenyl-1,2,4-benzotriazine-6-carboxyl­ate, C15H11N3O2, (III), and methyl 3-(4-methyl­phen­yl)-1,2,4-benzotriazine-6-carboxyl­ate, C16H13N3O2, (IV), the benzotriazine unit shows naphthalene-type delocalization. There are no hydrogen bonds in the structures of compounds (III) and (IV), but in both compounds, the mol­ecules are linked into chains by [pi]-[pi] stacking inter­actions involving the benzotriazine units. The mechanism of chain formation is the same in both (III) and (IV), and the different orientations of the two chains can be related to the approximate relationship between the unit-cell metrics for (III) and (IV).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113013590/sf3196sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113013590/sf3196Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113013590/sf3196IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113013590/sf3196IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113013590/sf3196IVsup5.hkl
Contains datablock IV

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113013590/sf3196Isup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113013590/sf3196IIsup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113013590/sf3196IIIsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113013590/sf3196IVsup9.cml
Supplementary material

CCDC references: 957007; 957008; 957009; 957010

Comment top

The synthesis and reactivity of 1,2,4-triazines and related compounds have been widely studied, as this family of heterocycles exhibits promising biological activities, such as anticancer, antinociceptive, antibacterial and fungicidal properties (Ibrahim et al., 2009; Mansour et al., 2003; Sztanke et al., 2005). The 1,2,4-benzotriazines in particular constitute an important group of heterocyclic compounds possessing antitumour, antimicrobial and antimalarial activities (Congreve et al., 2012, Diana et al., 2007). They are also known as herbicidal, antiviral and anti-inflammatory agents (Henrie et al., 1993; Kotovskaya et al., 2007; Xu et al., 2011). Commonly used synthetic approaches to 1,2,4-benzotriazines generally involve multiple step sequences and harsh reaction conditions and they are usually characterized by low overall yields, although a routs based on intramolecular cyclization of solid-supported 2-hydrazidoanilines has recently been reported (Cortés et al., 2012). Consequently, it would be highly desirable to develop more versatile and milder routes for synthesis of these compounds. Accordingly, we have developed a synthesis of 3-aryl 1,2,4-benzotriazines using reduction of 2-nitrohydrazides followed by intramolecular cyclization. In this approach, methyl 4-fluoro-3-nitrobenzoate is initially subjected to a nucleophilic aromatic substitution, where the fluorine substituent is replaced by an aroylhydrazine unit, to provide compounds such as (I) and (II) (see Scheme 1). Then, in a one-pot reaction the nitro group is reduced to an amino group followed by an intramolecular cyclization in the presence of acetic acid to afford products such as (III) and (IV) (Scheme 1). In connection with this synthetic work, we report here the molecular and supramolecular structures of compounds (I)–(IV), as representative examples both of the hydrazinyl intermediate, compounds (I) and (II) (Figs. 1 and 2), and of the benzotriazine target, compounds (III) and (IV) (Figs. 3 and 4).

In each of compounds (I) and (II), there is an intramolecular N—H···O hydrogen bond (Table 5) forming an S(6) motif (Bernstein et al., 1995), and this hydrogen bond may well control the relative orientations of the nitro and hydrazino substituents on the ring (C11—C16) (Tables 1 and 2; Figs. 1 and 2). The conformations of the aroylhydrazino units differ somewhat between compounds (I) and (II), as indicated in particular by the rather different values of the C14—N41—N42—C47 torsion angles (Table 2). The torsion angles in compounds (I) and (II) confirm that the molecules of these compounds exhibit no internal symmetry and thus that they are conformationally chiral. For compound (II), the centrosymmetric space group P21/n accommodates equal numbers of the two conformational enantiomers. but for compound (I), which crystallizes in the Sohnke space group P21, each crystal contains only a single conformational enantiomer. It is likely that the compound crystallizes with equal numbers of the two conformational enantiomers, and its thus a conglomerate: in any event, the conformational form observed in the crystal selected for data collection does not carry any chemical significance.

The bond distances in the C11–C16 ring and its immediate substituents show some interesting patterns in compounds (I) and (II) (Tables 1 and 2). Firstly, the C11—C12 and C15—C16 bonds are significantly shorter than the other C—C bonds in the C11–C16 ring. Secondly, the C13—N31 bonds are short for their type [mean value (Allen et al., 1987) = 1.468 Å and lower quartile value = 1.460 Å], while the N—O distances are all long for their type (mean value = 1.217 Å): the marked difference between the N31—O31 and N31—O32 distances in compound (I) is noteworthy, and it is probably associated with the formation of the intramolecular N—H···O hydrogen bond. Finally, the C14—N41 bond lengths are significantly less than that [1.413 (5) Å] for the corresponding exocyclic bond in the 1:1 adduct of phenylhydrazine with borane [Cambridge Structural Database (CSD; Allen, 2002) refcode RUYJIE; Wrackmeyer et al., 2002]. These observations, which closely mimic those for the corresponding distances for 2-nitrophenylhydrazine in its 1:1 adduct with 1,3-dimethylbarbituric acid (CSD refcode QIGVEH; Bertolasi et al., 2001), provide evidence for some polarization of the electronic structure in compounds (I) and (II), with the polarized form (B) (see Scheme 2) making a significant contribution to the overall electronic structure in addition to the classical aromatic form (A), along with some contribution from form (C) in the case of compound (I).

In addition to the intramolecular N—H···O hydrogen bonds, the crystal structures of compounds (I) and (II) both contain intermolecular hydrogen bonds of N—H···O and C—H···O types (Table 5). In compound (I), the N—H···O hydrogen bond links molecules related by translation to form a C(4) chain running parallel to the [100] direction (Fig. 5), in a manner reminiscent of both simple carboxamides and simple sulfonamides. In addition, atom C43 also acts a donor to carbonyl atom O47, again linking molecules related by translation but in this case forming a C(6) chain running parallel to the [110] direction. There are a number of other short intermolecular contacts in the crystal structure of compound (I), all of them involving one or other of the nitro group O atoms (Table 5). However, these contacts all either have an H···O distance which is not significantly less than the sum of the van der Waals radii or they have a C—H···O angle less than 140° (cf. Wood et al., 2009). Accordingly, these contacts are not to be regarded as structurally significant: on the other hand, even if they were significant, their action would simply be to reinforce the [100] chain motif. The combination of the C(4) and C(6) chains along [100] and [110], respectively, gives rise to a sheet lying parallel to (001) built from a single type of R43(18) ring (Fig. 5). Two such sheets, related to on another by the action of the 21 screw axes, pass through each unit cell, but there are no direction-specific interactions between adjacent sheets.

In compound (II), the N—H···O hydrogen bond forms a C(4) chain parallel to the [100] direction, entirely similar to that in compound (I). The C—H···O hydrogen bond in (II), however, differs from that in (I) in that one of the nitro group O atoms acts as the acceptor (Table 5). This interaction links molecules related by the n-glide plane at y = 0.25 to form a C(11) chain running parallel to the [301] direction (Fig. 6). A C—H···O contact involving inversion-related pairs of molecules (Table 5) is not to be regarded as structurally significant because of the low value of the C—H···O angle (cf. Wood et al., 2009). The combination of the C(4) and C(11) chains along [100] and [301], respectively, generates a sheet lying parallel to (010) in the domain 0 < y < 1/2, and built from a single type of R44(28) ring (Fig. 6). A second sheet, lying in the domain 0.5 < y < 1.0 and related to the first by inversion, contains molecules related to one another by the n-glide plane at y = 3/4, but there are no direction-specific interactions between adjacent sheets.

A simple change of a single substituent, from a 4-chloro substituent in (I) to a 2-fluoro substituent in (II) has thus caused a change of space group from P21 to P21/n and a significant change in the hydrogen bonding, with the sheet orientation changing from (001) in (I) to (010) in (II), and the ring type within the sheets changing from R43(18) in (I) to R44(28) in (II).

The bond distances in the benzotriazine component of compounds (III) and (IV) (Tables 3 and 4) provide clear evidence for naphthalene type delocalization (Brock & Dunitz, 1982). Thus, in each compound the C5—C6 and C7—C8 bonds are significantly shorter than the other bonds in the carbocyclic ring, while the C3—N4 bond is significantly shorter than all of the other C—N bonds in the triazine ring. An exactly similar pattern of bond distances is present in 5,7-dimethyl-3-phenyl-1,2,4-benzotriazine, (V) (Nicoló et al., 1998), although this was not specifically noted in the original report. The dihedral angles between the pendent aryl ring and the triazine ring are very similar, 7.3 (2)° in compound (III) and 6.5 (2)° in compound (IV).

There are no intermolecular hydrogen bonds in the crystal structures of compounds (III) and (IV): the only short intermolecular contacts involving H atoms are all derived from methyl groups. Not only are methyl C—H bonds expected to be of rather low acidity but, in general, methyl groups CH3—E undergo extremely fast rotation about the C—E bonds even in the solid state, as shown by solid-state NMR spectroscopy (Riddell & Rogerson, 1996, 1997). In addition, so far as the methyl group in compound (IV) which contains atom C37 is concerned, it is well established (Tannenbaum et al., 1956; Naylor & Wilson, 1957) that sixfold rotational barriers to intramolecular rotation are extremely low: barriers of this type are encountered when a fragment of local C3 symmetry (such as methyl or tert-butyl) is bonded to a fragment with effective local C2 symmetry (such as a planar ring) and the heights of these barriers are typically just a few tens of J mol-1. In the absence of any intermolecular hydrogen bonds, the molecules in both (III) and (IV) are linked into chains by means of ππ stacking interactions. The stacking modes in the two compounds are very similar, despite their differences in crystal system and space group, P21/c for (III) and Pbca for (IV).

In compound (III), molecules related by the c-glide plane at y = 0.25 are stacked into a chain running parallel to the [001] direction (Fig. 7). The triazine ring of the molecule at (x, y, z) and the fused aryl ring of the molecule at (x, -y+1/2, z-1/2), which make a dihedral angle of 1.9 (2)°, have a ring-centroid separation of 3.650 (2) Å and a shortest interplanar distance of ca 3.31 Å, corresponding to a ring-centroid offset of ca 1.54 Å. In compound (IV), the π-stacked chain is formed from molecules related by the a-glide plane at z = 1/4, so forming a chain running parallel to the [100 direction (Fig. 8). The triazine ring of the molecule of (IV) at (x, y, z) and the fused aryl ring of the molecule at (x-1/2, y, -z+1/2) make a dihedral angle of only 0.7 (2)°, with a ring-centroid separation of 3.646 (2) Å and a shortest interplanar distance of ca 3.44 Å, corresponding to a ring-centroid offset of ca 1.21 Å.

For each of (III) and (IV), therefore, the π-stacking is based on the benzotriazine units in molecules related by glide planes: the pendent aryl rings are not involved. The differences in the chain directions, [001] in (III) and [100] in (IV) (Figs. 7 and 8) can be directly related to the approximate relationship which exists between the unit cell vectors in the two compounds (see Crystal Data), despite their different space groups and different values of Z. Very approximately, the unit-cell vectors in (II) can be derived from those in (IV) via the transformation (0, 1/2,0/0,0,1/1,0,0), so that the [001] direction in (III) corresponds to the [100] direction in (IV). A similar π-stacking mode, utilizing the benzotriazine units only, occurs in the structure of compound (V) (Nicoló et al., 1998), but here the chains run parallel to the [100] direction, and contain molecules related by inversion (Fig. 9).

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Bernstein et al. (1995); Bertolasi et al. (2001); Brock & Dunitz (1982); Congreve et al. (2012); Diana et al. (2007); Flack (1983); Hooft et al. (2008); Ibrahim et al. (2009); Kotovskaya et al. (2007); Mansour et al. (2003); Naylor & Wilson (1957); Nicoló et al. (1998); Riddell & Rogerson (1996, 1997); Sztanke et al. (2005); Tannenbaum et al. (1956); Wood et al. (2009); Wrackmeyer et al. (2002); Xu & Fan (2011).

Experimental top

For the synthesis of compounds (I) and (II), a mixture of methyl 4-fluoro-3-nitrobenzoate (1 mmol), the appropriately substituted benzoylhydrazine (1 mmol) and dimethylsulfoxide (2 ml) was stirred at ambient temperature for 2 h. After complete disappearance of the starting materials [as monitored by thin-layer chromatography (TLC)], the solid formed was collected by filtration and washed with methanol-water (1:2 v/v) (3 × 2 ml), to give the required compounds. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from solutions in ethanol. Compound (I): orange crystals, 95% yield, m.p. 470 K: FT–IR (KBr) 3341 (NH), 3153 (NH), 1721 (CO), 1625 (CO), 1512, 1356 (NO2) cm-1: MS (70 eV) m/z (%): 351/349 (1/3) [M+], 141/139 (30/100), 113/111 (12/40), 75 (7). NMR (CDCl3): δ(H) 3.83 (s, 3H, OCH3), 7.15 (d, 1H, J = 9.0 Hz, 5-H), 7.39 (d, 2H, J = 8.6 Hz, Ar—H), 7.91 (d, 2H, J = 8.7 Hz, Ar—H), 7.99 (dd, 1H, J = 8.8 Hz, 1.7 Hz, 6-H), 8.76 (d, 1H, J = 1.7 Hz, 2-H), 9.53 (s, 1H, 4-NH), 10.74 (s, 1H, NHCO) p.p.m.; δ(C) 51.6, 114.0, 119.3, 128.0, 128.2, 128.8, 129.7, 131.2, 135.6, 137.8, 147.5, 164.5 (CO), 165.3 (CO). Compound (II): orange crystals, 94% yield, m.p. 513 K: FT–IR (KBr) 3344 (NH), 3221 (NH), 1722 (CO), 1644, 1621 (CO), 1525, 1319 (NO2) cm-1: MS (70 eV) m/z (%): 333 (11) [M+], 302 (3), 123 (100), 95 (12). NMR (DMSO-d6): δ(H) 3.86 (s, 3H, OCH3), 7.29 (d, 1H, J = 9.1 Hz, 5-H), 7.37 (dd, 1H, J = 7.6 Hz, 1.0 Hz, Ar—H), 7.40 (d, 1H, J = 9.5 Hz, Ar—H), 7.63 (dd, 1H, J = 9.5 Hz, 1.6 Hz, Ar—H), 7.76 (dt, 1H, J = 7.6 Hz, 1.6 Hz, Ar—H), 8.10 (dd, 1H, J = 9.1 Hz, 1.8 Hz, 6-H), 8.66 (d, 1H, J = 1.8 Hz, 2-H), 9.97 (s, 1H, 4-NH), 10.80 (s, 1H, NHCO); δ(C) 52.2, 114.8, 116.3 (d, J = 22 Hz, Ar—C), 118.4, 121.7 (d, J = 14 Hz), 124.7 (d, J = 4 Hz, Ar—C), 127.8, 130.2 (d, J = 3 Hz, Ar—C), 130.8, 133.4 (d, J = 8 Hz, Ar—C), 135.9, 147.5, 159.3 (d, J = 249 Hz), 163.6 (CO), 164.6 (CO).

For the synthesis of compounds (III) and (IV), a mixture of the appropriate methyl 4-(2-aroylhydrazinyl)-3-nitrobenzoate (1 mmol), zinc (5 mmol) and glacial acetic acid (3 ml) was stirred at ambient temperature for 15 min. After complete disappearance of the starting material (as monitored by TLC), the mixture was heated under reflux for 1 h. After the cyclization was complete (as monitored by TLC), zinc acetate and the excess of zinc metal were removed by filtration, the solvent was removed under reduced pressure and the residue was purified from column chromatography on silica gel by using a chloroform–methanol (30:1 v/v) mixture as eluent, to give the required compounds. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from solutions in ethanol; the crystal quality for (III) was consistently rather poor and this is reflected in the quality of the diffraction data. Compound (III): orange crystals, 78% yield, m.p. 423 K: FT–IR (KBr): 2956, 2924, 2841, 1718 (CO), 1595 (CN) cm-1: MS (70 eV) m/z (%): 279 (3) [M+], 251 (100) ([M-28]), 220 (16), 193 (34), 177 (6), 165 (10). NMR (CDCl3): δ(H) 4.06 (s, 3H, OCH3), 7.60 (m, 3H, Ar—H), 8.38 (dd, 1H, J = 8.8 Hz, J = 1.6 Hz, 7-H), 8.60 (d, 1H, J = 8.8 Hz, 8-H), 8.77 (dd, 2H, J = 7.6 Hz, J = 2.4 Hz, Ar—H), 8.80 (d, 1H, J = 1.5 Hz, 5-H); δ(C) 53.0, 128.9, 129.0, 129.5, 129.8, 131.8, 132.1, 135.1, 136.1, 140.4), 146.9, 160.4, 165.3 (CO). Compound (IV): orange crystals, 71% yield, m.p. 407 K: FT–IR (KBr): 2956, 2924, 2841, 1718 (CO), 1595 (CN) cm-1; MS (70 eV) m/z (%): 265 (100) [M+], 237 (10) [M-28], 208 (11), 148 (19), 103 (31), 77 (17). NMR (CDCl3): δ(H) 2.48 (s, 3H, CH3), 4.05 (s, 3H, OCH3), 7.39 (d, 2H, J = 8.0 Hz, Ar—H), 8.35 (dd, 1H, J = 8.8 Hz, J = 1.6 Hz, 7-H), 8.57 (d, 1H, J = 8.7 Hz, 8-H), 8.64 (d, 2H, J = 8.1 Hz, Ar—H), 8.76 (d, 1H, J = 1.1 Hz, 5-H); δ(C) 21.6, 52.9, 128.9, 129.1, 129.8, 132.0, 132.4, 136.0, 140.4, 142.4 (x 2), 146.8, 160.5, 165.3 (CO).

Refinement top

All H atoms were located in difference maps. H atoms bonded to C atoms were subsequently treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 (aromatic) or 0.98 Å (methyl) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. H atoms bonded to N atoms were permitted to ride at the positions deduced from the difference maps, with Uiso(H) = 1.2Ueq(N), giving a range of N—H distances of 0.88–0.97 Å (Table 5). The correct absolute configuration of the molecules in the crystal of (I) selected for data collection was established by means of the Flack x parameter (Flack 1983) of 0.05 (7) and the Hooft y parameter (Hooft et al., 2008) of 0.09 (4) calculated from 1458 Friedel pairs (95.8% coverage).

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003). Program(s) used to solve structure: SIR2004 (Burla et al., 2005) for (I); Sir2004 (Burla et al., 2005) for (II), (III), (IV). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecular structure of compound (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded sheet of R43(18) rings parallel to (001). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (II). showing the formation of a hydrogen-bonded sheet of R44(28) rings parallel to (010). For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of compound (III). showing the formation of a π-stacked chain parallel to [001] built from molecules related by a c-glide plane. For the sake of clarity, all H atoms have been omitted.
[Figure 8] Fig. 8. A stereoview of part of the crystal structure of compound (IV). showing the formation of a π-stacked chain parallel to [100] built from molecules related by an a-glide plane. For the sake of clarity, all H atoms have been omitted.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of compound (V). showing the formation of a π-stacked chain parallel to [100] built from molecules related by inversion. For the sake of clarity, all H atoms have been omitted. The original atomic coordinates (Nicoló et al., 1998) have been employed.
(I) Methyl 4-[2-(4-chlorobenzoyl)hydrazino]-3-nitrobenzoate top
Crystal data top
C15H12ClN3O5F(000) = 360
Mr = 349.73Dx = 1.569 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ybCell parameters from 3299 reflections
a = 4.7546 (5) Åθ = 3.2–27.5°
b = 6.1071 (14) ŵ = 0.29 mm1
c = 25.541 (5) ÅT = 120 K
β = 93.686 (12)°Block, orange
V = 740.1 (2) Å30.45 × 0.34 × 0.14 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3299 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 65
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.880, Tmax = 0.960l = 3333
9668 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.027P)2 + 0.4329P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3299 reflectionsΔρmax = 0.34 e Å3
218 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C15H12ClN3O5V = 740.1 (2) Å3
Mr = 349.73Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.7546 (5) ŵ = 0.29 mm1
b = 6.1071 (14) ÅT = 120 K
c = 25.541 (5) Å0.45 × 0.34 × 0.14 mm
β = 93.686 (12)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3299 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3050 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.960Rint = 0.054
9668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.34 e Å3
S = 1.11Δρmin = 0.26 e Å3
3299 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
218 parametersAbsolute structure parameter: 0.05 (7)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6634 (5)0.3958 (4)0.08114 (9)0.0220 (5)
O10.8195 (4)0.5172 (3)0.05900 (6)0.0292 (4)
O20.6184 (4)0.1868 (3)0.06812 (6)0.0282 (4)
C20.7840 (6)0.1058 (5)0.02617 (10)0.0325 (6)
H2A0.98440.13270.03520.049*
H2B0.72680.18190.00660.049*
H2C0.75210.05180.02170.049*
C110.5059 (5)0.4646 (4)0.12691 (8)0.0189 (5)
C120.3096 (4)0.3308 (4)0.14818 (8)0.0185 (4)
H120.26570.19280.13260.022*
C130.1746 (4)0.3969 (4)0.19256 (9)0.0172 (4)
C140.2427 (4)0.5981 (4)0.21828 (8)0.0171 (4)
C150.4429 (5)0.7332 (4)0.19483 (9)0.0195 (5)
H150.49200.87070.21020.023*
C160.5664 (4)0.6680 (5)0.15029 (8)0.0202 (4)
H160.69600.76320.13490.024*
N310.0352 (4)0.2499 (3)0.21088 (8)0.0191 (4)
O310.0748 (4)0.0732 (3)0.18885 (7)0.0261 (4)
O320.1709 (3)0.3058 (3)0.24912 (6)0.0225 (4)
N410.1340 (4)0.6555 (4)0.26392 (7)0.0192 (4)
H410.01310.58600.27500.023*
N420.2146 (4)0.8443 (3)0.29077 (7)0.0186 (4)
H420.39730.85380.29840.022*
C470.0286 (4)0.9231 (4)0.32395 (8)0.0177 (4)
O470.2090 (3)0.8422 (3)0.32587 (6)0.0218 (4)
C410.1299 (4)1.1095 (4)0.35747 (8)0.0181 (5)
C420.3404 (5)1.2502 (4)0.34242 (9)0.0189 (5)
H42A0.42521.22630.31020.023*
C430.4278 (5)1.4262 (4)0.37438 (9)0.0210 (5)
H430.57021.52330.36410.025*
C440.3028 (5)1.4566 (4)0.42149 (9)0.0223 (5)
Cl440.41615 (13)1.67263 (12)0.46162 (2)0.03132 (16)
C450.0913 (5)1.3188 (4)0.43705 (9)0.0225 (5)
H450.00671.34350.46920.027*
C460.0051 (4)1.1448 (4)0.40502 (8)0.0207 (5)
H460.13891.04920.41530.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (11)0.0244 (13)0.0224 (11)0.0023 (10)0.0005 (9)0.0015 (9)
O10.0302 (9)0.0300 (10)0.0286 (9)0.0055 (8)0.0117 (7)0.0012 (7)
O20.0304 (9)0.0260 (10)0.0293 (8)0.0026 (9)0.0109 (7)0.0054 (8)
C20.0323 (13)0.0342 (16)0.0320 (13)0.0010 (12)0.0114 (10)0.0103 (11)
C110.0172 (10)0.0184 (12)0.0210 (10)0.0001 (9)0.0008 (8)0.0011 (9)
C120.0164 (10)0.0155 (11)0.0234 (10)0.0026 (9)0.0001 (8)0.0007 (9)
C130.0123 (9)0.0159 (11)0.0235 (10)0.0003 (8)0.0017 (8)0.0011 (8)
C140.0130 (9)0.0167 (11)0.0214 (10)0.0008 (8)0.0004 (8)0.0005 (8)
C150.0159 (10)0.0180 (13)0.0243 (10)0.0026 (8)0.0005 (8)0.0005 (8)
C160.0160 (9)0.0199 (11)0.0248 (10)0.0052 (11)0.0022 (7)0.0027 (10)
N310.0144 (9)0.0181 (10)0.0246 (9)0.0027 (7)0.0002 (7)0.0019 (8)
O310.0238 (9)0.0210 (9)0.0339 (9)0.0067 (7)0.0042 (7)0.0033 (7)
O320.0173 (7)0.0249 (9)0.0256 (8)0.0042 (7)0.0046 (6)0.0005 (7)
N410.0167 (8)0.0190 (10)0.0221 (8)0.0036 (9)0.0033 (6)0.0030 (8)
N420.0117 (8)0.0190 (10)0.0252 (9)0.0023 (7)0.0018 (7)0.0033 (8)
C470.0156 (10)0.0170 (11)0.0207 (10)0.0023 (9)0.0016 (8)0.0010 (8)
O470.0137 (7)0.0236 (9)0.0283 (8)0.0037 (7)0.0027 (6)0.0005 (7)
C410.0136 (9)0.0184 (12)0.0220 (10)0.0009 (8)0.0006 (8)0.0007 (8)
C420.0149 (10)0.0194 (11)0.0226 (10)0.0024 (8)0.0024 (8)0.0028 (8)
C430.0159 (10)0.0192 (12)0.0278 (11)0.0009 (10)0.0003 (8)0.0031 (9)
C440.0210 (11)0.0196 (13)0.0257 (11)0.0020 (9)0.0026 (9)0.0025 (9)
Cl440.0314 (3)0.0287 (3)0.0337 (3)0.0045 (3)0.0012 (2)0.0110 (3)
C450.0208 (11)0.0252 (13)0.0219 (11)0.0010 (10)0.0028 (8)0.0024 (10)
C460.0156 (9)0.0240 (13)0.0226 (10)0.0000 (10)0.0026 (7)0.0006 (9)
Geometric parameters (Å, º) top
C1—O11.215 (3)C14—N411.352 (3)
C1—O21.333 (3)N41—N421.383 (3)
C1—C111.489 (3)N41—H410.8799
O2—C21.456 (3)N42—C471.352 (3)
C2—H2A0.9800N42—H420.8799
C2—H2B0.9800C47—O471.237 (3)
C2—H2C0.9800C47—C411.486 (3)
C11—C121.378 (3)C41—C421.392 (3)
C12—C131.397 (3)C41—C461.402 (3)
C12—H120.9500C42—C431.397 (3)
C13—C141.421 (3)C42—H42A0.9500
C14—C151.421 (3)C43—C441.388 (3)
C15—C161.372 (3)C43—H430.9500
C16—C111.400 (4)C44—C451.389 (3)
C15—H150.9500C44—Cl441.735 (2)
C16—H160.9500C45—C461.387 (3)
C13—N311.442 (3)C45—H450.9500
N31—O311.226 (3)C46—H460.9500
N31—O321.252 (2)
O1—C1—O2124.2 (2)O31—N31—C13119.22 (19)
O1—C1—C11123.1 (2)O32—N31—C13119.01 (19)
O2—C1—C11112.7 (2)C14—N41—N42122.33 (19)
C1—O2—C2115.0 (2)C14—N41—H41120.5
O2—C2—H2A109.5N42—N41—H41116.3
O2—C2—H2B109.5C47—N42—N41115.83 (17)
H2A—C2—H2B109.5C47—N42—H42120.9
O2—C2—H2C109.5N41—N42—H42113.8
H2A—C2—H2C109.5O47—C47—N42121.2 (2)
H2B—C2—H2C109.5O47—C47—C41123.1 (2)
C12—C11—C16118.9 (2)N42—C47—C41115.65 (18)
C12—C11—C1122.0 (2)C42—C41—C46119.8 (2)
C16—C11—C1119.1 (2)C42—C41—C47121.73 (19)
C11—C12—C13120.4 (2)C46—C41—C47118.5 (2)
C11—C12—H12119.8C41—C42—C43120.4 (2)
C13—C12—H12119.8C41—C42—H42A119.8
C12—C13—C14121.5 (2)C43—C42—H42A119.8
C12—C13—N31116.5 (2)C44—C43—C42118.8 (2)
C14—C13—N31122.01 (19)C44—C43—H43120.6
N41—C14—C13122.3 (2)C42—C43—H43120.6
N41—C14—C15121.1 (2)C43—C44—C45121.7 (2)
C13—C14—C15116.50 (19)C43—C44—Cl44118.66 (18)
C16—C15—C14121.0 (2)C45—C44—Cl44119.65 (18)
C16—C15—H15119.5C46—C45—C44119.2 (2)
C14—C15—H15119.5C46—C45—H45120.4
C15—C16—C11121.6 (2)C44—C45—H45120.4
C15—C16—H16119.2C45—C46—C41120.2 (2)
C11—C16—H16119.2C45—C46—H46119.9
O31—N31—O32121.76 (19)C41—C46—H46119.9
O1—C1—O2—C23.2 (3)C12—C13—N31—O32176.91 (19)
C11—C1—O2—C2175.46 (19)C14—C13—N31—O323.4 (3)
O1—C1—C11—C12173.6 (2)C13—C14—N41—N42175.55 (19)
O2—C1—C11—C127.7 (3)C15—C14—N41—N421.4 (3)
O1—C1—C11—C168.8 (3)C14—N41—N42—C47157.3 (2)
O2—C1—C11—C16169.9 (2)N41—N42—C47—O476.8 (3)
C16—C11—C12—C130.4 (3)N41—N42—C47—C41172.82 (19)
C1—C11—C12—C13177.2 (2)O47—C47—C41—C42154.9 (2)
C11—C12—C13—C142.6 (3)N42—C47—C41—C4225.5 (3)
C11—C12—C13—N31177.8 (2)O47—C47—C41—C4624.1 (3)
C12—C13—C14—N41173.7 (2)N42—C47—C41—C46155.6 (2)
N31—C13—C14—N415.9 (3)C46—C41—C42—C430.1 (3)
C12—C13—C14—C153.4 (3)C47—C41—C42—C43178.9 (2)
N31—C13—C14—C15176.98 (19)C41—C42—C43—C440.6 (3)
N41—C14—C15—C16175.8 (2)C42—C43—C44—C451.0 (3)
C13—C14—C15—C161.3 (3)C42—C43—C44—Cl44178.91 (17)
C14—C15—C16—C111.6 (3)C43—C44—C45—C460.8 (4)
C12—C11—C16—C152.5 (3)Cl44—C44—C45—C46179.10 (18)
C1—C11—C16—C15175.2 (2)C44—C45—C46—C410.2 (3)
C12—C13—N31—O313.5 (3)C42—C41—C46—C450.1 (3)
C14—C13—N31—O31176.1 (2)C47—C41—C46—C45179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41···O320.881.972.595 (3)127
N42—H42···O47i0.881.962.828 (2)170
C15—H15···O31ii0.952.493.105 (3)122
C16—H16···O31ii0.952.553.129 (3)120
C42—H42A···O32ii0.952.603.450 (3)150
C43—H43···O47ii0.952.453.354 (3)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
(II) Methyl 4-[2-(2-fluorobenzoyl)hydrazino]-3-nitrobenzoate top
Crystal data top
C15H12FN3O5F(000) = 688
Mr = 333.28Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3416 reflections
a = 4.5445 (6) Åθ = 2.7–27.5°
b = 16.5768 (8) ŵ = 0.12 mm1
c = 19.812 (2) ÅT = 120 K
β = 92.107 (9)°Block, orange
V = 1491.5 (3) Å30.42 × 0.35 × 0.12 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3416 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ & ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2021
Tmin = 0.951, Tmax = 0.986l = 2525
11235 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H12FN3O5V = 1491.5 (3) Å3
Mr = 333.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.5445 (6) ŵ = 0.12 mm1
b = 16.5768 (8) ÅT = 120 K
c = 19.812 (2) Å0.42 × 0.35 × 0.12 mm
β = 92.107 (9)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2167 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.986Rint = 0.045
11235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
3416 reflectionsΔρmin = 0.24 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5402 (4)0.51374 (10)0.40024 (8)0.0297 (4)
O10.6555 (3)0.56440 (7)0.43644 (7)0.0415 (4)
O20.3276 (3)0.53057 (7)0.35339 (6)0.0362 (3)
C20.2505 (5)0.61512 (10)0.34705 (10)0.0423 (5)
H2A0.42520.64620.33580.063*
H2B0.17600.63460.38990.063*
H2C0.09790.62170.31120.063*
C110.6194 (4)0.42678 (9)0.40266 (8)0.0265 (4)
C120.5022 (4)0.37092 (10)0.35745 (8)0.0261 (4)
H120.36060.38730.32370.031*
C130.5915 (4)0.29046 (9)0.36129 (8)0.0244 (4)
C140.8009 (4)0.26361 (10)0.41078 (8)0.0254 (4)
C150.9113 (4)0.32180 (10)0.45675 (8)0.0291 (4)
H151.04900.30610.49150.035*
C160.8238 (4)0.40066 (10)0.45224 (8)0.0299 (4)
H160.90430.43870.48370.036*
N310.4542 (3)0.23536 (8)0.31266 (7)0.0307 (4)
O310.2532 (3)0.26046 (8)0.27505 (6)0.0452 (4)
O320.5408 (3)0.16456 (7)0.31083 (6)0.0390 (3)
N410.9102 (3)0.18588 (8)0.41438 (7)0.0294 (3)
H410.81930.14720.39150.035*
N421.0209 (3)0.15995 (8)0.47773 (7)0.0287 (3)
H421.23340.15810.48210.034*
C470.8409 (4)0.11999 (10)0.51817 (9)0.0275 (4)
O470.5832 (3)0.10548 (8)0.50143 (6)0.0437 (4)
C410.9711 (4)0.09225 (10)0.58455 (8)0.0257 (4)
C421.1776 (4)0.13510 (10)0.62322 (8)0.0301 (4)
F421.2709 (3)0.20816 (6)0.60116 (5)0.0437 (3)
C431.2898 (4)0.10838 (11)0.68446 (9)0.0337 (4)
H431.43030.13960.70970.040*
C441.1940 (4)0.03476 (11)0.70880 (9)0.0337 (4)
H441.27320.01440.75050.040*
C450.9832 (4)0.00903 (11)0.67240 (9)0.0335 (4)
H450.91520.05890.68960.040*
C460.8712 (4)0.01939 (10)0.61112 (8)0.0309 (4)
H460.72490.01080.58680.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (10)0.0283 (9)0.0256 (9)0.0003 (8)0.0009 (8)0.0010 (7)
O10.0515 (9)0.0270 (7)0.0449 (8)0.0003 (6)0.0120 (7)0.0067 (6)
O20.0496 (8)0.0261 (7)0.0321 (7)0.0054 (6)0.0098 (6)0.0013 (5)
C20.0618 (14)0.0257 (10)0.0386 (11)0.0081 (9)0.0076 (10)0.0046 (8)
C110.0306 (9)0.0248 (9)0.0241 (8)0.0015 (7)0.0000 (7)0.0002 (7)
C120.0285 (9)0.0275 (9)0.0221 (8)0.0004 (7)0.0007 (7)0.0026 (7)
C130.0274 (9)0.0245 (9)0.0210 (8)0.0009 (7)0.0027 (7)0.0025 (7)
C140.0233 (9)0.0279 (9)0.0247 (8)0.0009 (7)0.0013 (7)0.0002 (7)
C150.0291 (10)0.0311 (10)0.0266 (9)0.0012 (7)0.0064 (7)0.0006 (7)
C160.0335 (10)0.0286 (9)0.0272 (9)0.0048 (7)0.0033 (7)0.0020 (7)
N310.0357 (9)0.0268 (8)0.0288 (8)0.0022 (6)0.0081 (7)0.0001 (6)
O310.0555 (9)0.0335 (7)0.0442 (8)0.0083 (6)0.0299 (7)0.0052 (6)
O320.0504 (9)0.0259 (7)0.0394 (7)0.0079 (6)0.0164 (6)0.0064 (6)
N410.0333 (9)0.0264 (8)0.0276 (7)0.0037 (6)0.0104 (6)0.0005 (6)
N420.0246 (8)0.0317 (8)0.0291 (8)0.0016 (6)0.0074 (6)0.0042 (6)
C470.0218 (9)0.0288 (9)0.0315 (9)0.0033 (7)0.0035 (7)0.0069 (7)
O470.0229 (7)0.0651 (10)0.0425 (8)0.0021 (6)0.0058 (6)0.0044 (7)
C410.0208 (9)0.0283 (9)0.0278 (9)0.0034 (7)0.0003 (7)0.0030 (7)
C420.0337 (10)0.0255 (9)0.0309 (9)0.0010 (7)0.0005 (8)0.0012 (7)
F420.0606 (8)0.0328 (6)0.0368 (6)0.0161 (5)0.0117 (6)0.0015 (5)
C430.0353 (11)0.0383 (11)0.0271 (9)0.0016 (8)0.0039 (8)0.0064 (8)
C440.0389 (11)0.0382 (11)0.0243 (9)0.0095 (9)0.0031 (8)0.0001 (8)
C450.0347 (11)0.0288 (10)0.0374 (10)0.0036 (8)0.0083 (8)0.0021 (8)
C460.0265 (10)0.0330 (10)0.0333 (9)0.0017 (8)0.0020 (7)0.0042 (8)
Geometric parameters (Å, º) top
C1—O11.2110 (19)C14—N411.382 (2)
C1—O21.3441 (19)N41—N421.4022 (18)
C1—C111.486 (2)N41—H410.8798
O2—C21.449 (2)N42—C471.341 (2)
C2—H2A0.9800N42—H420.9668
C2—H2B0.9800C47—O471.229 (2)
C2—H2C0.9800C47—C411.495 (2)
C11—C121.381 (2)C41—C421.386 (2)
C12—C131.395 (2)C41—C461.400 (2)
C12—H120.9500C42—F421.3607 (19)
C13—C141.413 (2)C42—C431.372 (2)
C14—C151.406 (2)C43—C441.388 (3)
C15—C161.368 (2)C43—H430.9500
C16—C111.396 (2)C44—C451.383 (2)
C15—H150.9500C44—H440.9500
C16—H160.9500C45—C461.382 (2)
C13—N311.452 (2)C45—H450.9500
N31—O311.2297 (17)C46—H460.9500
N31—O321.2389 (17)
O1—C1—O2123.32 (15)O31—N31—C13118.74 (14)
O1—C1—C11123.68 (16)O32—N31—C13119.08 (13)
O2—C1—C11113.00 (14)C14—N41—N42116.65 (13)
C1—O2—C2115.23 (13)C14—N41—H41119.5
O2—C2—H2A109.5N42—N41—H41112.6
O2—C2—H2B109.5C47—N42—N41118.65 (14)
H2A—C2—H2B109.5C47—N42—H42124.1
O2—C2—H2C109.5N41—N42—H42114.4
H2A—C2—H2C109.5O47—C47—N42122.12 (16)
H2B—C2—H2C109.5O47—C47—C41121.31 (16)
C12—C11—C16118.63 (15)N42—C47—C41116.55 (14)
C12—C11—C1122.82 (15)C42—C41—C46117.18 (15)
C16—C11—C1118.54 (14)C42—C41—C47124.55 (15)
C11—C12—C13120.05 (15)C46—C41—C47118.23 (15)
C11—C12—H12120.0F42—C42—C43117.47 (15)
C13—C12—H12120.0F42—C42—C41119.44 (14)
C12—C13—C14121.75 (14)C43—C42—C41123.08 (16)
C12—C13—N31116.62 (14)C42—C43—C44118.67 (17)
C14—C13—N31121.63 (14)C42—C43—H43120.7
N41—C14—C15119.15 (15)C44—C43—H43120.7
N41—C14—C13124.15 (14)C45—C44—C43120.01 (16)
C15—C14—C13116.63 (15)C45—C44—H44120.0
C16—C15—C14121.13 (16)C43—C44—H44120.0
C16—C15—H15119.4C46—C45—C44120.32 (17)
C14—C15—H15119.4C46—C45—H45119.8
C15—C16—C11121.78 (15)C44—C45—H45119.8
C15—C16—H16119.1C45—C46—C41120.70 (17)
C11—C16—H16119.1C45—C46—H46119.7
O31—N31—O32122.18 (14)C41—C46—H46119.7
O1—C1—O2—C22.1 (2)C14—C13—N31—O326.2 (2)
C11—C1—O2—C2177.60 (15)C15—C14—N41—N4227.0 (2)
O1—C1—C11—C12174.76 (17)C13—C14—N41—N42156.06 (16)
O2—C1—C11—C125.0 (2)C14—N41—N42—C4793.68 (19)
O1—C1—C11—C164.4 (3)N41—N42—C47—O470.0 (2)
O2—C1—C11—C16175.86 (15)N41—N42—C47—C41178.83 (13)
C16—C11—C12—C130.9 (2)O47—C47—C41—C42144.69 (18)
C1—C11—C12—C13178.29 (16)N42—C47—C41—C4236.5 (2)
C11—C12—C13—C140.1 (3)O47—C47—C41—C4632.9 (2)
C11—C12—C13—N31179.00 (15)N42—C47—C41—C46145.92 (16)
C12—C13—C14—N41175.95 (16)C46—C41—C42—F42176.80 (15)
N31—C13—C14—N415.2 (3)C47—C41—C42—F420.8 (3)
C12—C13—C14—C151.1 (2)C46—C41—C42—C431.5 (3)
N31—C13—C14—C15177.75 (15)C47—C41—C42—C43179.07 (16)
N41—C14—C15—C16175.64 (17)F42—C42—C43—C44178.75 (16)
C13—C14—C15—C161.5 (3)C41—C42—C43—C440.4 (3)
C14—C15—C16—C110.8 (3)C42—C43—C44—C451.8 (3)
C12—C11—C16—C150.4 (3)C43—C44—C45—C461.3 (3)
C1—C11—C16—C15178.79 (17)C44—C45—C46—C410.7 (3)
C12—C13—N31—O315.8 (2)C42—C41—C46—C452.0 (3)
C14—C13—N31—O31173.06 (15)C47—C41—C46—C45179.79 (15)
C12—C13—N31—O32174.93 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41···O320.882.022.627 (2)125
N42—H42···O47i0.971.842.735 (2)152
C16—H16···O1ii0.952.513.227 (2)133
C43—H43···O31iii0.952.543.479 (2)172
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2.
(III) Methyl 3-phenyl-1,2,4-benzotriazine-6-carboxylate top
Crystal data top
C15H11N3O2F(000) = 552
Mr = 265.27Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2676 reflections
a = 5.9193 (14) Åθ = 2.9–27.5°
b = 28.138 (2) ŵ = 0.10 mm1
c = 7.3091 (8) ÅT = 120 K
β = 94.762 (14)°Block, orange
V = 1213.2 (3) Å30.36 × 0.28 × 0.14 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2676 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ & ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3635
Tmin = 0.965, Tmax = 0.986l = 99
15473 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.255H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1105P)2 + 2.5634P]
where P = (Fo2 + 2Fc2)/3
2675 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C15H11N3O2V = 1213.2 (3) Å3
Mr = 265.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9193 (14) ŵ = 0.10 mm1
b = 28.138 (2) ÅT = 120 K
c = 7.3091 (8) Å0.36 × 0.28 × 0.14 mm
β = 94.762 (14)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2676 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1977 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.986Rint = 0.044
15473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.255H-atom parameters constrained
S = 1.12Δρmax = 0.42 e Å3
2675 reflectionsΔρmin = 0.35 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1460 (4)0.29928 (9)0.5341 (3)0.0214 (6)
N20.2528 (4)0.33885 (9)0.5776 (3)0.0210 (6)
C30.4654 (5)0.33706 (10)0.6706 (4)0.0183 (6)
N40.5795 (4)0.29791 (8)0.7195 (3)0.0186 (6)
C4A0.4707 (5)0.25646 (10)0.6739 (4)0.0180 (6)
C50.5762 (5)0.21220 (10)0.7192 (4)0.0185 (6)
H50.72480.21100.77920.022*
C60.4589 (5)0.17097 (10)0.6746 (4)0.0185 (6)
C70.2370 (5)0.17212 (10)0.5843 (4)0.0215 (6)
H70.15940.14310.55610.026*
C80.1333 (5)0.21433 (11)0.5373 (4)0.0204 (6)
H80.01470.21490.47620.024*
C8A0.2508 (5)0.25725 (10)0.5816 (4)0.0189 (6)
C310.5684 (5)0.38392 (10)0.7197 (4)0.0179 (6)
C320.7920 (5)0.38655 (11)0.7976 (4)0.0219 (6)
H320.87920.35840.81610.026*
C330.8870 (5)0.43026 (11)0.8481 (4)0.0232 (7)
H331.03890.43190.90110.028*
C340.7605 (6)0.47161 (11)0.8212 (4)0.0258 (7)
H340.82460.50140.85840.031*
C350.5403 (6)0.46942 (11)0.7398 (4)0.0274 (7)
H350.45520.49780.71890.033*
C360.4438 (5)0.42594 (11)0.6890 (4)0.0244 (7)
H360.29310.42460.63320.029*
C610.5573 (5)0.12292 (10)0.7195 (4)0.0193 (6)
O610.4497 (4)0.08652 (7)0.7007 (3)0.0271 (6)
O620.7750 (4)0.12557 (7)0.7838 (3)0.0229 (5)
C620.8832 (5)0.08061 (11)0.8320 (4)0.0241 (7)
H62A0.81820.06730.93990.036*
H62B1.04630.08560.85980.036*
H62C0.85840.05850.72880.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0216 (13)0.0235 (13)0.0191 (13)0.0012 (10)0.0020 (10)0.0006 (9)
N20.0204 (13)0.0213 (12)0.0210 (13)0.0012 (10)0.0003 (10)0.0002 (9)
C30.0199 (14)0.0213 (14)0.0141 (13)0.0005 (11)0.0032 (11)0.0005 (10)
N40.0188 (13)0.0209 (12)0.0162 (12)0.0005 (9)0.0027 (9)0.0005 (9)
C4A0.0198 (14)0.0227 (14)0.0120 (13)0.0009 (11)0.0038 (11)0.0010 (10)
C50.0183 (15)0.0226 (14)0.0147 (13)0.0004 (11)0.0016 (11)0.0000 (10)
C60.0187 (14)0.0222 (14)0.0152 (13)0.0004 (11)0.0046 (11)0.0005 (10)
C70.0217 (15)0.0223 (14)0.0203 (14)0.0035 (11)0.0010 (11)0.0003 (11)
C80.0160 (14)0.0265 (15)0.0183 (14)0.0021 (11)0.0006 (11)0.0006 (11)
C8A0.0181 (14)0.0244 (15)0.0143 (13)0.0010 (11)0.0024 (11)0.0005 (10)
C310.0202 (14)0.0216 (14)0.0122 (13)0.0012 (11)0.0018 (10)0.0005 (10)
C320.0253 (16)0.0205 (14)0.0200 (14)0.0024 (11)0.0014 (12)0.0008 (11)
C330.0229 (15)0.0275 (15)0.0191 (14)0.0026 (12)0.0007 (12)0.0002 (11)
C340.0346 (18)0.0202 (15)0.0227 (15)0.0042 (12)0.0018 (13)0.0018 (11)
C350.0327 (18)0.0198 (14)0.0294 (17)0.0040 (12)0.0006 (13)0.0008 (12)
C360.0239 (16)0.0244 (15)0.0248 (16)0.0033 (12)0.0019 (12)0.0009 (12)
C610.0210 (14)0.0221 (14)0.0149 (13)0.0012 (11)0.0014 (11)0.0003 (10)
O610.0258 (12)0.0200 (11)0.0350 (13)0.0030 (9)0.0001 (9)0.0004 (9)
O620.0213 (11)0.0195 (10)0.0268 (11)0.0004 (8)0.0040 (9)0.0002 (8)
C620.0234 (15)0.0225 (14)0.0260 (16)0.0040 (12)0.0012 (12)0.0012 (12)
Geometric parameters (Å, º) top
N1—N21.307 (3)C31—C361.402 (4)
N2—C31.380 (4)C32—C331.389 (4)
C3—N41.326 (4)C32—H320.9500
N4—C4A1.360 (4)C33—C341.389 (4)
C4A—C51.420 (4)C33—H330.9500
C5—C61.377 (4)C34—C351.389 (5)
C6—C71.421 (4)C34—H340.9500
C7—C81.367 (4)C35—C361.388 (4)
C8—C8A1.418 (4)C35—H350.9500
C8A—N11.367 (4)C36—H360.9500
C4A—C8A1.416 (4)C61—O611.208 (3)
C3—C311.484 (4)C61—O621.337 (4)
C5—H50.9500O62—C621.448 (3)
C6—C611.498 (4)C62—H62A0.9800
C7—H70.9500C62—H62B0.9800
C8—H80.9500C62—H62C0.9800
C31—C321.399 (4)
N2—N1—C8A118.4 (3)C36—C31—C3120.7 (3)
N1—N2—C3119.4 (2)C33—C32—C31120.2 (3)
N4—C3—N2125.9 (3)C33—C32—H32119.9
N4—C3—C31118.9 (3)C31—C32—H32119.9
N2—C3—C31115.2 (2)C34—C33—C32120.2 (3)
C3—N4—C4A115.2 (3)C34—C33—H33119.9
N4—C4A—C8A120.1 (3)C32—C33—H33119.9
N4—C4A—C5120.3 (3)C35—C34—C33120.0 (3)
C8A—C4A—C5119.6 (3)C35—C34—H34120.0
C6—C5—C4A118.7 (3)C33—C34—H34120.0
C6—C5—H5120.7C36—C35—C34120.3 (3)
C4A—C5—H5120.7C36—C35—H35119.8
C5—C6—C7121.3 (3)C34—C35—H35119.8
C5—C6—C61122.0 (3)C35—C36—C31120.1 (3)
C7—C6—C61116.7 (2)C35—C36—H36120.0
C8—C7—C6121.0 (3)C31—C36—H36120.0
C8—C7—H7119.5O61—C61—O62124.8 (3)
C6—C7—H7119.5O61—C61—C6123.3 (3)
C7—C8—C8A118.8 (3)O62—C61—C6111.9 (2)
C7—C8—H8120.6C61—O62—C62115.5 (2)
C8A—C8—H8120.6O62—C62—H62A109.5
N1—C8A—C4A121.0 (3)O62—C62—H62B109.5
N1—C8A—C8118.4 (3)H62A—C62—H62B109.5
C4A—C8A—C8120.6 (3)O62—C62—H62C109.5
C32—C31—C36119.2 (3)H62A—C62—H62C109.5
C32—C31—C3120.1 (3)H62B—C62—H62C109.5
C8A—N1—N2—C30.5 (4)C7—C8—C8A—N1180.0 (3)
N1—N2—C3—N41.4 (4)C7—C8—C8A—C4A0.4 (4)
N1—N2—C3—C31177.8 (2)N4—C3—C31—C327.1 (4)
N2—C3—N4—C4A0.9 (4)N2—C3—C31—C32173.6 (2)
C31—C3—N4—C4A178.3 (2)N4—C3—C31—C36172.8 (3)
C3—N4—C4A—C8A0.3 (4)N2—C3—C31—C366.4 (4)
C3—N4—C4A—C5180.0 (2)C36—C31—C32—C331.6 (4)
N4—C4A—C5—C6178.5 (2)C3—C31—C32—C33178.3 (3)
C8A—C4A—C5—C61.1 (4)C31—C32—C33—C340.1 (4)
C4A—C5—C6—C70.2 (4)C32—C33—C34—C351.5 (5)
C4A—C5—C6—C61179.4 (2)C33—C34—C35—C361.5 (5)
C5—C6—C7—C80.6 (4)C34—C35—C36—C310.1 (5)
C61—C6—C7—C8179.8 (3)C32—C31—C36—C351.6 (4)
C6—C7—C8—C8A0.4 (4)C3—C31—C36—C35178.3 (3)
N2—N1—C8A—C4A0.7 (4)C5—C6—C61—O61171.5 (3)
N2—N1—C8A—C8178.9 (2)C7—C6—C61—O618.2 (4)
N4—C4A—C8A—N11.2 (4)C5—C6—C61—O627.8 (4)
C5—C4A—C8A—N1179.2 (2)C7—C6—C61—O62172.6 (2)
N4—C4A—C8A—C8178.4 (2)O61—C61—O62—C620.3 (4)
C5—C4A—C8A—C81.2 (4)C6—C61—O62—C62179.6 (2)
(IV) Methyl 3-(4-methylphenyl)-1,2,4-benzotriazine- 6-carboxylate top
Crystal data top
C16H13N3O2F(000) = 1168
Mr = 279.29Dx = 1.399 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3050 reflections
a = 7.2326 (4) Åθ = 2.7–27.5°
b = 12.3516 (13) ŵ = 0.10 mm1
c = 29.695 (3) ÅT = 120 K
V = 2652.8 (4) Å3Block, orange
Z = 80.44 × 0.20 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3050 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ & ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1615
Tmin = 0.959, Tmax = 0.981l = 3238
26576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1044P)2 + 0.3747P]
where P = (Fo2 + 2Fc2)/3
3050 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H13N3O2V = 2652.8 (4) Å3
Mr = 279.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2326 (4) ŵ = 0.10 mm1
b = 12.3516 (13) ÅT = 120 K
c = 29.695 (3) Å0.44 × 0.20 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3050 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1807 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.981Rint = 0.061
26576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
3050 reflectionsΔρmin = 0.28 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5099 (2)0.04695 (13)0.20074 (5)0.0292 (4)
N20.5392 (2)0.10147 (13)0.16353 (5)0.0287 (4)
C30.5960 (3)0.20787 (15)0.16610 (7)0.0245 (5)
N40.6236 (2)0.26288 (13)0.20404 (5)0.0242 (4)
C4A0.5960 (3)0.20656 (16)0.24289 (6)0.0243 (5)
C50.6230 (3)0.25795 (16)0.28508 (6)0.0244 (5)
H50.65950.33170.28650.029*
C60.5956 (3)0.19967 (15)0.32354 (6)0.0247 (5)
C70.5373 (3)0.08958 (16)0.32185 (7)0.0302 (5)
H70.51800.05080.34910.036*
C80.5088 (3)0.03933 (16)0.28150 (7)0.0294 (5)
H80.46970.03410.28050.035*
C8A0.5381 (3)0.09764 (16)0.24121 (6)0.0242 (5)
C310.6284 (3)0.26429 (15)0.12294 (6)0.0237 (5)
C320.7049 (3)0.36788 (16)0.12323 (7)0.0277 (5)
H320.73810.40060.15100.033*
C330.7329 (3)0.42334 (17)0.08333 (6)0.0293 (5)
H330.78150.49480.08420.035*
C340.6911 (3)0.37650 (17)0.04187 (6)0.0293 (5)
C350.6160 (3)0.27274 (17)0.04186 (7)0.0303 (5)
H350.58670.23910.01400.036*
C360.5832 (3)0.21744 (16)0.08167 (7)0.0283 (5)
H360.52960.14730.08080.034*
C370.7301 (3)0.43711 (19)0.00121 (7)0.0373 (6)
H37A0.86070.42850.00930.056*
H37B0.70250.51410.00310.056*
H37C0.65260.40810.02540.056*
C610.6249 (3)0.24951 (17)0.36903 (7)0.0275 (5)
O610.6048 (2)0.20038 (12)0.40409 (5)0.0393 (4)
O620.6774 (2)0.35247 (11)0.36591 (4)0.0310 (4)
C620.7067 (3)0.40933 (17)0.40778 (6)0.0327 (5)
H62A0.60750.39110.42890.049*
H62B0.70650.48750.40220.049*
H62C0.82600.38790.42060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0306 (10)0.0271 (9)0.0299 (10)0.0005 (8)0.0018 (7)0.0001 (7)
N20.0317 (10)0.0243 (9)0.0300 (10)0.0007 (8)0.0011 (7)0.0003 (7)
C30.0210 (11)0.0236 (10)0.0288 (11)0.0029 (8)0.0029 (8)0.0012 (8)
N40.0251 (9)0.0235 (9)0.0240 (9)0.0012 (7)0.0003 (7)0.0007 (6)
C4A0.0215 (11)0.0257 (11)0.0257 (10)0.0017 (8)0.0011 (8)0.0017 (8)
C50.0255 (11)0.0213 (10)0.0263 (10)0.0008 (8)0.0001 (8)0.0009 (8)
C60.0219 (11)0.0264 (11)0.0258 (10)0.0014 (8)0.0033 (8)0.0023 (8)
C70.0308 (12)0.0300 (11)0.0299 (11)0.0015 (9)0.0026 (9)0.0096 (9)
C80.0307 (12)0.0240 (10)0.0335 (12)0.0052 (9)0.0033 (9)0.0055 (9)
C8A0.0229 (11)0.0224 (10)0.0273 (10)0.0005 (8)0.0025 (8)0.0001 (8)
C310.0243 (11)0.0230 (10)0.0238 (10)0.0026 (8)0.0015 (8)0.0008 (8)
C320.0300 (12)0.0297 (11)0.0235 (10)0.0002 (9)0.0004 (9)0.0051 (8)
C330.0317 (12)0.0282 (11)0.0279 (11)0.0032 (9)0.0041 (9)0.0028 (9)
C340.0282 (12)0.0350 (12)0.0247 (11)0.0010 (9)0.0034 (9)0.0018 (8)
C350.0343 (13)0.0327 (12)0.0240 (10)0.0029 (10)0.0025 (9)0.0053 (8)
C360.0335 (12)0.0229 (11)0.0284 (11)0.0016 (9)0.0009 (9)0.0030 (8)
C370.0466 (14)0.0386 (13)0.0268 (11)0.0018 (11)0.0047 (10)0.0004 (9)
C610.0249 (12)0.0325 (11)0.0251 (11)0.0021 (9)0.0015 (9)0.0029 (9)
O610.0503 (10)0.0397 (9)0.0279 (8)0.0038 (8)0.0038 (7)0.0074 (7)
O620.0382 (9)0.0304 (8)0.0243 (8)0.0008 (7)0.0021 (6)0.0006 (6)
C620.0367 (14)0.0349 (13)0.0266 (11)0.0027 (10)0.0035 (9)0.0060 (9)
Geometric parameters (Å, º) top
N1—N21.311 (2)C32—C331.383 (3)
N2—C31.379 (3)C32—H320.9500
C3—N41.331 (2)C33—C341.393 (3)
N4—C4A1.362 (2)C33—H330.9500
C4A—C51.418 (3)C34—C351.392 (3)
C5—C61.364 (3)C34—C371.509 (3)
C6—C71.425 (3)C35—C361.386 (3)
C7—C81.365 (3)C35—H350.9500
C8—C8A1.413 (3)C36—H360.9500
C8A—N11.370 (2)C37—H37A0.9800
C4A—C8A1.410 (3)C37—H37B0.9800
C3—C311.477 (3)C37—H37C0.9800
C5—H50.9500C61—O611.214 (2)
C6—C611.499 (3)C61—O621.331 (2)
C7—H70.9500O62—C621.444 (2)
C8—H80.9500C62—H62A0.9800
C31—C321.394 (3)C62—H62B0.9800
C31—C361.394 (3)C62—H62C0.9800
N2—N1—C8A118.70 (16)C31—C32—H32119.8
N1—N2—C3119.42 (16)C32—C33—C34121.3 (2)
N4—C3—N2125.31 (17)C32—C33—H33119.4
N4—C3—C31118.03 (17)C34—C33—H33119.4
N2—C3—C31116.66 (16)C35—C34—C33117.85 (18)
C3—N4—C4A115.75 (17)C35—C34—C37121.97 (18)
N4—C4A—C8A120.07 (17)C33—C34—C37120.17 (19)
N4—C4A—C5119.97 (18)C36—C35—C34121.36 (18)
C8A—C4A—C5119.95 (17)C36—C35—H35119.3
C6—C5—C4A118.91 (18)C34—C35—H35119.3
C6—C5—H5120.5C35—C36—C31120.34 (19)
C4A—C5—H5120.5C35—C36—H36119.8
C5—C6—C7121.13 (18)C31—C36—H36119.8
C5—C6—C61121.13 (18)C34—C37—H37A109.5
C7—C6—C61117.74 (17)C34—C37—H37B109.5
C8—C7—C6120.65 (18)H37A—C37—H37B109.5
C8—C7—H7119.7C34—C37—H37C109.5
C6—C7—H7119.7H37A—C37—H37C109.5
C7—C8—C8A119.27 (18)H37B—C37—H37C109.5
C7—C8—H8120.4O61—C61—O62124.87 (18)
C8A—C8—H8120.4O61—C61—C6123.40 (19)
N1—C8A—C4A120.74 (17)O62—C61—C6111.72 (16)
N1—C8A—C8119.18 (18)C61—O62—C62116.55 (15)
C4A—C8A—C8120.08 (17)O62—C62—H62A109.5
C32—C31—C36118.65 (17)O62—C62—H62B109.5
C32—C31—C3119.37 (17)H62A—C62—H62B109.5
C36—C31—C3121.98 (17)O62—C62—H62C109.5
C33—C32—C31120.49 (18)H62A—C62—H62C109.5
C33—C32—H32119.8H62B—C62—H62C109.5
C8A—N1—N2—C30.5 (3)C7—C8—C8A—C4A0.1 (3)
N1—N2—C3—N40.6 (3)N4—C3—C31—C326.9 (3)
N1—N2—C3—C31179.42 (17)N2—C3—C31—C32173.11 (18)
N2—C3—N4—C4A1.4 (3)N4—C3—C31—C36172.54 (18)
C31—C3—N4—C4A178.55 (17)N2—C3—C31—C367.5 (3)
C3—N4—C4A—C8A1.3 (3)C36—C31—C32—C330.9 (3)
C3—N4—C4A—C5179.60 (17)C3—C31—C32—C33178.60 (18)
N4—C4A—C5—C6179.58 (18)C31—C32—C33—C342.0 (3)
C8A—C4A—C5—C61.3 (3)C32—C33—C34—C351.5 (3)
C4A—C5—C6—C71.3 (3)C32—C33—C34—C37177.54 (18)
C4A—C5—C6—C61179.10 (18)C33—C34—C35—C360.1 (3)
C5—C6—C7—C80.6 (3)C37—C34—C35—C36179.1 (2)
C61—C6—C7—C8179.77 (19)C34—C35—C36—C311.2 (3)
C6—C7—C8—C8A0.1 (3)C32—C31—C36—C350.7 (3)
N2—N1—C8A—C4A0.6 (3)C3—C31—C36—C35179.83 (19)
N2—N1—C8A—C8179.33 (17)C5—C6—C61—O61178.93 (19)
N4—C4A—C8A—N10.4 (3)C7—C6—C61—O611.4 (3)
C5—C4A—C8A—N1179.47 (18)C5—C6—C61—O620.2 (3)
N4—C4A—C8A—C8179.76 (18)C7—C6—C61—O62179.45 (17)
C5—C4A—C8A—C80.6 (3)O61—C61—O62—C621.9 (3)
C7—C8—C8A—N1179.83 (18)C6—C61—O62—C62178.99 (16)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC15H12ClN3O5C15H12FN3O5C15H11N3O2C16H13N3O2
Mr349.73333.28265.27279.29
Crystal system, space groupMonoclinic, P21Monoclinic, P21/nMonoclinic, P21/cOrthorhombic, Pbca
Temperature (K)120120120120
a, b, c (Å)4.7546 (5), 6.1071 (14), 25.541 (5)4.5445 (6), 16.5768 (8), 19.812 (2)5.9193 (14), 28.138 (2), 7.3091 (8)7.2326 (4), 12.3516 (13), 29.695 (3)
α, β, γ (°)90, 93.686 (12), 9090, 92.107 (9), 9090, 94.762 (14), 9090, 90, 90
V3)740.1 (2)1491.5 (3)1213.2 (3)2652.8 (4)
Z2448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.290.120.100.10
Crystal size (mm)0.45 × 0.34 × 0.140.42 × 0.35 × 0.120.36 × 0.28 × 0.140.44 × 0.20 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.880, 0.9600.951, 0.9860.965, 0.9860.959, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9668, 3299, 3050 11235, 3416, 2167 15473, 2676, 1977 26576, 3050, 1807
Rint0.0540.0450.0440.061
(sin θ/λ)max1)0.6500.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.11 0.044, 0.120, 1.00 0.067, 0.255, 1.12 0.062, 0.188, 1.07
No. of reflections3299341626753050
No. of parameters218218182192
No. of restraints1000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.260.22, 0.240.42, 0.350.50, 0.28
Absolute structureFlack (1983), ???? Friedel pairs???
Absolute structure parameter0.05 (7)???

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), Sir2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
C11—C121.378 (3)C13—N311.442 (3)
C12—C131.397 (3)N31—O311.226 (3)
C13—C141.421 (3)N31—O321.252 (2)
C14—C151.421 (3)C14—N411.352 (3)
C15—C161.372 (3)N41—N421.383 (3)
C16—C111.400 (4)
C12—C13—N31—O313.5 (3)C13—C14—N41—N42175.55 (19)
C12—C13—N31—O32176.91 (19)N42—C47—C41—C4225.5 (3)
Selected geometric parameters (Å, º) for (II) top
C11—C121.381 (2)C13—N311.452 (2)
C12—C131.395 (2)N31—O311.2297 (17)
C13—C141.413 (2)N31—O321.2389 (17)
C14—C151.406 (2)C14—N411.382 (2)
C15—C161.368 (2)N41—N421.4022 (18)
C16—C111.396 (2)
C12—C13—N31—O315.8 (2)C13—C14—N41—N42156.06 (16)
C12—C13—N31—O32174.93 (15)N42—C47—C41—C4236.5 (2)
Selected geometric parameters (Å, º) for (III) top
N1—N21.307 (3)C6—C71.421 (4)
N2—C31.380 (4)C7—C81.367 (4)
C3—N41.326 (4)C8—C8A1.418 (4)
N4—C4A1.360 (4)C8A—N11.367 (4)
C4A—C51.420 (4)C4A—C8A1.416 (4)
C5—C61.377 (4)
N2—C3—C31—C32173.6 (2)
Selected geometric parameters (Å, º) for (IV) top
N1—N21.311 (2)C6—C71.425 (3)
N2—C31.379 (3)C7—C81.365 (3)
C3—N41.331 (2)C8—C8A1.413 (3)
N4—C4A1.362 (2)C8A—N11.370 (2)
C4A—C51.418 (3)C4A—C8A1.410 (3)
C5—C61.364 (3)
N2—C3—C31—C32173.11 (18)
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N41—H41···O320.881.972.595 (3)127
N42—H42···O47i0.881.962.828 (2)170
C15—H15···O31ii0.952.493.105 (3)122
C16—C16···O31ii0.952.553.129 (3)120
C42—H42A···O32ii0.952.603.450 (3)150
C43—H43···O47ii0.952.453.354 (3)160
(II)N41—H41···O320.882.022.627 (3)125
N42—H42···O47i0.971.842.735 (2)152
C16—C16···O1iii0.952.513.227 (3)133
C43—H43···O31iv0.952.543.479 (3)172
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) x+3/2, -y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds