Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Co(C10H8N2)3]2[V4O12]·11H2O, is com­posed of two symmetry-related cations containing octa­hedrally coordinated CoII ions, a centrosymmetric [V4O12]4- anion with an eight-membered ring structure made up of four VO4 tetra­hedra, and 11 solvent water mol­ecules. The CoII cations and vanadate anions are isolated and build cation and anion layers, respectively. In addition, the title compound exhibits a three-dimensional network through intra- and inter­molecular hydrogen-bond inter­actions between water mol­ecules and O atoms of the anions, and the crystal structure is stabilized mainly by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112051244/sf3188sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051244/sf3188Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270112051244/sf3188sup3.pdf
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270112051244/sf3188sup4.pdf
Supplementary material

CCDC reference: 925758

Comment top

The design and synthesis of novel vanadium oxides have been the subject of growing interest, due not only to their structural diversity but also to their wide-ranging potential activities, such as efficient catalysis (Yazigi et al., 2010), magnetic properties (Saldias et al., 2012; Zhang et al., 2003, 2007) and electrochemical properties (Zhang et al., 2012). In the past two decades, a large number of compounds of the form [M'Lx]n+ (M' is a transition metal and L is a ligand) connected directly to [VyOz]n- anion clusters (M'—O—V) have been reported, such as [Cu2(2,2'-bpy)2V8O21]n (bpy is bipyridine; Yu & Kong, 2010), [{Mn(phen)2}2V4O12].0.5H2O (phen is 1,10-phenanthroline; Lu, Wang, Yuan, Li et al., 2002), [{Co(phen)2}2V4O12].H2O (Kucsera et al., 2002), [{Zn(2,2'-bpy)}2V8O21] (Xiao, Hou et al., 2004), [Ti(2,2'-bpy)V2O7] (Xiao, Wang, Hou et al., 2004), [Co(2,2'-bpy)2V3O8.5] (Xiao, Wang, An et al., 2004), [Co(2,2'-bpy)(VO3)2(H2O)] (Lin, Pei & Liu, 2003), [Mn(2,2'-bpy)2V2O6] (Devi & Zubieta, 2002) and [{Cu(phen)2}4V10O29].6H2O (Zhang et al., 2000). Some [M'Lx]n+ compounds isolated from [VyOz]n- anion clusters have also been reported, examples being [Co(phen)3][V10O26].H2O (Lu et al., 2004), [Fe(2,2'-bpy)3]2[V4O12].10H2O, (II) (Huang et al., 2004), [Ni(2,2'-bpy)3]2[V4O12].11H2O, (III) (Yang et al., 1998), [Zn(2,2'-bpy)3]2[V4O12].11H2O, (IV) (Zhang et al., 1997) and Co(dien)2(VO3)3.H2O (dien is diethylenetriamine; Lin, Li et al., 2003). The Fe-, Ni- and Zn-containing compounds are apparently isostructural (Yang et al., 1998). The [V4O12]4- anions and [M'(2,2'-bpy)3]2+ (M' = Fe, Ni and Zn) cations form layers separated by water molecules. In order to enrich the range of isostructural compounds, we have recently synthesized [Co(bpy)3]2[V4O12].11H2O, (I), with Co as the transition metal, and present its structure here.

The asymmetric unit of (I) (Fig. 1) consists of one [Co(bpy)3]2+ cation, half a [V4O12]4- anion (which is located around a centre of inversion) and five and a half water molecules (the half molecule being located on a twofold axis). In the [Co(bpy)3]2+ cation, the central CoII atom is coordinated by six N atoms from three 2,2'-bipyridine (2,2'-bpy) groups and each CoII centre exhibits a slightly distorted octahedral coordination geometry. The Co—N bond lengths range from 2.113 (3) to 2.153 (3) Å and the N—Co—N angles are in the range 76.81 (11)–169.65 (11)°. In the [V4O12]4- anion, the V and bridging O atoms form an eight-membered ring, with V—Ob (b denotes bridging) bond lengths in the range 1.788 (2)–1.798 (2) Å; the V—Ot (t denotes terminal) bond lengths are in the range 1.618 (2)–1.636 (3) Å. On the basis of valence-sum calculations (Brown & Altermatt, 1985), atoms V1 and V2 are pentavalent; this value is consistent with the overall charge balance of the compound. Each [V4O12]4- anion consists of four distorted VO4 tetrahedra.

In the structure of (I), the [V4O12]4- anion layers are separated by an interlamellar region occupied by the [Co(bpy)3]2+ cations (Huang et al., 2004) (Fig. 2). The [Co(bpy)3]2+ cations play a significant role in filling the layers assembled by the [V4O12]4- anions and water molecules via hydrogen-bonding interactions and in fulfilling the charge balance of the compound (Fig. 3). The cations are beautifully arranged to form rings, where one bipy ligand from each of six cations is directed towards water molecule O1W located at (1/2, 1/2, 0) (Fig. 4).

The asymmetric unit contains O1W—H1W···O6, O2W—H2D···O5, O2W—H2C···O3, O3W—H3C···O5i, O3W—H3D···O6W, O4W—H4D···O5W, O4W—H4E···O6W, O5W—H5E···O4W, O6W—H6C···O2 and O6W—H6E···O4W (Table 1 and Fig. 5) hydrogen bonds. Two adjacent [V4O12]4- anions are linked through O1W—H1W···O6, O4W—H4C···O3iii, O4W—H4E···O6W, O6W—H6E···O4W, O6W—H6C···O2, O6W—H6D···O3W, O3W—H3C···O5i, O3W—H3D···O6W and O3W—H3E···O3Wii (Table 1 and Fig. 6) hydrogen bonds. A two-dimensional layer of [V4O12]4- anion clusters is formed through O···H—OW and OW···OW interactions (Fig. 6). These strong hydrogen bonds are of great importance in the constitution of the three-dimensional network and in the stabilization of the structure.

In the IR spectrum of (I), the characteristic bands at 1017, 917, 790, 664 and 526 cm-1 are assigned to terminal (VO) and bridging (V—O—V) stretching. The peaks in the 1632–1166 cm-1 region are due to the 2,2'-bipy groups (Lu, Wang, Yuan, Luan et al., 2002). In addition, the weak bands at 3855 and 3738 cm-1 correspond to O—H stretching of water molecules. The presence of a broad band at 3435 cm-1 was assigned to C—H stretching (Lu, Wang, Yuan, Li et al., 2002) (see Fig. S1 in the Supplementary materials).

The UV spectrum of (I) in solution in distilled water exhibits a strong band around 200 nm ascribed to the ligand-to-metal charge-transfer (LMCT) transition of terminal O atoms to vanadium (Li et al., 2002). A weak band around 300 nm corresponds to a ligand-centred ππ* transition (Fay et al., 2003) (see Fig. S2 in the Supplementary materials).

In conclusion, we have successfully synthesized a three-dimensional CoII compound, and postulate that the use of different transition metal ions in compounds of this type may have a significant effect on the formation of the resulting structure. [Rephrasing OK?]

Related literature top

For related literature, see: Brown & Altermatt (1985); Devi & Zubieta (2002); Fay et al. (2003); Huang et al. (2004); Kucsera et al. (2002); Li et al. (2002); Lin, Li, Pei & Liu (2003); Lin, Pei & Liu (2003); Lu et al. (2004); Lu, Wang, Yuan, Li, Xua, Hu, Hu & Jia (2002); Lu, Wang, Yuan, Luan, Li, Zhang, Hu, Yao, Qin & Chen (2002); Saldias et al. (2012); Xiao, Hou, Wang, Li, Lü, Xu & Hu (2004); Xiao, Wang, An, Xu & Hu (2004); Xiao, Wang, Hou, Wang, Li, An, Xu & Hu (2004); Yang et al. (1998); Yazigi et al. (2010); Yu & Kong (2010); Zhang et al. (1997, 2000, 2003, 2007, 2012).

Experimental top

A mixture of Co(NO3)2.6H2O (0.110 g, 0.378 mmol), NH4VO3 (0.082 g, 0.701 mmol), 2,2'-bipy (0.045 g, 0.288 mmol) and H2O (10 ml) was stirred for 30 min, after which time the pH was adjusted to 2.0 using 3 M HCl. The mixture was transferred to a Teflon-lined autoclave (25 ml) with 60% filling and kept at 433 K for 5 d. The pink crystals of (I) which formed were filtered off, washed with distilled water and dried in air at room temperature. Elemental analysis, calculated: H 4.17, C 43.56, N 10.26%; experimental: H 4.25, C 43.67, N 10.18%.

Refinement top

All H atoms were located geometrically and then refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). For the water molecules, O1W—H1W = 0.82 Å and O2W—H2W = 0.82 Å. The H atoms of O3W, O4W, O5W and O6W are disordered over three sites in the refinement [with occupancies of..?].

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity.

Fig. 2. A packing diagram for (I), viewed normal to the ac plane. Dashed lines indicate hydrogen bonds. H atoms have been omitted for clarity.

Fig. 3. The [Co(bpy)3]2+ cations in the layers constructed from [V4O12]4- anions and water molecules. Dashed lines indicate hydrogen bonds. H atoms of the 2,2'-bipy groups have been omitted for clarity.

Fig. 4. A view of the cations forming a six-membered ring in the ab plane. H atoms have been omitted for clarity.

Fig. 5. The intramolecular hydrogen-bonding interactions (dashed lines) of (I). The cations have been omitted. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

Fig. 6. The two-dimensional layers of [V4O12]4- anions and water formed by hydrogen-bonding interactions (dashed lines) in (I). [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1/2, -y + 1/2, -z + 1; (iii) -x + 1/2, -y + 3/2, -z + 1; (iv) x - 1/2, y - 1/2, z; (v) -x, -y + 1, -z + 1.]
Bis[tris(2,2'-bipyridyl-κ2N,N')cobalt(II)] cyclo-tetravanadate undecahydrate top
Crystal data top
[Co(C10H8N2)3]2[V4O12]·11H2OF(000) = 3376
Mr = 1648.90Dx = 1.555 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5706 reflections
a = 21.965 (3) Åθ = 2.3–26.0°
b = 14.003 (2) ŵ = 1.05 mm1
c = 23.836 (4) ÅT = 298 K
β = 106.080 (3)°Block, pink
V = 7044.5 (19) Å30.26 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6970 independent reflections
Radiation source: fine-focus sealed tube4505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2427
Tmin = 0.768, Tmax = 0.793k = 1417
18756 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.045P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
6913 reflections(Δ/σ)max = 0.001
456 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Co(C10H8N2)3]2[V4O12]·11H2OV = 7044.5 (19) Å3
Mr = 1648.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.965 (3) ŵ = 1.05 mm1
b = 14.003 (2) ÅT = 298 K
c = 23.836 (4) Å0.26 × 0.24 × 0.22 mm
β = 106.080 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6970 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4505 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.793Rint = 0.049
18756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
6913 reflectionsΔρmin = 0.26 e Å3
456 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.16862 (2)0.53585 (3)0.266412 (19)0.03081 (13)
N10.22446 (13)0.5894 (2)0.21193 (12)0.0365 (7)
N20.26007 (13)0.48287 (19)0.30790 (12)0.0338 (7)
N30.14253 (13)0.4068 (2)0.21766 (12)0.0372 (7)
N40.12247 (12)0.45585 (19)0.31836 (12)0.0326 (7)
N50.17747 (13)0.6650 (2)0.31621 (12)0.0357 (7)
N60.08783 (12)0.6151 (2)0.22106 (11)0.0331 (7)
C10.2408 (2)0.6591 (3)0.12552 (17)0.0599 (12)
H1A0.22480.69430.09150.072*
C20.20338 (19)0.6386 (3)0.16195 (16)0.0510 (10)
H2A0.16160.65990.15140.061*
C30.3019 (2)0.6264 (3)0.14068 (18)0.0588 (12)
H3A0.32780.63790.11640.071*
C40.32481 (18)0.5768 (3)0.19166 (17)0.0485 (10)
H4A0.36650.55530.20260.058*
C50.28516 (16)0.5588 (2)0.22697 (15)0.0361 (8)
C60.30648 (16)0.5060 (2)0.28306 (15)0.0342 (8)
C70.36857 (17)0.4822 (3)0.30831 (17)0.0452 (10)
H7A0.39970.49860.29030.054*
C80.38442 (17)0.4336 (3)0.36070 (17)0.0470 (10)
H8A0.42640.41780.37860.056*
C90.33855 (18)0.4090 (3)0.38594 (16)0.0479 (10)
H9A0.34840.37540.42090.058*
C100.27645 (18)0.4351 (3)0.35842 (15)0.0440 (9)
H10A0.24490.41870.37590.053*
C110.15272 (19)0.3862 (3)0.16625 (16)0.0492 (10)
H11A0.17290.43170.14930.059*
C120.13514 (19)0.3019 (3)0.13706 (17)0.0531 (11)
H12A0.14350.29030.10150.064*
C130.10487 (19)0.2349 (3)0.16186 (18)0.0559 (11)
H13A0.09210.17700.14320.067*
C140.09369 (18)0.2546 (3)0.21466 (17)0.0518 (10)
H14A0.07360.20970.23210.062*
C150.11245 (15)0.3412 (2)0.24174 (15)0.0351 (8)
C160.10165 (15)0.3685 (3)0.29823 (15)0.0353 (8)
C170.07194 (19)0.3086 (3)0.32906 (18)0.0555 (11)
H17A0.05810.24840.31460.067*
C180.0632 (2)0.3390 (3)0.38071 (18)0.0628 (12)
H18A0.04280.30000.40140.075*
C190.0848 (2)0.4276 (3)0.40183 (17)0.0560 (11)
H19A0.08000.44910.43730.067*
C200.11369 (17)0.4836 (3)0.36976 (16)0.0447 (10)
H20A0.12800.54380.38410.054*
C210.22066 (17)0.6825 (3)0.36698 (16)0.0454 (10)
H21A0.25210.63730.38150.054*
C220.22045 (19)0.7648 (3)0.39866 (17)0.0534 (11)
H22A0.25020.77390.43450.064*
C230.1754 (2)0.8334 (3)0.37625 (18)0.0562 (11)
H23A0.17460.88980.39660.067*
C240.13160 (18)0.8173 (3)0.32334 (16)0.0470 (10)
H24A0.10110.86310.30720.056*
C250.13355 (15)0.7320 (2)0.29438 (15)0.0343 (8)
C260.08631 (15)0.7075 (2)0.23845 (14)0.0315 (8)
C270.04415 (16)0.7720 (3)0.20550 (15)0.0409 (9)
H27A0.04330.83450.21850.049*
C280.00304 (17)0.7439 (3)0.15296 (16)0.0444 (10)
H28A0.02470.78740.12960.053*
C290.00407 (16)0.6506 (3)0.13605 (16)0.0441 (10)
H29A0.02350.62960.10120.053*
C300.04627 (16)0.5883 (3)0.17121 (15)0.0414 (9)
H30A0.04580.52470.15980.050*
V10.42366 (3)0.62888 (4)0.49574 (2)0.03422 (16)
V20.53755 (3)0.56779 (4)0.42423 (2)0.03419 (16)
O10.44484 (12)0.55579 (17)0.56024 (10)0.0457 (6)
O20.34856 (11)0.6210 (2)0.46378 (11)0.0605 (8)
O30.43964 (13)0.73971 (18)0.51606 (11)0.0556 (7)
O40.46786 (11)0.59514 (18)0.44592 (10)0.0477 (7)
O50.59616 (12)0.63575 (19)0.45973 (12)0.0589 (8)
O60.52449 (12)0.58691 (18)0.35450 (10)0.0518 (7)
O1W0.50000.4876 (3)0.25000.0611 (11)
H1W0.50560.52080.27930.092*
O2W0.57072 (14)0.7844 (2)0.53342 (13)0.0752 (9)
H2C0.53300.77800.53110.113*
H2D0.58440.75110.51130.113*
O3W0.27504 (14)0.3360 (2)0.49023 (13)0.0825 (10)
H3C0.31210.32930.50930.124*
H3D0.25870.38720.49430.124*0.50
H3E0.24960.29880.49790.124*0.50
O4W0.13959 (15)0.6044 (2)0.50320 (16)0.0964 (12)
H4C0.12440.65800.49600.145*
H4D0.13720.58060.53400.145*0.50
H4E0.16670.58970.48710.145*0.50
O5W0.05950 (18)0.4838 (2)0.54174 (15)0.0946 (12)
H5C0.06800.42810.53630.142*
H5D0.03350.50980.51460.142*0.50
H5E0.08330.52420.53450.142*0.50
O6W0.24914 (16)0.5289 (3)0.49331 (18)0.1103 (13)
H6C0.27710.55610.48260.165*
H6D0.25690.47180.49260.165*0.50
H6E0.21290.54150.47040.165*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0313 (3)0.0300 (3)0.0309 (3)0.0003 (2)0.0083 (2)0.0010 (2)
N10.0424 (18)0.0350 (18)0.0343 (17)0.0032 (14)0.0144 (14)0.0061 (14)
N20.0318 (15)0.0326 (18)0.0354 (16)0.0040 (13)0.0065 (13)0.0034 (13)
N30.0418 (17)0.0326 (18)0.0364 (17)0.0007 (14)0.0095 (14)0.0047 (14)
N40.0334 (15)0.0325 (17)0.0327 (16)0.0006 (13)0.0106 (13)0.0014 (13)
N50.0325 (16)0.0398 (19)0.0326 (17)0.0023 (14)0.0055 (13)0.0007 (14)
N60.0318 (15)0.0341 (18)0.0310 (16)0.0012 (13)0.0048 (13)0.0003 (13)
C10.079 (3)0.064 (3)0.043 (2)0.008 (3)0.027 (2)0.019 (2)
C20.054 (2)0.055 (3)0.046 (2)0.008 (2)0.018 (2)0.014 (2)
C30.069 (3)0.068 (3)0.051 (3)0.004 (3)0.037 (2)0.010 (2)
C40.043 (2)0.056 (3)0.054 (3)0.001 (2)0.025 (2)0.002 (2)
C50.039 (2)0.031 (2)0.040 (2)0.0010 (17)0.0126 (17)0.0034 (16)
C60.0330 (19)0.032 (2)0.038 (2)0.0006 (16)0.0101 (16)0.0048 (16)
C70.037 (2)0.047 (3)0.053 (2)0.0008 (19)0.0148 (19)0.001 (2)
C80.033 (2)0.048 (3)0.054 (3)0.0067 (19)0.0013 (19)0.008 (2)
C90.050 (2)0.048 (3)0.039 (2)0.011 (2)0.0016 (19)0.0058 (19)
C100.045 (2)0.049 (3)0.038 (2)0.0058 (19)0.0121 (18)0.0084 (19)
C110.064 (3)0.049 (3)0.037 (2)0.001 (2)0.016 (2)0.0071 (19)
C120.065 (3)0.053 (3)0.040 (2)0.002 (2)0.013 (2)0.013 (2)
C130.064 (3)0.042 (3)0.054 (3)0.002 (2)0.002 (2)0.018 (2)
C140.060 (3)0.039 (2)0.053 (3)0.007 (2)0.009 (2)0.005 (2)
C150.0332 (19)0.029 (2)0.039 (2)0.0004 (16)0.0046 (16)0.0011 (17)
C160.0324 (19)0.034 (2)0.038 (2)0.0000 (17)0.0070 (16)0.0033 (17)
C170.068 (3)0.040 (3)0.060 (3)0.011 (2)0.021 (2)0.004 (2)
C180.083 (3)0.059 (3)0.054 (3)0.015 (3)0.032 (2)0.011 (2)
C190.075 (3)0.061 (3)0.042 (2)0.004 (2)0.032 (2)0.003 (2)
C200.049 (2)0.042 (2)0.045 (2)0.0042 (19)0.0161 (19)0.0058 (19)
C210.039 (2)0.044 (2)0.047 (2)0.0011 (19)0.0020 (18)0.0016 (19)
C220.057 (3)0.054 (3)0.041 (2)0.013 (2)0.001 (2)0.013 (2)
C230.065 (3)0.046 (3)0.054 (3)0.010 (2)0.011 (2)0.017 (2)
C240.052 (2)0.035 (2)0.052 (2)0.0034 (19)0.010 (2)0.0039 (19)
C250.0328 (19)0.035 (2)0.037 (2)0.0042 (17)0.0124 (16)0.0017 (17)
C260.0325 (19)0.031 (2)0.0322 (19)0.0002 (16)0.0110 (15)0.0031 (16)
C270.048 (2)0.033 (2)0.043 (2)0.0065 (18)0.0153 (18)0.0046 (18)
C280.041 (2)0.054 (3)0.038 (2)0.012 (2)0.0101 (18)0.010 (2)
C290.036 (2)0.058 (3)0.035 (2)0.002 (2)0.0045 (17)0.003 (2)
C300.039 (2)0.043 (2)0.038 (2)0.0047 (18)0.0038 (17)0.0045 (18)
V10.0341 (3)0.0337 (4)0.0324 (3)0.0060 (3)0.0050 (3)0.0019 (3)
V20.0385 (3)0.0331 (4)0.0306 (3)0.0010 (3)0.0092 (3)0.0023 (3)
O10.0546 (16)0.0407 (16)0.0426 (15)0.0102 (13)0.0150 (12)0.0073 (12)
O20.0404 (15)0.083 (2)0.0527 (17)0.0051 (15)0.0042 (13)0.0029 (16)
O30.0788 (19)0.0309 (15)0.0533 (17)0.0035 (14)0.0118 (14)0.0043 (13)
O40.0497 (16)0.0537 (17)0.0423 (15)0.0108 (14)0.0170 (12)0.0050 (13)
O50.0532 (17)0.0527 (18)0.0661 (19)0.0099 (14)0.0089 (14)0.0104 (15)
O60.0714 (19)0.0493 (17)0.0365 (15)0.0032 (15)0.0178 (13)0.0072 (13)
O1W0.091 (3)0.047 (3)0.053 (2)0.0000.032 (2)0.000
O2W0.079 (2)0.063 (2)0.091 (2)0.0037 (17)0.0357 (18)0.0173 (18)
O3W0.063 (2)0.107 (3)0.082 (2)0.0272 (19)0.0261 (17)0.020 (2)
O4W0.092 (3)0.056 (2)0.150 (3)0.0163 (19)0.048 (2)0.005 (2)
O5W0.145 (3)0.062 (2)0.091 (3)0.007 (2)0.057 (2)0.0002 (19)
O6W0.070 (2)0.119 (3)0.154 (4)0.002 (2)0.052 (2)0.014 (3)
Geometric parameters (Å, º) top
Co1—N22.113 (3)C18—C191.373 (5)
Co1—N62.118 (3)C18—H18A0.9300
Co1—N42.124 (3)C19—C201.367 (5)
Co1—N32.139 (3)C19—H19A0.9300
Co1—N52.143 (3)C20—H20A0.9300
Co1—N12.153 (3)C21—C221.379 (5)
N1—C21.343 (4)C21—H21A0.9300
N1—C51.351 (4)C22—C231.376 (5)
N2—C101.337 (4)C22—H22A0.9300
N2—C61.352 (4)C23—C241.377 (5)
N3—C111.337 (4)C23—H23A0.9300
N3—C151.349 (4)C24—C251.387 (5)
N4—C161.346 (4)C24—H24A0.9300
N4—C201.349 (4)C25—C261.485 (5)
N5—C211.337 (4)C26—C271.374 (4)
N5—C251.342 (4)C27—C281.383 (5)
N6—C301.336 (4)C27—H27A0.9300
N6—C261.361 (4)C28—C291.368 (5)
C1—C31.370 (6)C28—H28A0.9300
C1—C21.381 (5)C29—C301.376 (5)
C1—H1A0.9300C29—H29A0.9300
C2—H2A0.9300C30—H30A0.9300
C3—C41.369 (5)V1—O21.618 (2)
C3—H3A0.9300V1—O31.635 (3)
C4—C51.392 (5)V1—O41.793 (2)
C4—H4A0.9300V1—O11.798 (2)
C5—C61.486 (5)V2—O61.629 (2)
C6—C71.370 (5)V2—O51.636 (3)
C7—C81.380 (5)V2—O41.788 (2)
C7—H7A0.9300V2—O1i1.789 (2)
C8—C91.353 (5)O1—V2i1.789 (2)
C8—H8A0.9300O1W—H1W0.8200
C9—C101.389 (5)O2W—H2C0.8201
C9—H9A0.9300O2W—H2D0.8200
C10—H10A0.9300O3W—H3C0.8199
C11—C121.370 (5)O3W—H3D0.8199
C11—H11A0.9300O3W—H3E0.8202
C12—C131.374 (5)O4W—H4C0.8198
C12—H12A0.9300O4W—H4D0.8202
C13—C141.375 (5)O4W—H4E0.8200
C13—H13A0.9300O5W—H5C0.8199
C14—C151.382 (5)O5W—H5D0.8201
C14—H14A0.9300O5W—H5E0.8201
C15—C161.481 (5)O6W—H6C0.8200
C16—C171.391 (5)O6W—H6D0.8199
C17—C181.365 (5)O6W—H6E0.8500
C17—H17A0.9300
N2—Co1—N6167.54 (11)N3—C15—C14121.1 (3)
N2—Co1—N495.01 (11)N3—C15—C16115.6 (3)
N6—Co1—N496.10 (10)C14—C15—C16123.3 (3)
N2—Co1—N391.99 (11)N4—C16—C17121.5 (3)
N6—Co1—N396.02 (11)N4—C16—C15115.8 (3)
N4—Co1—N376.81 (11)C17—C16—C15122.8 (3)
N2—Co1—N596.23 (10)C18—C17—C16119.5 (4)
N6—Co1—N577.00 (11)C18—C17—H17A120.3
N4—Co1—N596.15 (10)C16—C17—H17A120.3
N3—Co1—N5169.65 (11)C17—C18—C19119.4 (4)
N2—Co1—N177.17 (11)C17—C18—H18A120.3
N6—Co1—N192.66 (11)C19—C18—H18A120.3
N4—Co1—N1168.22 (11)C20—C19—C18118.7 (4)
N3—Co1—N194.47 (11)C20—C19—H19A120.7
N5—Co1—N193.48 (11)C18—C19—H19A120.7
C2—N1—C5118.1 (3)N4—C20—C19123.2 (4)
C2—N1—Co1126.9 (2)N4—C20—H20A118.4
C5—N1—Co1114.5 (2)C19—C20—H20A118.4
C10—N2—C6117.8 (3)N5—C21—C22122.7 (4)
C10—N2—Co1125.5 (2)N5—C21—H21A118.7
C6—N2—Co1116.5 (2)C22—C21—H21A118.7
C11—N3—C15118.0 (3)C23—C22—C21118.8 (4)
C11—N3—Co1126.4 (3)C23—C22—H22A120.6
C15—N3—Co1115.7 (2)C21—C22—H22A120.6
C16—N4—C20117.7 (3)C22—C23—C24119.1 (4)
C16—N4—Co1116.2 (2)C22—C23—H23A120.4
C20—N4—Co1126.1 (2)C24—C23—H23A120.4
C21—N5—C25118.5 (3)C23—C24—C25119.1 (4)
C21—N5—Co1126.1 (3)C23—C24—H24A120.4
C25—N5—Co1115.4 (2)C25—C24—H24A120.4
C30—N6—C26118.0 (3)N5—C25—C24121.8 (3)
C30—N6—Co1125.2 (2)N5—C25—C26115.8 (3)
C26—N6—Co1115.5 (2)C24—C25—C26122.4 (3)
C3—C1—C2118.4 (4)N6—C26—C27121.3 (3)
C3—C1—H1A120.8N6—C26—C25115.0 (3)
C2—C1—H1A120.8C27—C26—C25123.7 (3)
N1—C2—C1123.1 (4)C26—C27—C28119.9 (3)
N1—C2—H2A118.5C26—C27—H27A120.1
C1—C2—H2A118.5C28—C27—H27A120.1
C4—C3—C1119.7 (4)C29—C28—C27118.6 (4)
C4—C3—H3A120.1C29—C28—H28A120.7
C1—C3—H3A120.1C27—C28—H28A120.7
C3—C4—C5119.4 (4)C28—C29—C30119.3 (3)
C3—C4—H4A120.3C28—C29—H29A120.4
C5—C4—H4A120.3C30—C29—H29A120.4
N1—C5—C4121.3 (3)N6—C30—C29122.9 (3)
N1—C5—C6116.0 (3)N6—C30—H30A118.6
C4—C5—C6122.7 (3)C29—C30—H30A118.6
N2—C6—C7121.9 (3)O2—V1—O3108.13 (15)
N2—C6—C5115.2 (3)O2—V1—O4109.81 (12)
C7—C6—C5122.9 (3)O3—V1—O4109.59 (13)
C6—C7—C8119.2 (4)O2—V1—O1110.64 (13)
C6—C7—H7A120.4O3—V1—O1107.68 (12)
C8—C7—H7A120.4O4—V1—O1110.92 (11)
C9—C8—C7119.7 (3)O6—V2—O5108.86 (14)
C9—C8—H8A120.1O6—V2—O4109.69 (12)
C7—C8—H8A120.1O5—V2—O4109.89 (13)
C8—C9—C10118.5 (4)O6—V2—O1i109.69 (12)
C8—C9—H9A120.7O5—V2—O1i111.20 (13)
C10—C9—H9A120.7O4—V2—O1i107.50 (11)
N2—C10—C9122.8 (3)V2i—O1—V1135.84 (14)
N2—C10—H10A118.6V2—O4—V1155.81 (15)
C9—C10—H10A118.6H2C—O2W—H2D115.9
N3—C11—C12123.8 (4)H3C—O3W—H3D115.8
N3—C11—H11A118.1H3C—O3W—H3E115.9
C12—C11—H11A118.1H3D—O3W—H3E100.4
C11—C12—C13118.1 (4)H4C—O4W—H4D115.9
C11—C12—H12A120.9H4C—O4W—H4E115.9
C13—C12—H12A120.9H4D—O4W—H4E123.5
C12—C13—C14119.2 (4)H5C—O5W—H5D115.9
C12—C13—H13A120.4H5C—O5W—H5E115.9
C14—C13—H13A120.4H5D—O5W—H5E82.7
C13—C14—C15119.8 (4)H6C—O6W—H6D105.6
C13—C14—H14A120.1H6C—O6W—H6E110.6
C15—C14—H14A120.1H6D—O6W—H6E110.6
N2—Co1—N1—C2176.0 (3)Co1—N2—C6—C54.9 (4)
N6—Co1—N1—C211.3 (3)N1—C5—C6—N29.2 (4)
N4—Co1—N1—C2126.8 (5)C4—C5—C6—N2171.1 (3)
N3—Co1—N1—C285.0 (3)N1—C5—C6—C7170.6 (3)
N5—Co1—N1—C288.4 (3)C4—C5—C6—C79.2 (5)
N2—Co1—N1—C54.8 (2)N2—C6—C7—C80.2 (5)
N6—Co1—N1—C5177.5 (2)C5—C6—C7—C8179.5 (3)
N4—Co1—N1—C544.4 (6)C6—C7—C8—C90.9 (6)
N3—Co1—N1—C586.2 (2)C7—C8—C9—C101.0 (6)
N5—Co1—N1—C5100.4 (2)C6—N2—C10—C90.2 (5)
N6—Co1—N2—C10139.1 (5)Co1—N2—C10—C9174.5 (3)
N4—Co1—N2—C1013.9 (3)C8—C9—C10—N20.5 (6)
N3—Co1—N2—C1090.8 (3)C15—N3—C11—C120.9 (5)
N5—Co1—N2—C1082.9 (3)Co1—N3—C11—C12179.7 (3)
N1—Co1—N2—C10175.0 (3)N3—C11—C12—C130.5 (6)
N6—Co1—N2—C635.6 (6)C11—C12—C13—C140.3 (6)
N4—Co1—N2—C6171.4 (2)C12—C13—C14—C150.5 (6)
N3—Co1—N2—C694.5 (2)C11—N3—C15—C141.1 (5)
N5—Co1—N2—C691.9 (2)Co1—N3—C15—C14179.4 (3)
N1—Co1—N2—C60.3 (2)C11—N3—C15—C16179.1 (3)
N2—Co1—N3—C1186.7 (3)Co1—N3—C15—C160.3 (4)
N6—Co1—N3—C1183.7 (3)C13—C14—C15—N30.9 (5)
N4—Co1—N3—C11178.6 (3)C13—C14—C15—C16179.3 (3)
N5—Co1—N3—C11130.7 (6)C20—N4—C16—C170.1 (5)
N1—Co1—N3—C119.4 (3)Co1—N4—C16—C17178.6 (3)
N2—Co1—N3—C1593.9 (2)C20—N4—C16—C15179.9 (3)
N6—Co1—N3—C1595.7 (2)Co1—N4—C16—C151.4 (4)
N4—Co1—N3—C150.8 (2)N3—C15—C16—N40.7 (4)
N5—Co1—N3—C1548.7 (7)C14—C15—C16—N4179.5 (3)
N1—Co1—N3—C15171.2 (2)N3—C15—C16—C17179.3 (3)
N2—Co1—N4—C1689.7 (2)C14—C15—C16—C170.5 (5)
N6—Co1—N4—C1696.0 (2)N4—C16—C17—C180.4 (6)
N3—Co1—N4—C161.2 (2)C15—C16—C17—C18179.5 (4)
N5—Co1—N4—C16173.5 (2)C16—C17—C18—C191.0 (6)
N1—Co1—N4—C1641.8 (6)C17—C18—C19—C201.1 (7)
N2—Co1—N4—C2088.7 (3)C16—N4—C20—C190.1 (5)
N6—Co1—N4—C2085.7 (3)Co1—N4—C20—C19178.4 (3)
N3—Co1—N4—C20179.5 (3)C18—C19—C20—N40.5 (6)
N5—Co1—N4—C208.2 (3)C25—N5—C21—C222.4 (5)
N1—Co1—N4—C20136.5 (5)Co1—N5—C21—C22175.0 (3)
N2—Co1—N5—C2117.3 (3)N5—C21—C22—C232.4 (6)
N6—Co1—N5—C21173.4 (3)C21—C22—C23—C240.7 (6)
N4—Co1—N5—C2178.5 (3)C22—C23—C24—C250.8 (6)
N3—Co1—N5—C21125.1 (6)C21—N5—C25—C240.8 (5)
N1—Co1—N5—C2194.7 (3)Co1—N5—C25—C24176.9 (3)
N2—Co1—N5—C25165.3 (2)C21—N5—C25—C26179.0 (3)
N6—Co1—N5—C254.1 (2)Co1—N5—C25—C261.3 (4)
N4—Co1—N5—C2599.0 (2)C23—C24—C25—N50.8 (6)
N3—Co1—N5—C2552.4 (7)C23—C24—C25—C26177.3 (3)
N1—Co1—N5—C2587.8 (2)C30—N6—C26—C271.0 (5)
N2—Co1—N6—C30117.7 (5)Co1—N6—C26—C27166.4 (2)
N4—Co1—N6—C3089.3 (3)C30—N6—C26—C25179.6 (3)
N3—Co1—N6—C3012.0 (3)Co1—N6—C26—C2513.0 (3)
N5—Co1—N6—C30175.8 (3)N5—C25—C26—N69.4 (4)
N1—Co1—N6—C3082.8 (3)C24—C25—C26—N6168.8 (3)
N2—Co1—N6—C2648.6 (6)N5—C25—C26—C27169.9 (3)
N4—Co1—N6—C26104.3 (2)C24—C25—C26—C2711.9 (5)
N3—Co1—N6—C26178.4 (2)N6—C26—C27—C281.3 (5)
N5—Co1—N6—C269.4 (2)C25—C26—C27—C28178.0 (3)
N1—Co1—N6—C2683.6 (2)C26—C27—C28—C292.2 (5)
C5—N1—C2—C10.1 (6)C27—C28—C29—C300.8 (5)
Co1—N1—C2—C1170.9 (3)C26—N6—C30—C292.5 (5)
C3—C1—C2—N11.0 (6)Co1—N6—C30—C29163.6 (3)
C2—C1—C3—C41.6 (6)C28—C29—C30—N61.6 (5)
C1—C3—C4—C51.1 (6)O2—V1—O1—V2i82.3 (2)
C2—N1—C5—C40.6 (5)O3—V1—O1—V2i159.7 (2)
Co1—N1—C5—C4171.5 (3)O4—V1—O1—V2i39.8 (2)
C2—N1—C5—C6179.1 (3)O6—V2—O4—V1155.3 (4)
Co1—N1—C5—C68.8 (4)O5—V2—O4—V135.6 (4)
C3—C4—C5—N10.0 (6)O1i—V2—O4—V185.5 (4)
C3—C4—C5—C6179.7 (4)O2—V1—O4—V2173.8 (4)
C10—N2—C6—C70.3 (5)O3—V1—O4—V267.5 (4)
Co1—N2—C6—C7174.8 (3)O1—V1—O4—V251.2 (4)
C10—N2—C6—C5179.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O60.821.962.773 (3)173
O2W—H2C···O30.822.052.862 (4)169
O2W—H2D···O50.822.092.877 (4)161
O3W—H3C···O5i0.822.012.777 (4)157
O3W—H3D···O6W0.822.002.767 (5)156
O3W—H3E···O3Wii0.822.012.740 (6)149
O4W—H4C···O3iii0.821.972.750 (4)158
O4W—H4D···O5W0.822.232.773 (5)124
O4W—H4E···O6W0.821.972.698 (5)148
O5W—H5C···O2Wiv0.822.012.814 (4)165
O5W—H5D···O5Wv0.822.112.849 (8)149
O5W—H5E···O4W0.821.962.773 (5)168
O6W—H6C···O20.821.972.789 (4)175
O6W—H6D···O3W0.821.952.767 (5)180
O6W—H6E···O4W0.852.162.698 (5)121
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y1/2, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)3]2[V4O12]·11H2O
Mr1648.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.965 (3), 14.003 (2), 23.836 (4)
β (°) 106.080 (3)
V3)7044.5 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
18756, 6970, 4505
Rint0.049
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.104, 1.00
No. of reflections6913
No. of parameters456
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O60.821.962.773 (3)173.1
O2W—H2C···O30.822.052.862 (4)169.2
O2W—H2D···O50.822.092.877 (4)161.0
O3W—H3C···O5i0.822.012.777 (4)156.7
O3W—H3D···O6W0.822.002.767 (5)156.4
O3W—H3E···O3Wii0.822.012.740 (6)148.9
O4W—H4C···O3iii0.821.972.750 (4)158.0
O4W—H4D···O5W0.822.232.773 (5)124.1
O4W—H4E···O6W0.821.972.698 (5)147.8
O5W—H5C···O2Wiv0.822.012.814 (4)164.7
O5W—H5D···O5Wv0.822.112.849 (8)149.2
O5W—H5E···O4W0.821.962.773 (5)168.2
O6W—H6C···O20.821.972.789 (4)175.2
O6W—H6D···O3W0.821.952.767 (5)179.5
O6W—H6E···O4W0.852.162.698 (5)120.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y1/2, z; (v) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds