Download citation
Download citation
link to html
The unit-cell parameters of the three title salts, namely, tripotassium, K3[Mo2(CHO2)O3(O2)4], trirubidium, Rb3[Mo2(CHO2)O3(O2)4], and triammonium [mu]-(formato-[kappa]2O:O')-[mu]-oxido-bis­[oxidobis(peroxido-[kappa]2O,O')molybdate(VI)], (NH4)3[Mo2(CHO2)O3(O2)4], which were all crystallized at pH 3, are quite similar, but the potassium and rubidium salt structures are noncentrosymmetric, whereas that of the ammonium salt is centrosymmetric. Formate acts as an O:O'-bridging ligand in the complex anion and is bound to a [mu]-oxido-bis(oxido­di­per­oxido­molybdate) unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112049803/sf3186sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112049803/sf3186Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112049803/sf3186IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112049803/sf3186IIIsup4.hkl
Contains datablock III

CCDC references: 925256; 925257; 925258

Comment top

A polyoxometallate is an aggregate of oxoanions of group V and VI elements such as Mo, W and V. The introduction of peroxide groups to a polyoxometallate leads to the formation of a peroxidopolyoxometallate. The chemistry of peroxidopolyoxometallates has not been widely explored thus far, probably due to the instability of peroxide groups in either solution or the solid state. In an attempt to synthesize organic–inorganic hybrid peroxidopolyoxometallates, we obtained a formate complex of a dimeric peroxidomolybdate, namely µ-(formato-κ2O:O')-µ-oxido-bis[oxidobis(peroxido-κ2O,O')molybdate(VI)], as the potassium, (I) (Fig. 1), rubidium, (II) (Fig. 2), and ammonium, (III) (Fig. 3), salts.

In all three salts, the structure of the complex anion consists of two oxidodiperoxidomolybdate units bridged by a formate ligand in a µ2-manner. The fundamental structure is similar to the acetate complex [(CH3COO)Mo2O3(O2)4]3- (Hou et al., 2003). Each Mo atom bears two peroxide groups in its equatorial plane to form a pentagonal–bipyramidal geometry. A terminal and a formate O atom are located at the axial positions of the decahedron, and two decahedra are linked by a singly bridging oxide O atom. This dimeric peroxidomolybdate has roughly the same structure as [Mo2O3(O2)4(H2O)2]2- (Stomberg, 1968; Le Carpentier et al., 1972; Djordjevic et al., 1989), but there are no water molecules and the Mo decahedra are rotated around the bridging O atom to make the coordination of formate possible at their vacant positions. The formate group is a bipodal O:O'-bridging ligand. The Mo—O(formate) bond lengths are long in all three salts due to the trans influence of the terminal O atom.

The cell parameters of these three salts are very similar. However, (III) refined in a centrosymmetric space group (Pbcm), whereas (I) and (II) are essentially isostructural in the noncentrosymmetric space group Pca21. It was not impossible to apply the Pca21 space group to (III), but the refinement did not converge and gave a higher R value and goodness-of-fit. As a result, there is a mirror plane passing through atoms O6, C1 and H1 and perpendicular to the O7—Mo1—Mo1i—O7i plane in the anion of ammonium salt (III) [symmetry code: (i) x, y, -z + 1/2] and the overall structure of the anion is planar, in contrast with the other two salts where the structure is twisted. The (formate)O—Mo—Mo—O(formate) torsion angle is 17.32 (6)° for (I) and 14.81 (11)° for (II). In contrast, atoms O6 and C1 of (III) are displaced by 0.208 (2) and 0.066 (2) Å from the least-squares O7—Mo1—Mo1i—O7i plane, probably because it is necessary to incline two Mo decahedra to obtain a short O7···O7i distance in order to make the coordination of the formate group possible, in keeping with the mirror plane of the anion. The reason for this conformational and crystallographic difference is uncertain.

All three crystal structures show quite similar packing modes. As can be seen in Figs. 4 and 5, the arrangements of the anions and cations are quite similar. The anions in (I) and (II) are located in a slightly zigzag manner along the c axis, in contrast with the straight arrangement found in (III), reflecting the difference in the space groups. The shortest axes (b for the potassium and rubidium salts, and a for the ammonium salt) lengthen in the order K < NH4 < Rb, whereas for the other two axes the order is K < Rb < NH4. The unit-cell volume of (III) is slightly larger than that of (II). Such differences may cause a difference in the cation–anion interactions in these salts. Each K and Rb atom has eight to ten close contacts within 3.2 Å with O atoms of the anion, forming a three-dimensional network in the crystal structure. Similarly, all H atoms in the ammonium cations form hydrogen bonds with O atoms in the anion, resulting in a three-dimensional network. However, the ammonium cations interact with five and six [which?] O atoms, fewer than the potassium and rubidium cations. Such a difference may also be caused by the differences in lattice parameters and the limited interaction ability due to the tetrahedral orientation of the H atoms in the ammonium cation, whereas the K and Rb cations are spherical.

Powder X-ray diffraction patterns were compared with simulated patterns calculated from the single-crystal results (Brandenburg, 2005) for each of the three salts, and all agreed well. This indicates that the crystals subjected to measurement here were representative of the bulk.

In the peroxidoisomolybdate system, at the high peroxide/Mo ratio used as the preparative conditions of the present compounds, a monomeric diperoxidomolybdate and a dimeric tetraperoxidodimolybdate are important species in the solution (Taube, Hashimoto et al., 2002; Taube, Andersson et al., 2002). The diperoxidomonomolybdate and tetraperoxidodimolybdate anions show very broad 95Mo NMR signals at about -262 and -280 p.p.m., respectively, at the pH 3 employed for their preparation in the present work. The signals of these two species are not well separated and give one broad signal, and the positions of the signals are somewhat ambiguous. A formate-free solution, where nitric acid was used for pH adjustment and other conditions were similar to those for the preparation of the present compounds, gave a broad 95Mo signal with a shoulder. It can be deconvoluted to -264 and -284 p.p.m., which are in good agreement with those reported by Taube and co-workers. When a controlled amount of formic acid was added to the solution, a signal at ca -216 p.p.m., probably due to the present formate complex, appeared and grew as the molar ratio of formic acid to the total concentration of molybdate was increased. The signal of the monomeric and dimeric species almost disappeared when 20 times the molar amount of formic acid versus molybdate was added to the solution, although the ratio of formate to molybdate is 0.5 in the complex formed here. The signal at -216 p.p.m. decreased significantly after crystallization of the complex, which also supports the above hypothesis that the signal was due to the present complex. However, these observations indicated that the coordination of formate to the oxidodiperoxidomolybdate units was rather weak, although the complexation behaviour could not be detected by 1H and 13C NMR due to small shifts of the signals from their coordination-free positions. [Are minus signs correct for NMR data?]

Related literature top

For related literature, see: Brandenburg (2005); Djordjevic et al. (1989); Hou et al. (2003); Le Carpentier, Mitschler & Weiss (1972); Sheldrick (2008); Stomberg (1968); Taube, Andersson, Toth, Bodor, Howarth & Pettersson (2002); Taube, Hashimoto, Andersson & Pettersson (2002).

Experimental top

For the preparation of the potassium salt, (I), sodium molybdate dihydrate (5 g) was dissolved in water (30 ml). The pH was lowered to ca 4 using formic acid, and 30% hydrogen peroxide (5 ml) was added to the solution. The pH was then adjusted to 3 using formic acid. The volume of the solution was increased to 50 ml by the addition of water, and 1 M potassium chloride (50 ml) was added. The concentration of molybdate was ca 0.2 M and of H2O2 ca 0.5 M in the final solution. The concentration of formate was not controlled because formic acid was used for the pH adjustment. The mixture was kept at 278 K. Yellow block-shaped crystals of (I) appeared after 1 d (yield 3.03 g, 55.2% based on Mo).

The rubidium salt, (II), and the ammonium salt, (III), were obtained in a similar manner, but using 1 M rubidium chloride and 1 M ammonium chloride, respectively. Yellow block-shaped crystals were obtained after a few days (yield of rubidium salt: 4.93 g, 71.2%; of ammonium salt: 1.53 g, 31.7%).

Caution: There is a risk of explosion or combustion by smashing, striking or grinding crystals of these compounds.

Caesium gives crystals of the same anion by a similar preparative method with CsCl as a cation-supplying reagent. However, very poor quality crystals (severely stacked thin plates) prevented single-crystal X-ray data collection, and all atempts to obtain suitable crystals for single-crystal work have failed. The 13C CPMAS NMR of the caesium salt gave a single resonance at 168.0 p.p.m. Comparison of powder X-ray diffraction patterns with those of the other salts indicates that the caesium salt has a completely different crystal structure from the K, Rb and NH4 salts. Preliminary X-ray measurement of the Cs salt reveals that the most probable space group was P321 with a = 6.731 (2) and c = 17.044 (8) Å, with R1 [I > 2σ(I)] = 0.1238 and wR2 (all data) = 0.3617, and the structure shows severe disordering of anions with the Mo atoms on threefold axes (Wyckoff notation c). A powder pattern of the Cs salt simulated from the `single'-crystal result agrees well with that of the measured data.

Refinement top

For (II) [Should this be (I)?], the enantiomer was checked using the TWIN and BASF commands of SHELXL97 (Sheldrick, 2008), with TWIN -100 0-10 00-1 and BASF 0.44 (3). For (III) [Should this be (II)?], the enantiomer was checked using the TWIN and BASF commands of SHELXL97, with TWIN -100 0-10 00-1 and BASF 0.465 (6). H-atom treatment?

Computing details top

For all compounds, data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The structure of the potassium salt, (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The structure of the rubidium salt, (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3. The structure of the ammonium salt, (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 4. A packing diagram for (I) and (II). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 5. A packing diagram for (III). Displacement ellipsoids are drawn at the 50% probability level.
(I) Tripotassium µ-(formato-κ2O:O')-µ-oxido- bis[oxidobis(peroxido-κ2O,O')molybdate(VI)] top
Crystal data top
K3[Mo2(CHO2)O3(O2)4]Dx = 3.234 Mg m3
Mr = 530.20Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Pca21Cell parameters from 4262 reflections
a = 11.147 (6) Åθ = 3.1–30.0°
b = 5.985 (3) ŵ = 3.52 mm1
c = 16.320 (8) ÅT = 93 K
V = 1088.8 (10) Å3Block, yellow
Z = 40.11 × 0.09 × 0.04 mm
F(000) = 1008
Data collection top
Rigaku SATURN724+
diffractometer
3067 independent reflections
Radiation source: fine-focus rotating anode3021 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.026
Detector resolution: 28.5714 pixels mm-1θmax = 30.0°, θmin = 3.4°
CCD scansh = 1515
Absorption correction: gaussian
(CrystalClear; Rigaku, 2008)
k = 88
Tmin = 0.733, Tmax = 0.883l = 2222
9147 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters not refined
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.3042P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.006
3067 reflectionsΔρmax = 1.01 e Å3
173 parametersΔρmin = 0.65 e Å3
1 restraintAbsolute structure: Flack (1983), with 1419 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (3)
Crystal data top
K3[Mo2(CHO2)O3(O2)4]V = 1088.8 (10) Å3
Mr = 530.20Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.147 (6) ŵ = 3.52 mm1
b = 5.985 (3) ÅT = 93 K
c = 16.320 (8) Å0.11 × 0.09 × 0.04 mm
Data collection top
Rigaku SATURN724+
diffractometer
3067 independent reflections
Absorption correction: gaussian
(CrystalClear; Rigaku, 2008)
3021 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.883Rint = 0.026
9147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H-atom parameters not refined
wR(F2) = 0.040Δρmax = 1.01 e Å3
S = 1.09Δρmin = 0.65 e Å3
3067 reflectionsAbsolute structure: Flack (1983), with 1419 Friedel pairs
173 parametersAbsolute structure parameter: 0.44 (3)
1 restraint
Special details top

Experimental. The powder X-ray diffraction was measured on Rigaku MiniFlexII diffractometer at 298 K.

All NMR measurements were performed on a JEOL JNM400 spectrometer at 294 K. 95Mo NMR spectra in aqueous solutions were referred to external 2.0 M sodium molybdate in D2O as 0.0 p.p.m. 1H and 13C NMR in aqueous solutions were referred to the methyl group signal of external DSS (2,2-dimethyl-2-silapentanesulfonate sodium salt) in D2O at 0.0 p.p.m. The solid-state 13C CPMAS spectra were measured with 4 mm zirconia tube and 5 kHz spinning, and referred to external adamantane (38.520 and 29.472 p.p.m. from (CH3)4Si).

Solid-state 13C CPMAS NMR spectrum of each compound shows a single signal at 170.9 p.p.m. (K salt), 168.9 p.p.m. (Rb salt) and 169.0 p.p.m. (NH4 salt).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The enantiomeric twinning was examined by TWIN and BASF instructions of SHELXS97 to obtain BASF 0.44 (3). Possible centrosymmetric space group, Pbcm, was tested but the initial phase determination failed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.235444 (15)0.21025 (3)0.260101 (8)0.00522 (5)
Mo20.263793 (15)0.20163 (3)0.033818 (9)0.00528 (5)
O10.18061 (13)0.0315 (3)0.30011 (9)0.0101 (3)
O20.40582 (13)0.1356 (3)0.24903 (9)0.0110 (3)
O30.37868 (14)0.2436 (3)0.32908 (9)0.0103 (3)
O40.14934 (13)0.4248 (2)0.32893 (9)0.0104 (3)
O50.08722 (13)0.3850 (3)0.25017 (8)0.0097 (3)
O60.22024 (12)0.1379 (3)0.14569 (10)0.0094 (3)
O70.19026 (13)0.0158 (3)0.01051 (9)0.0107 (3)
O80.14048 (13)0.4349 (3)0.03432 (9)0.0117 (3)
O90.21864 (14)0.4477 (3)0.03849 (9)0.0111 (3)
O100.41565 (14)0.1807 (3)0.02599 (9)0.0091 (3)
O110.42074 (13)0.0613 (2)0.05327 (9)0.0098 (3)
O120.30762 (13)0.5565 (2)0.21518 (9)0.0092 (3)
O130.37616 (14)0.4983 (3)0.08745 (9)0.0107 (3)
C10.36719 (16)0.6073 (3)0.15212 (13)0.0080 (3)
H10.40240.72650.15580.013*
K10.10000 (4)0.25245 (8)0.35352 (3)0.00933 (8)
K20.09063 (4)0.24937 (8)0.14854 (4)0.00899 (8)
K30.06573 (4)0.28223 (7)0.05516 (3)0.01010 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00569 (9)0.00587 (9)0.00411 (9)0.00016 (5)0.00016 (8)0.00003 (6)
Mo20.00606 (9)0.00589 (9)0.00390 (9)0.00035 (5)0.00004 (8)0.00045 (6)
O10.0101 (6)0.0105 (7)0.0097 (6)0.0013 (5)0.0003 (5)0.0011 (5)
O20.0086 (7)0.0139 (9)0.0104 (7)0.0005 (6)0.0019 (5)0.0020 (6)
O30.0095 (7)0.0153 (7)0.0061 (6)0.0000 (6)0.0008 (5)0.0024 (6)
O40.0124 (7)0.0118 (7)0.0069 (6)0.0007 (6)0.0014 (5)0.0025 (5)
O50.0087 (6)0.0129 (8)0.0075 (7)0.0019 (5)0.0013 (4)0.0012 (5)
O60.0135 (7)0.0098 (7)0.0047 (6)0.0029 (5)0.0005 (7)0.0016 (6)
O70.0130 (6)0.0112 (6)0.0078 (6)0.0034 (5)0.0009 (5)0.0020 (5)
O80.0103 (6)0.0141 (7)0.0106 (7)0.0026 (6)0.0040 (5)0.0000 (6)
O90.0146 (7)0.0113 (7)0.0072 (6)0.0031 (5)0.0014 (5)0.0019 (6)
O100.0094 (7)0.0120 (7)0.0061 (6)0.0020 (5)0.0024 (5)0.0025 (5)
O110.0100 (6)0.0127 (7)0.0066 (6)0.0015 (5)0.0007 (5)0.0021 (6)
O120.0102 (6)0.0094 (7)0.0080 (6)0.0007 (5)0.0013 (5)0.0006 (5)
O130.0126 (7)0.0104 (7)0.0090 (6)0.0026 (6)0.0006 (5)0.0018 (5)
C10.0064 (8)0.0070 (8)0.0105 (7)0.0006 (7)0.0019 (7)0.0014 (7)
K10.0099 (2)0.01011 (19)0.0079 (2)0.00127 (16)0.00005 (15)0.00109 (15)
K20.00728 (19)0.00885 (18)0.01084 (17)0.00046 (16)0.00094 (15)0.00025 (17)
K30.01184 (18)0.0097 (2)0.00874 (19)0.00149 (15)0.00192 (16)0.00132 (14)
Geometric parameters (Å, º) top
Mo1—O11.7009 (16)O9—K33.332 (2)
Mo1—O61.9242 (18)O10—O111.479 (2)
Mo1—O41.9575 (16)O10—K3i2.819 (2)
Mo1—O21.9594 (18)O10—K1ix2.8765 (18)
Mo1—O51.9620 (17)O10—K3iv3.256 (2)
Mo1—O31.9637 (17)O11—K2i2.6964 (18)
Mo1—O122.3410 (17)O11—K3i2.7169 (18)
Mo2—O71.6997 (16)O12—C11.262 (3)
Mo2—O61.9274 (18)O12—K1iv2.7321 (18)
Mo2—O91.9530 (16)O12—K2vi2.8953 (19)
Mo2—O101.9580 (17)O13—C11.245 (3)
Mo2—O81.9591 (17)O13—K3iv2.7500 (18)
Mo2—O111.9664 (17)O13—K2i2.988 (2)
Mo2—O132.3423 (17)C1—H10.8164 (19)
O1—K1i2.9137 (19)K1—O12x2.7322 (18)
O1—K22.9709 (19)K1—O7ii2.8181 (18)
O1—K3ii3.0775 (18)K1—O9v2.8419 (18)
O2—O31.488 (2)K1—O10iii2.8764 (18)
O2—K2i2.7197 (18)K1—O2xi2.882 (2)
O2—K1i2.882 (2)K1—O1xi2.914 (2)
O3—K3iii2.8231 (19)K1—O3xi3.005 (2)
O3—K1i3.005 (2)K1—O3x3.052 (2)
O3—K1iv3.052 (2)K1—O4x3.420 (2)
O4—O51.479 (2)K2—O11xi2.6964 (18)
O4—K3v2.7425 (17)K2—O8xii2.7119 (18)
O4—K12.992 (2)K2—O2xi2.7197 (18)
O4—K1iv3.420 (2)K2—O5xii2.746 (2)
O5—K2vi2.746 (2)K2—O12xii2.8953 (19)
O5—K12.7982 (18)K2—O13xi2.988 (2)
O6—K22.7317 (19)K3—O11xi2.7169 (18)
O7—K1vii2.8182 (18)K3—O4viii2.7425 (17)
O7—K23.150 (2)K3—O13x2.7499 (18)
O7—K3i3.236 (2)K3—O10xi2.819 (2)
O8—O91.475 (2)K3—O3ix2.8231 (19)
O8—K2vi2.7120 (18)K3—O9x2.909 (2)
O8—K32.8724 (19)K3—O1vii3.0775 (18)
O9—K1viii2.8419 (18)K3—O7xi3.236 (2)
O9—K3iv2.909 (2)K3—O10x3.256 (2)
O1—Mo1—O698.60 (7)O7ii—K1—O9v70.31 (6)
O1—Mo1—O499.29 (7)O12x—K1—O10iii153.72 (5)
O6—Mo1—O4131.40 (7)O5—K1—O10iii85.50 (6)
O1—Mo1—O2100.95 (8)O7ii—K1—O10iii69.01 (5)
O6—Mo1—O286.82 (6)O9v—K1—O10iii90.16 (5)
O4—Mo1—O2132.66 (6)O12x—K1—O2xi81.76 (6)
O1—Mo1—O5100.51 (8)O5—K1—O2xi81.66 (6)
O6—Mo1—O588.03 (6)O7ii—K1—O2xi93.95 (6)
O4—Mo1—O544.35 (6)O9v—K1—O2xi152.42 (5)
O2—Mo1—O5158.45 (8)O10iii—K1—O2xi105.55 (5)
O1—Mo1—O399.12 (7)O12x—K1—O1xi68.06 (5)
O6—Mo1—O3130.59 (6)O5—K1—O1xi125.05 (5)
O4—Mo1—O390.18 (7)O7ii—K1—O1xi73.01 (5)
O2—Mo1—O344.59 (7)O9v—K1—O1xi94.68 (6)
O5—Mo1—O3132.68 (7)O10iii—K1—O1xi137.42 (5)
O1—Mo1—O12175.39 (6)O2xi—K1—O1xi58.41 (5)
O6—Mo1—O1285.73 (6)O12x—K1—O495.46 (5)
O4—Mo1—O1276.56 (6)O5—K1—O429.37 (4)
O2—Mo1—O1280.78 (7)O7ii—K1—O4127.63 (4)
O5—Mo1—O1277.98 (7)O9v—K1—O4107.32 (5)
O3—Mo1—O1279.06 (6)O10iii—K1—O458.63 (5)
O7—Mo2—O697.48 (7)O2xi—K1—O4100.23 (5)
O7—Mo2—O9101.29 (8)O1xi—K1—O4153.66 (5)
O6—Mo2—O9131.05 (7)O12x—K1—O3xi105.89 (5)
O7—Mo2—O1098.97 (7)O5—K1—O3xi105.01 (5)
O6—Mo2—O10132.63 (6)O7ii—K1—O3xi65.15 (5)
O9—Mo2—O1088.27 (7)O9v—K1—O3xi132.03 (5)
O7—Mo2—O8102.06 (8)O10iii—K1—O3xi89.99 (4)
O6—Mo2—O887.73 (7)O2xi—K1—O3xi29.19 (4)
O9—Mo2—O844.32 (6)O1xi—K1—O3xi56.32 (4)
O10—Mo2—O8130.86 (7)O4—K1—O3xi113.35 (5)
O7—Mo2—O1199.83 (7)O12x—K1—O3x56.57 (4)
O6—Mo2—O1189.24 (6)O5—K1—O3x72.49 (5)
O9—Mo2—O11130.45 (6)O7ii—K1—O3x124.88 (5)
O10—Mo2—O1144.27 (6)O9v—K1—O3x54.59 (5)
O8—Mo2—O11158.10 (7)O10iii—K1—O3x107.01 (4)
O7—Mo2—O13175.74 (6)O2xi—K1—O3x136.13 (5)
O6—Mo2—O1386.03 (6)O1xi—K1—O3x110.13 (5)
O9—Mo2—O1378.00 (7)O4—K1—O3x73.38 (5)
O10—Mo2—O1376.84 (6)O3xi—K1—O3x162.36 (6)
O8—Mo2—O1380.42 (7)O12x—K1—O4x50.13 (4)
O11—Mo2—O1377.74 (7)O5—K1—O4x112.24 (5)
Mo1—O1—K1i101.50 (7)O7ii—K1—O4x94.85 (5)
Mo1—O1—K2100.08 (7)O9v—K1—O4x48.39 (4)
K1i—O1—K2109.46 (5)O10iii—K1—O4x138.42 (5)
Mo1—O1—K3ii149.20 (8)O2xi—K1—O4x113.83 (5)
K1i—O1—K3ii84.16 (5)O1xi—K1—O4x62.33 (5)
K2—O1—K3ii106.53 (6)O4—K1—O4x123.26 (4)
O3—O2—Mo167.86 (8)O3xi—K1—O4x118.54 (5)
O3—O2—K2i125.07 (11)O3x—K1—O4x50.42 (4)
Mo1—O2—K2i137.12 (8)O11xi—K2—O8xii92.20 (6)
O3—O2—K1i79.98 (9)O11xi—K2—O2xi73.22 (6)
Mo1—O2—K1i96.16 (6)O8xii—K2—O2xi138.08 (5)
K2i—O2—K1i125.14 (6)O11xi—K2—O690.43 (6)
O2—O3—Mo167.55 (9)O8xii—K2—O6118.11 (6)
O2—O3—K3iii118.21 (10)O2xi—K2—O6101.45 (6)
Mo1—O3—K3iii172.94 (7)O11xi—K2—O5xii132.16 (5)
O2—O3—K1i70.83 (9)O8xii—K2—O5xii82.11 (6)
Mo1—O3—K1i92.30 (6)O2xi—K2—O5xii79.91 (6)
K3iii—O3—K1i86.20 (4)O6—K2—O5xii133.93 (5)
O2—O3—K1iv121.86 (10)O11xi—K2—O12xii166.12 (5)
Mo1—O3—K1iv103.81 (6)O8xii—K2—O12xii78.90 (5)
K3iii—O3—K1iv76.94 (4)O2xi—K2—O12xii120.45 (6)
K1i—O3—K1iv162.36 (6)O6—K2—O12xii84.55 (6)
O5—O4—Mo167.99 (9)O5xii—K2—O12xii57.65 (4)
O5—O4—K3v122.91 (10)O11xi—K2—O1122.28 (5)
Mo1—O4—K3v169.06 (7)O8xii—K2—O1144.00 (5)
O5—O4—K168.05 (8)O2xi—K2—O169.13 (5)
Mo1—O4—K1107.84 (7)O6—K2—O157.53 (5)
K3v—O4—K179.18 (5)O5xii—K2—O181.47 (6)
O5—O4—K1iv125.11 (10)O12xii—K2—O165.25 (5)
Mo1—O4—K1iv92.13 (6)O11xi—K2—O13xi56.89 (5)
K3v—O4—K1iv80.54 (5)O8xii—K2—O13xi65.62 (5)
K1—O4—K1iv159.70 (5)O2xi—K2—O13xi73.74 (6)
O4—O5—Mo167.66 (8)O6—K2—O13xi147.19 (5)
O4—O5—K2vi112.95 (11)O5xii—K2—O13xi78.07 (5)
Mo1—O5—K2vi117.58 (7)O12xii—K2—O13xi126.42 (5)
O4—O5—K182.58 (9)O1—K2—O13xi140.07 (4)
Mo1—O5—K1115.29 (7)O11xi—K2—O765.62 (5)
K2vi—O5—K1126.89 (6)O8xii—K2—O770.77 (6)
Mo1—O6—Mo2148.49 (9)O2xi—K2—O7130.75 (5)
Mo1—O6—K2102.77 (6)O6—K2—O754.76 (5)
Mo2—O6—K2108.50 (7)O5xii—K2—O7148.88 (5)
Mo2—O7—K1vii153.14 (8)O12xii—K2—O7101.13 (5)
Mo2—O7—K299.15 (7)O1—K2—O7111.85 (5)
K1vii—O7—K2107.45 (6)O13xi—K2—O7103.20 (5)
Mo2—O7—K3i93.88 (7)O11xi—K3—O4viii156.10 (5)
K1vii—O7—K3i82.83 (5)O11xi—K3—O13x78.30 (6)
K2—O7—K3i105.26 (5)O4viii—K3—O13x101.43 (6)
O9—O8—Mo267.62 (8)O11xi—K3—O10xi30.92 (4)
O9—O8—K2vi129.67 (11)O4viii—K3—O10xi136.05 (5)
Mo2—O8—K2vi130.03 (7)O13x—K3—O10xi108.02 (5)
O9—O8—K394.56 (10)O11xi—K3—O3ix114.51 (5)
Mo2—O8—K3109.43 (7)O4viii—K3—O3ix80.90 (5)
K2vi—O8—K3114.02 (6)O13x—K3—O3ix141.21 (5)
O8—O9—Mo268.06 (8)O10xi—K3—O3ix94.98 (5)
O8—O9—K1viii104.92 (10)O11xi—K3—O887.36 (5)
Mo2—O9—K1viii166.13 (8)O4viii—K3—O8114.79 (5)
O8—O9—K3iv126.30 (10)O13x—K3—O866.81 (5)
Mo2—O9—K3iv105.22 (7)O10xi—K3—O8106.60 (5)
K1viii—O9—K3iv88.60 (5)O3ix—K3—O877.01 (6)
O8—O9—K359.24 (8)O11xi—K3—O9x108.29 (5)
Mo2—O9—K394.04 (6)O4viii—K3—O9x55.14 (5)
K1viii—O9—K372.20 (4)O13x—K3—O9x57.37 (4)
K3iv—O9—K3160.63 (6)O10xi—K3—O9x118.00 (5)
O11—O10—Mo268.17 (8)O3ix—K3—O9x135.91 (5)
O11—O10—K3i70.72 (8)O8—K3—O9x115.90 (5)
Mo2—O10—K3i102.16 (6)O11xi—K3—O1vii96.18 (5)
O11—O10—K1ix129.99 (10)O4viii—K3—O1vii68.97 (5)
Mo2—O10—K1ix161.60 (7)O13x—K3—O1vii141.68 (5)
K3i—O10—K1ix88.78 (5)O10xi—K3—O1vii67.64 (5)
O11—O10—K3iv127.05 (10)O3ix—K3—O1vii75.75 (5)
Mo2—O10—K3iv93.72 (5)O8—K3—O1vii151.44 (5)
K3i—O10—K3iv160.20 (6)O9x—K3—O1vii89.94 (5)
K1ix—O10—K3iv72.97 (4)O11xi—K3—O7xi55.52 (4)
O10—O11—Mo267.56 (8)O4viii—K3—O7xi100.64 (5)
O10—O11—K2i109.24 (10)O13x—K3—O7xi81.19 (5)
Mo2—O11—K2i122.66 (7)O10xi—K3—O7xi54.25 (4)
O10—O11—K3i78.36 (9)O3ix—K3—O7xi136.98 (5)
Mo2—O11—K3i105.51 (6)O8—K3—O7xi135.63 (5)
K2i—O11—K3i130.73 (6)O9x—K3—O7xi63.79 (6)
C1—O12—Mo1130.50 (13)O1vii—K3—O7xi65.34 (4)
C1—O12—K1iv112.02 (13)O11xi—K3—O10x130.41 (5)
Mo1—O12—K1iv103.95 (6)O4viii—K3—O10x56.50 (5)
C1—O12—K2vi92.10 (12)O13x—K3—O10x52.38 (4)
Mo1—O12—K2vi100.70 (6)O10xi—K3—O10x160.20 (6)
K1iv—O12—K2vi117.22 (6)O3ix—K3—O10x103.05 (4)
C1—O13—Mo2132.16 (13)O8—K3—O10x70.29 (4)
C1—O13—K3iv119.07 (13)O9x—K3—O10x52.06 (4)
Mo2—O13—K3iv99.89 (6)O1vii—K3—O10x124.55 (4)
C1—O13—K2i92.45 (12)O7xi—K3—O10x113.57 (4)
Mo2—O13—K2i100.06 (6)O11xi—K3—O9102.97 (4)
K3iv—O13—K2i109.40 (6)O4viii—K3—O9100.93 (5)
O13—C1—O12127.41 (19)O13x—K3—O990.75 (5)
O13—C1—H1118.8 (2)O10xi—K3—O9110.38 (4)
O12—C1—H1113.8 (2)O3ix—K3—O951.42 (5)
O12x—K1—O570.39 (5)O8—K3—O926.19 (4)
O12x—K1—O7ii136.58 (5)O9x—K3—O9127.82 (4)
O5—K1—O7ii152.05 (5)O1vii—K3—O9127.12 (4)
O12x—K1—O9v94.18 (5)O7xi—K3—O9158.07 (4)
O5—K1—O9v122.81 (6)O10x—K3—O975.84 (4)
O12—Mo1—Mo2—O1317.32 (6)
Symmetry codes: (i) x+1/2, y, z; (ii) x, y, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1, z; (v) x, y+1, z+1/2; (vi) x, y+1, z; (vii) x, y, z1/2; (viii) x, y+1, z1/2; (ix) x+1/2, y, z1/2; (x) x1/2, y+1, z; (xi) x1/2, y, z; (xii) x, y1, z.
(II) Trirubidium µ-(formato-κ2O:O')-µ-oxido- bis[oxidobis(peroxido-κ2O,O')molybdate(VI)] top
Crystal data top
Rb3[Mo2(CHO2)O3(O2)4]Dx = 3.753 Mg m3
Mr = 669.31Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Pca21Cell parameters from 3897 reflections
a = 11.472 (4) Åθ = 3.3–30.1°
b = 6.208 (2) ŵ = 14.43 mm1
c = 16.633 (6) ÅT = 93 K
V = 1184.6 (7) Å3Block, yellow
Z = 40.07 × 0.07 × 0.07 mm
F(000) = 1224
Data collection top
Rigaku SATURN724+
diffractometer
3288 independent reflections
Radiation source: fine-focus rotating anode3188 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.040
Detector resolution: 28.5714 pixels mm-1θmax = 30.0°, θmin = 3.3°
CCD scansh = 1216
Absorption correction: gaussian
(CrystalClear; Rigaku, 2008)
k = 88
Tmin = 0.388, Tmax = 0.520l = 2223
10194 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters not refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.5967P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3288 reflectionsΔρmax = 1.13 e Å3
173 parametersΔρmin = 0.97 e Å3
1 restraintAbsolute structure: Flack (1983), with 1498 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.465 (6)
Crystal data top
Rb3[Mo2(CHO2)O3(O2)4]V = 1184.6 (7) Å3
Mr = 669.31Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.472 (4) ŵ = 14.43 mm1
b = 6.208 (2) ÅT = 93 K
c = 16.633 (6) Å0.07 × 0.07 × 0.07 mm
Data collection top
Rigaku SATURN724+
diffractometer
3288 independent reflections
Absorption correction: gaussian
(CrystalClear; Rigaku, 2008)
3188 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.520Rint = 0.040
10194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters not refined
wR(F2) = 0.058Δρmax = 1.13 e Å3
S = 1.06Δρmin = 0.97 e Å3
3288 reflectionsAbsolute structure: Flack (1983), with 1498 Friedel pairs
173 parametersAbsolute structure parameter: 0.465 (6)
1 restraint
Special details top

Experimental. The powder X-ray diffraction was measured on Rigaku MiniFlexII diffractometer at 298 K.

All NMR measurements were performed on a JEOL JNM400 spectrometer at 294 K. 95Mo NMR spectra in aqueous solutions were referred to external 2.0 M sodium molybdate in D2O as 0.0 p.p.m. 1H and 13C NMR in aqueous solutions were referred to the methyl group signal of external DSS (2,2-dimethyl-2-silapentanesulfonate sodium salt) in D2O at 0.0 p.p.m. The solid-state 13C CPMAS spectra were measured with 4 mm zirconia tube and 5 kHz spinning, and referred to external adamantane (38.520 and 29.472 p.p.m. from (CH3)4Si).

Solid-state 13C CPMAS NMR spectrum of each compound shows a single signal at 170.9 p.p.m. (K salt), 168.9 p.p.m. (Rb salt) and 169.0 p.p.m. (NH4 salt).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The enantiomeric twinning was examined by TWIN and BASF instructions of SHELXS97 to obtain BASF 0.465 (6). Possible centrosymmetric space group, Pbcm, was tested but the initial phase determination failed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.23649 (3)0.21290 (5)0.25881 (2)0.00766 (8)
Mo20.25935 (3)0.20523 (5)0.03586 (2)0.00747 (8)
O10.1812 (3)0.0201 (5)0.29670 (17)0.0121 (6)
O20.4013 (3)0.1344 (6)0.24771 (18)0.0144 (7)
O30.3754 (3)0.2370 (5)0.3263 (2)0.0150 (6)
O40.1569 (3)0.4205 (5)0.32774 (19)0.0147 (6)
O50.0941 (3)0.3872 (6)0.25111 (18)0.0144 (7)
O60.2192 (3)0.1495 (5)0.1463 (2)0.0137 (6)
O70.1866 (3)0.0054 (5)0.00549 (19)0.0146 (6)
O80.1395 (3)0.4298 (5)0.03485 (19)0.0159 (6)
O90.2153 (3)0.4368 (5)0.03697 (17)0.0149 (6)
O100.4063 (3)0.1830 (5)0.02331 (19)0.0133 (6)
O110.4113 (3)0.0682 (5)0.0552 (2)0.0145 (6)
O120.3120 (3)0.5430 (5)0.21483 (18)0.0139 (6)
O130.3685 (3)0.4936 (5)0.08703 (18)0.0145 (6)
C10.3657 (3)0.5948 (6)0.1518 (3)0.0108 (7)
H10.40240.72650.15580.016*
Rb10.09723 (4)0.25087 (7)0.35489 (3)0.01052 (9)
Rb20.09219 (4)0.24395 (6)0.14769 (4)0.01098 (9)
Rb30.06823 (4)0.27726 (6)0.05671 (3)0.01158 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00894 (18)0.00893 (16)0.00509 (16)0.00045 (12)0.00012 (14)0.00023 (14)
Mo20.00923 (18)0.00832 (16)0.00486 (16)0.00068 (12)0.00017 (13)0.00040 (13)
O10.0129 (15)0.0115 (15)0.0119 (15)0.0031 (11)0.0002 (11)0.0006 (11)
O20.0128 (15)0.0182 (16)0.0123 (15)0.0022 (12)0.0025 (11)0.0016 (12)
O30.0137 (16)0.0233 (16)0.0081 (13)0.0011 (12)0.0010 (13)0.0022 (11)
O40.0195 (16)0.0145 (15)0.0100 (14)0.0009 (12)0.0007 (12)0.0000 (12)
O50.0152 (16)0.0164 (16)0.0114 (15)0.0021 (11)0.0007 (11)0.0014 (12)
O60.0206 (17)0.0140 (13)0.0064 (11)0.0061 (11)0.0005 (14)0.0010 (13)
O70.0181 (15)0.0154 (13)0.0104 (13)0.0039 (11)0.0009 (12)0.0026 (12)
O80.0155 (16)0.0187 (15)0.0134 (15)0.0039 (12)0.0027 (13)0.0018 (12)
O90.0194 (16)0.0157 (15)0.0097 (13)0.0046 (12)0.0008 (12)0.0003 (11)
O100.0146 (16)0.0156 (14)0.0097 (14)0.0004 (12)0.0011 (11)0.0005 (11)
O110.0159 (16)0.0168 (14)0.0107 (14)0.0012 (12)0.0011 (11)0.0010 (12)
O120.0187 (16)0.0120 (14)0.0109 (14)0.0038 (12)0.0006 (12)0.0007 (11)
O130.0190 (17)0.0140 (14)0.0103 (14)0.0048 (13)0.0018 (12)0.0016 (11)
C10.0090 (18)0.0116 (16)0.0120 (16)0.0006 (14)0.0017 (15)0.0015 (16)
Rb10.0118 (2)0.01189 (18)0.00785 (19)0.00060 (14)0.00047 (15)0.00109 (12)
Rb20.0100 (2)0.01106 (16)0.01192 (16)0.00010 (14)0.00128 (16)0.00028 (15)
Rb30.01340 (18)0.01190 (16)0.00943 (18)0.00217 (14)0.00218 (16)0.00115 (16)
Geometric parameters (Å, º) top
Mo1—O11.701 (3)O9—Rb33.416 (3)
Mo1—O61.923 (3)O10—O111.488 (4)
Mo1—O41.952 (3)O10—Rb3i2.925 (3)
Mo1—O31.955 (3)O10—Rb1ix3.013 (3)
Mo1—O21.961 (3)O10—Rb3iv3.409 (3)
Mo1—O51.964 (3)O10—Rb2i3.575 (3)
Mo1—O122.342 (3)O11—Rb2i2.805 (3)
Mo2—O71.696 (3)O11—Rb3i2.849 (3)
Mo2—O61.925 (3)O12—C11.258 (5)
Mo2—O91.946 (3)O12—Rb1iv2.855 (3)
Mo2—O101.957 (3)O12—Rb2vi3.058 (3)
Mo2—O81.958 (3)O13—C11.247 (5)
Mo2—O111.966 (3)O13—Rb3iv2.875 (3)
Mo2—O132.345 (3)O13—Rb2i3.163 (3)
O1—Rb23.020 (3)C1—H10.922 (4)
O1—Rb1i3.074 (3)Rb1—O12x2.855 (3)
O1—Rb3ii3.190 (3)Rb1—O7ii2.961 (3)
O2—O31.484 (4)Rb1—O9v2.972 (3)
O2—Rb2i2.833 (3)Rb1—O2xi2.983 (3)
O2—Rb1i2.983 (3)Rb1—O10iii3.013 (3)
O3—Rb3iii2.957 (3)Rb1—O1xi3.074 (3)
O3—Rb1i3.082 (3)Rb1—O3xi3.082 (3)
O3—Rb1iv3.230 (3)Rb1—O3x3.230 (3)
O4—O51.479 (4)Rb1—O4x3.510 (3)
O4—Rb3v2.872 (3)Rb2—O11xi2.805 (3)
O4—Rb13.133 (3)Rb2—O8xii2.814 (3)
O4—Rb1iv3.510 (3)Rb2—O2xi2.833 (3)
O5—Rb2vi2.864 (3)Rb2—O5xii2.864 (3)
O5—Rb12.918 (3)Rb2—O12xii3.058 (3)
O6—Rb22.844 (3)Rb2—O13xi3.163 (3)
O7—Rb1vii2.961 (3)Rb2—O10xi3.575 (3)
O7—Rb23.140 (3)Rb3—O11xi2.849 (3)
O7—Rb3i3.389 (3)Rb3—O4viii2.872 (3)
O7—Rb33.515 (4)Rb3—O13x2.875 (3)
O8—O91.479 (4)Rb3—O10xi2.925 (3)
O8—Rb2vi2.814 (3)Rb3—O3ix2.957 (3)
O8—Rb32.982 (3)Rb3—O9x3.070 (3)
O8—Rb1viii3.623 (3)Rb3—O1vii3.190 (3)
O9—Rb1viii2.972 (3)Rb3—O7xi3.389 (3)
O9—Rb3iv3.070 (3)Rb3—O10x3.409 (3)
O1—Mo1—O698.52 (13)O12x—Rb1—O10iii151.24 (9)
O1—Mo1—O499.76 (14)O5—Rb1—O10iii83.78 (9)
O6—Mo1—O4131.21 (13)O7ii—Rb1—O10iii69.66 (9)
O1—Mo1—O398.99 (14)O9v—Rb1—O10iii90.90 (9)
O6—Mo1—O3131.19 (14)O2xi—Rb1—O10iii107.09 (9)
O4—Mo1—O389.63 (14)O12x—Rb1—O1xi69.53 (9)
O1—Mo1—O2100.55 (15)O5—Rb1—O1xi124.82 (9)
O6—Mo1—O287.53 (13)O7ii—Rb1—O1xi73.78 (8)
O4—Mo1—O2132.09 (13)O9v—Rb1—O1xi96.75 (9)
O3—Mo1—O244.53 (13)O2xi—Rb1—O1xi55.49 (8)
O1—Mo1—O5100.52 (14)O10iii—Rb1—O1xi138.37 (9)
O6—Mo1—O587.91 (13)O12x—Rb1—O3xi106.09 (9)
O4—Mo1—O544.38 (13)O5—Rb1—O3xi105.68 (9)
O3—Mo1—O5132.34 (13)O7ii—Rb1—O3xi65.17 (9)
O2—Mo1—O5158.88 (15)O9v—Rb1—O3xi133.49 (9)
O1—Mo1—O12176.37 (13)O2xi—Rb1—O3xi28.26 (9)
O6—Mo1—O1285.02 (11)O10iii—Rb1—O3xi92.32 (9)
O4—Mo1—O1277.20 (12)O1xi—Rb1—O3xi53.78 (8)
O3—Mo1—O1279.10 (12)O12x—Rb1—O494.09 (9)
O2—Mo1—O1280.30 (13)O5—Rb1—O428.01 (8)
O5—Mo1—O1278.76 (13)O7ii—Rb1—O4127.48 (9)
O7—Mo2—O697.51 (14)O9v—Rb1—O4106.99 (9)
O7—Mo2—O9100.91 (15)O2xi—Rb1—O4100.88 (8)
O6—Mo2—O9131.65 (13)O10iii—Rb1—O457.82 (8)
O7—Mo2—O1099.51 (15)O1xi—Rb1—O4151.75 (8)
O6—Mo2—O10132.32 (13)O3xi—Rb1—O4113.76 (8)
O9—Mo2—O1087.86 (13)O12x—Rb1—O3x53.35 (9)
O7—Mo2—O8101.52 (15)O5—Rb1—O3x72.57 (9)
O6—Mo2—O888.17 (13)O7ii—Rb1—O3x126.05 (9)
O9—Mo2—O844.51 (13)O9v—Rb1—O3x53.32 (9)
O10—Mo2—O8130.62 (14)O2xi—Rb1—O3x134.47 (9)
O7—Mo2—O1199.71 (15)O10iii—Rb1—O3x107.90 (8)
O6—Mo2—O1188.76 (13)O1xi—Rb1—O3x109.39 (8)
O9—Mo2—O11130.64 (13)O3xi—Rb1—O3x159.17 (12)
O10—Mo2—O1144.59 (13)O4—Rb1—O3x74.83 (8)
O8—Mo2—O11158.76 (13)O12x—Rb1—O4x48.80 (8)
O7—Mo2—O13176.54 (14)O5—Rb1—O4x111.09 (8)
O6—Mo2—O1385.34 (11)O7ii—Rb1—O4x96.99 (9)
O9—Mo2—O1378.50 (12)O9v—Rb1—O4x48.11 (8)
O10—Mo2—O1377.07 (12)O2xi—Rb1—O4x112.61 (8)
O8—Mo2—O1380.49 (13)O10iii—Rb1—O4x138.75 (8)
O11—Mo2—O1378.32 (13)O1xi—Rb1—O4x64.28 (8)
Mo1—O1—Rb2102.32 (12)O3xi—Rb1—O4x118.00 (8)
Mo1—O1—Rb1i101.81 (13)O4—Rb1—O4x122.27 (4)
Rb2—O1—Rb1i108.88 (10)O3x—Rb1—O4x48.00 (8)
Mo1—O1—Rb3ii149.39 (15)O11xi—Rb2—O8xii93.25 (10)
Rb2—O1—Rb3ii105.05 (9)O11xi—Rb2—O2xi69.92 (9)
Rb1i—O1—Rb3ii82.07 (8)O8xii—Rb2—O2xi135.51 (9)
O3—O2—Mo167.52 (17)O11xi—Rb2—O692.33 (9)
O3—O2—Rb2i124.7 (2)O8xii—Rb2—O6120.92 (9)
Mo1—O2—Rb2i137.81 (15)O2xi—Rb2—O6101.23 (9)
O3—O2—Rb1i79.56 (18)O11xi—Rb2—O5xii130.25 (9)
Mo1—O2—Rb1i98.54 (12)O8xii—Rb2—O5xii79.84 (9)
Rb2i—O2—Rb1i122.61 (11)O2xi—Rb2—O5xii81.09 (10)
O2—O3—Mo167.95 (18)O6—Rb2—O5xii133.44 (9)
O2—O3—Rb3iii117.8 (2)O11xi—Rb2—O1121.44 (9)
Mo1—O3—Rb3iii173.81 (17)O8xii—Rb2—O1144.44 (9)
O2—O3—Rb1i72.18 (18)O2xi—Rb2—O170.67 (9)
Mo1—O3—Rb1i95.55 (11)O6—Rb2—O155.82 (9)
Rb3iii—O3—Rb1i84.56 (9)O5xii—Rb2—O182.67 (9)
O2—O3—Rb1iv122.2 (2)O11xi—Rb2—O12xii168.14 (9)
Mo1—O3—Rb1iv103.83 (12)O8xii—Rb2—O12xii76.90 (9)
Rb3iii—O3—Rb1iv75.35 (7)O2xi—Rb2—O12xii121.78 (9)
Rb1i—O3—Rb1iv159.17 (12)O6—Rb2—O12xii87.24 (9)
O5—O4—Mo168.23 (17)O5xii—Rb2—O12xii55.16 (8)
O5—O4—Rb3v119.7 (2)O1—Rb2—O12xii67.69 (8)
Mo1—O4—Rb3v171.98 (15)O11xi—Rb2—O768.08 (9)
O5—O4—Rb167.88 (16)O8xii—Rb2—O774.45 (9)
Mo1—O4—Rb1107.33 (12)O2xi—Rb2—O7129.05 (9)
Rb3v—O4—Rb178.08 (8)O6—Rb2—O753.95 (9)
O5—O4—Rb1iv125.7 (2)O5xii—Rb2—O7149.52 (9)
Mo1—O4—Rb1iv94.80 (11)O1—Rb2—O7109.40 (8)
Rb3v—O4—Rb1iv79.57 (8)O12xii—Rb2—O7102.46 (8)
Rb1—O4—Rb1iv157.62 (11)O11xi—Rb2—O13xi54.21 (9)
O4—O5—Mo167.38 (16)O8xii—Rb2—O13xi65.86 (9)
O4—O5—Rb2vi114.2 (2)O2xi—Rb2—O13xi71.20 (9)
Mo1—O5—Rb2vi119.08 (13)O6—Rb2—O13xi146.49 (9)
O4—O5—Rb184.11 (17)O5xii—Rb2—O13xi78.82 (8)
Mo1—O5—Rb1115.31 (14)O1—Rb2—O13xi139.62 (8)
Rb2vi—O5—Rb1125.55 (11)O12xii—Rb2—O13xi125.00 (9)
Mo1—O6—Mo2150.14 (16)O7—Rb2—O13xi104.61 (8)
Mo1—O6—Rb2102.75 (12)O11xi—Rb2—O10xi23.20 (8)
Mo2—O6—Rb2106.55 (13)O8xii—Rb2—O10xi70.16 (8)
Mo2—O7—Rb1vii152.24 (17)O2xi—Rb2—O10xi88.89 (8)
Mo2—O7—Rb2101.78 (14)O6—Rb2—O10xi102.01 (9)
Rb1vii—O7—Rb2105.90 (10)O5xii—Rb2—O10xi124.55 (8)
Mo2—O7—Rb3i94.46 (13)O1—Rb2—O10xi143.71 (8)
Rb1vii—O7—Rb3i80.44 (8)O12xii—Rb2—O10xi145.90 (8)
Rb2—O7—Rb3i104.80 (9)O7—Rb2—O10xi60.68 (8)
Mo2—O7—Rb397.04 (13)O13xi—Rb2—O10xi46.70 (7)
Rb1vii—O7—Rb377.21 (8)C1xii—Rb2—O10xi128.08 (10)
Rb2—O7—Rb398.34 (9)C1xi—Rb2—O10xi68.10 (9)
Rb3i—O7—Rb3151.41 (10)O11xi—Rb3—O4viii154.09 (9)
O9—O8—Mo267.33 (16)O11xi—Rb3—O13x78.96 (9)
O9—O8—Rb2vi129.1 (2)O4viii—Rb3—O13x98.27 (9)
Mo2—O8—Rb2vi129.94 (14)O11xi—Rb3—O10xi29.83 (9)
O9—O8—Rb393.85 (18)O4viii—Rb3—O10xi136.87 (9)
Mo2—O8—Rb3109.85 (13)O13x—Rb3—O10xi107.47 (9)
Rb2vi—O8—Rb3114.52 (10)O11xi—Rb3—O3ix115.34 (9)
O9—O8—Rb1viii52.78 (15)O4viii—Rb3—O3ix83.10 (9)
Mo2—O8—Rb1viii119.38 (12)O13x—Rb3—O3ix141.08 (9)
Rb2vi—O8—Rb1viii97.55 (9)O10xi—Rb3—O3ix96.72 (9)
Rb3—O8—Rb1viii69.21 (7)O11xi—Rb3—O888.36 (9)
O8—O9—Mo268.17 (17)O4viii—Rb3—O8114.67 (9)
O8—O9—Rb1viii103.88 (19)O13x—Rb3—O867.66 (9)
Mo2—O9—Rb1viii167.64 (16)O10xi—Rb3—O8107.03 (9)
O8—O9—Rb3iv125.4 (2)O3ix—Rb3—O876.42 (9)
Mo2—O9—Rb3iv106.49 (12)O11xi—Rb3—O9x107.38 (9)
Rb1viii—O9—Rb3iv85.80 (9)O4viii—Rb3—O9x53.65 (8)
O8—O9—Rb360.56 (16)O13x—Rb3—O9x54.61 (8)
Mo2—O9—Rb395.32 (12)O10xi—Rb3—O9x117.64 (9)
Rb1viii—O9—Rb372.35 (7)O3ix—Rb3—O9x136.41 (9)
Rb3iv—O9—Rb3158.05 (11)O8—Rb3—O9x114.08 (8)
O11—O10—Mo268.00 (17)O11xi—Rb3—O1vii95.11 (9)
O11—O10—Rb3i72.26 (17)O4viii—Rb3—O1vii70.82 (9)
Mo2—O10—Rb3i104.50 (13)O13x—Rb3—O1vii141.33 (8)
O11—O10—Rb1ix129.0 (2)O10xi—Rb3—O1vii67.40 (8)
Mo2—O10—Rb1ix162.63 (15)O3ix—Rb3—O1vii76.02 (9)
Rb3i—O10—Rb1ix86.36 (8)O8—Rb3—O1vii150.92 (8)
O11—O10—Rb3iv127.6 (2)O9x—Rb3—O1vii92.44 (8)
Mo2—O10—Rb3iv94.95 (11)O11xi—Rb3—O7xi52.58 (8)
Rb3i—O10—Rb3iv157.01 (11)O4viii—Rb3—O7xi101.51 (9)
Rb1ix—O10—Rb3iv71.98 (7)O13x—Rb3—O7xi80.09 (9)
O11—O10—Rb2i47.94 (15)O10xi—Rb3—O7xi51.90 (8)
Mo2—O10—Rb2i96.10 (11)O3ix—Rb3—O7xi138.08 (9)
Rb3i—O10—Rb2i101.25 (9)O8—Rb3—O7xi133.86 (8)
Rb1ix—O10—Rb2i94.97 (9)O9x—Rb3—O7xi65.80 (8)
Rb3iv—O10—Rb2i88.54 (7)O1vii—Rb3—O7xi66.78 (7)
O10—O11—Mo267.41 (17)O11xi—Rb3—O10x128.78 (9)
O10—O11—Rb2i108.9 (2)O4viii—Rb3—O10x55.71 (8)
Mo2—O11—Rb2i125.27 (14)O13x—Rb3—O10x49.95 (8)
O10—O11—Rb3i77.91 (18)O10xi—Rb3—O10x157.00 (11)
Mo2—O11—Rb3i106.99 (13)O3ix—Rb3—O10x104.74 (8)
Rb2i—O11—Rb3i126.16 (11)O8—Rb3—O10x70.92 (8)
C1—O12—Mo1131.7 (3)O9x—Rb3—O10x49.07 (8)
C1—O12—Rb1iv112.8 (3)O1vii—Rb3—O10x125.58 (8)
Mo1—O12—Rb1iv105.80 (11)O7xi—Rb3—O10x112.19 (8)
C1—O12—Rb2vi89.3 (2)O11xi—Rb3—O9103.54 (8)
Mo1—O12—Rb2vi100.81 (10)O4viii—Rb3—O9102.26 (8)
Rb1iv—O12—Rb2vi113.89 (11)O13x—Rb3—O990.98 (8)
C1—O13—Mo2133.2 (3)O10xi—Rb3—O9111.09 (8)
C1—O13—Rb3iv118.4 (3)O3ix—Rb3—O951.35 (8)
Mo2—O13—Rb3iv102.17 (10)O8—Rb3—O925.58 (8)
C1—O13—Rb2i89.6 (2)O9x—Rb3—O9126.32 (4)
Mo2—O13—Rb2i100.08 (11)O1vii—Rb3—O9127.26 (8)
Rb3iv—O13—Rb2i107.63 (10)O7xi—Rb3—O9155.57 (8)
O13—C1—O12127.1 (4)O10x—Rb3—O977.35 (8)
O13—C1—H1119.9 (4)O11xi—Rb3—O762.27 (8)
O12—C1—H1112.9 (4)O4viii—Rb3—O7141.53 (8)
O12x—Rb1—O570.23 (9)O13x—Rb3—O7104.80 (9)
O12x—Rb1—O7ii138.10 (10)O10xi—Rb3—O763.22 (8)
O5—Rb1—O7ii150.91 (9)O3ix—Rb3—O759.67 (9)
O12x—Rb1—O9v92.01 (9)O8—Rb3—O750.95 (8)
O5—Rb1—O9v120.79 (9)O9x—Rb3—O7159.33 (8)
O7ii—Rb1—O9v72.74 (9)O1vii—Rb3—O7105.87 (8)
O12x—Rb1—O2xi82.50 (9)O7xi—Rb3—O7112.38 (5)
O5—Rb1—O2xi83.30 (10)O10x—Rb3—O7121.49 (7)
O7ii—Rb1—O2xi93.09 (9)O9—Rb3—O747.87 (8)
O9v—Rb1—O2xi151.91 (9)
O12—Mo1—Mo2—O1314.81 (11)
Symmetry codes: (i) x+1/2, y, z; (ii) x, y, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1, z; (v) x, y+1, z+1/2; (vi) x, y+1, z; (vii) x, y, z1/2; (viii) x, y+1, z1/2; (ix) x+1/2, y, z1/2; (x) x1/2, y+1, z; (xi) x1/2, y, z; (xii) x, y1, z.
(III) Triammonium µ-(formato-κ2O:O')-µ-oxido- bis[oxidobis(peroxido-κ2O,O')molybdate(VI)] top
Crystal data top
(NH4)3[Mo2(CHO2)O3(O2)4]Dx = 2.608 Mg m3
Mr = 467.02Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, PbcmCell parameters from 4358 reflections
a = 6.091 (2) Åθ = 3.0–30.1°
b = 11.622 (4) ŵ = 2.19 mm1
c = 16.800 (5) ÅT = 93 K
V = 1189.3 (7) Å3Block, yellow
Z = 40.16 × 0.06 × 0.04 mm
F(000) = 912
Data collection top
Rigaku SATURN724+
diffractometer
1779 independent reflections
Radiation source: fine-focus rotating anode1704 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 30.0°, θmin = 3.3°
CCD scansh = 88
Absorption correction: gaussian
(CrystalClear; Rigaku, 2008)
k = 1616
Tmin = 0.830, Tmax = 0.924l = 2222
10346 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters not refined
S = 1.16 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.674P]
where P = (Fo2 + 2Fc2)/3
1779 reflections(Δ/σ)max = 0.002
119 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
(NH4)3[Mo2(CHO2)O3(O2)4]V = 1189.3 (7) Å3
Mr = 467.02Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 6.091 (2) ŵ = 2.19 mm1
b = 11.622 (4) ÅT = 93 K
c = 16.800 (5) Å0.16 × 0.06 × 0.04 mm
Data collection top
Rigaku SATURN724+
diffractometer
1779 independent reflections
Absorption correction: gaussian
(CrystalClear; Rigaku, 2008)
1704 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.924Rint = 0.028
10346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.043H-atom parameters not refined
S = 1.16Δρmax = 0.69 e Å3
1779 reflectionsΔρmin = 0.75 e Å3
119 parameters
Special details top

Experimental. The powder X-ray diffraction was measured on Rigaku MiniFlexII diffractometer at 298 K.

All NMR measurements were performed on a JEOL JNM400 spectrometer at 294 K. 95Mo NMR spectra in aqueous solutions were referred to external 2.0 M sodium molybdate in D2O as 0.0 p.p.m. 1H and 13C NMR in aqueous solutions were referred to the methyl group signal of external DSS (2,2-dimethyl-2-silapentanesulfonate sodium salt) in D2O at 0.0 p.p.m. The solid-state 13C CPMAS spectra were measured with 4 mm zirconia tube and 5 kHz spinning, and referred to external adamantane (38.520 and 29.472 p.p.m. from (CH3)4Si).

Solid-state 13C CPMAS NMR spectrum of each compound shows a single signal at 170.9 p.p.m. (K salt), 168.9 p.p.m. (Rb salt) and 169.0 p.p.m. (NH4 salt).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.698345 (18)0.242596 (10)0.360801 (7)0.00715 (5)
O10.46989 (17)0.18126 (9)0.39877 (6)0.0130 (2)
O20.59493 (18)0.39874 (9)0.33975 (6)0.0132 (2)
O30.69480 (16)0.38790 (9)0.42001 (6)0.0130 (2)
O40.91788 (18)0.18305 (10)0.43521 (6)0.0182 (2)
O50.90316 (19)0.11118 (9)0.36274 (7)0.0160 (2)
O60.6451 (2)0.20824 (13)0.25000.0113 (3)
O71.02448 (17)0.33003 (9)0.31653 (6)0.0136 (2)
C11.1010 (3)0.35695 (16)0.25000.0099 (3)
H11.239 (5)0.404 (3)0.25000.015*
N10.2325 (2)0.41385 (11)0.45589 (8)0.0122 (2)
N20.2423 (3)0.08963 (16)0.25000.0138 (3)
H20.375 (4)0.401 (2)0.4593 (15)0.035 (6)*
H30.180 (4)0.380 (2)0.4118 (17)0.036 (7)*
H40.209 (4)0.486 (2)0.4511 (16)0.038 (7)*
H50.162 (4)0.385 (2)0.5008 (13)0.028 (7)*
H60.161 (4)0.108 (2)0.2909 (13)0.023 (6)*
H70.368 (5)0.130 (3)0.25000.023 (8)*
H80.279 (7)0.016 (4)0.25000.049 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00619 (7)0.00969 (7)0.00558 (9)0.00009 (3)0.00022 (4)0.00139 (3)
O10.0111 (5)0.0151 (5)0.0127 (5)0.0018 (4)0.0014 (4)0.0022 (4)
O20.0170 (5)0.0123 (4)0.0103 (5)0.0014 (4)0.0022 (4)0.0011 (4)
O30.0153 (5)0.0157 (5)0.0082 (5)0.0006 (4)0.0010 (4)0.0022 (4)
O40.0144 (5)0.0291 (6)0.0110 (5)0.0053 (4)0.0016 (4)0.0048 (4)
O50.0157 (5)0.0139 (5)0.0183 (6)0.0046 (4)0.0026 (4)0.0022 (4)
O60.0118 (6)0.0128 (6)0.0092 (6)0.0043 (5)0.0000.000
O70.0107 (4)0.0199 (5)0.0101 (5)0.0043 (4)0.0006 (4)0.0008 (4)
C10.0070 (7)0.0099 (8)0.0127 (9)0.0003 (6)0.0000.000
N10.0111 (5)0.0134 (6)0.0120 (6)0.0005 (4)0.0002 (5)0.0012 (5)
N20.0087 (7)0.0106 (8)0.0220 (10)0.0004 (6)0.0000.000
Geometric parameters (Å, º) top
Mo1—O11.6886 (11)O7—C11.2508 (13)
Mo1—O61.9312 (7)C1—O7i1.2508 (13)
Mo1—O21.9532 (12)C1—H11.00 (3)
Mo1—O41.9569 (11)N1—H20.88 (3)
Mo1—O31.9600 (12)N1—H30.90 (3)
Mo1—O51.9723 (12)N1—H40.85 (3)
Mo1—O72.3520 (12)N1—H50.93 (2)
O2—O31.4845 (15)N2—H60.87 (2)
O4—O51.4792 (16)N2—H70.90 (3)
O6—Mo1i1.9312 (7)N2—H80.88 (4)
O1—Mo1—O697.96 (6)O5—Mo1—O778.79 (5)
O1—Mo1—O2101.23 (5)O3—O2—Mo167.95 (6)
O6—Mo1—O287.90 (6)O2—O3—Mo167.46 (6)
O1—Mo1—O499.94 (5)O5—O4—Mo168.44 (6)
O6—Mo1—O4131.10 (6)O4—O5—Mo167.34 (6)
O2—Mo1—O4131.65 (5)Mo1—O6—Mo1i149.10 (8)
O1—Mo1—O399.38 (5)C1—O7—Mo1134.87 (10)
O6—Mo1—O3131.72 (5)O7i—C1—O7126.65 (18)
O2—Mo1—O344.59 (5)O7i—C1—H1116.67 (9)
O4—Mo1—O389.31 (5)O7—C1—H1116.67 (9)
O1—Mo1—O5100.84 (5)H2—N1—H3110 (2)
O6—Mo1—O587.83 (6)H2—N1—H4109 (2)
O2—Mo1—O5157.89 (5)H3—N1—H4107 (2)
O4—Mo1—O544.23 (5)H2—N1—H5110 (2)
O3—Mo1—O5131.74 (5)H3—N1—H5110 (2)
O1—Mo1—O7176.24 (4)H4—N1—H5111 (2)
O6—Mo1—O785.78 (5)H6—N2—H7110.4 (18)
O2—Mo1—O779.26 (5)H6—N2—H8113 (2)
O4—Mo1—O777.15 (5)H7—N2—H8107 (3)
O3—Mo1—O778.32 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O30.88 (2)2.06 (2)2.8954 (19)157 (2)
N1—H2···O20.88 (2)2.41 (2)2.9515 (19)120 (2)
N1—H3···O7ii0.90 (3)1.95 (3)2.8348 (19)170
N1—H4···O5iii0.85 (2)2.19 (3)2.897 (2)140
N1—H4···O4iii0.85 (2)2.43 (2)3.278 (2)171
N1—H5···O4iv0.93 (2)2.00 (2)2.8789 (19)157
N2—H6···O5ii0.87 (2)1.98 (2)2.814 (2)159
N2—H7···O60.90 (3)1.92 (3)2.814 (2)177 (3)
N2—H8···O2v0.88 (5)2.17 (3)2.860 (2)134
N2—H8···O2vi0.88 (5)2.17 (3)2.860 (2)134
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1/2, z; (iv) x1, y+1/2, z+1; (v) x+1, y1/2, z+1/2; (vi) x+1, y1/2, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaK3[Mo2(CHO2)O3(O2)4]Rb3[Mo2(CHO2)O3(O2)4](NH4)3[Mo2(CHO2)O3(O2)4]
Mr530.20669.31467.02
Crystal system, space groupOrthorhombic, Pca21Orthorhombic, Pca21Orthorhombic, Pbcm
Temperature (K)939393
a, b, c (Å)11.147 (6), 5.985 (3), 16.320 (8)11.472 (4), 6.208 (2), 16.633 (6)6.091 (2), 11.622 (4), 16.800 (5)
V3)1088.8 (10)1184.6 (7)1189.3 (7)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.5214.432.19
Crystal size (mm)0.11 × 0.09 × 0.040.07 × 0.07 × 0.070.16 × 0.06 × 0.04
Data collection
DiffractometerRigaku SATURN724+
diffractometer
Rigaku SATURN724+
diffractometer
Rigaku SATURN724+
diffractometer
Absorption correctionGaussian
(CrystalClear; Rigaku, 2008)
Gaussian
(CrystalClear; Rigaku, 2008)
Gaussian
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.733, 0.8830.388, 0.5200.830, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
9147, 3067, 3021 10194, 3288, 3188 10346, 1779, 1704
Rint0.0260.0400.028
(sin θ/λ)max1)0.7040.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.040, 1.09 0.025, 0.058, 1.06 0.018, 0.043, 1.16
No. of reflections306732881779
No. of parameters173173119
No. of restraints110
H-atom treatmentH-atom parameters not refinedH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.01, 0.651.13, 0.970.69, 0.75
Absolute structureFlack (1983), with 1419 Friedel pairsFlack (1983), with 1498 Friedel pairs?
Absolute structure parameter0.44 (3)0.465 (6)?

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) for (I) top
Mo1—O11.7009 (16)Mo2—O101.9580 (17)
Mo1—O61.9242 (18)Mo2—O81.9591 (17)
Mo1—O41.9575 (16)Mo2—O111.9664 (17)
Mo1—O21.9594 (18)Mo2—O132.3423 (17)
Mo1—O51.9620 (17)O2—O31.488 (2)
Mo1—O31.9637 (17)O4—O51.479 (2)
Mo1—O122.3410 (17)O8—O91.475 (2)
Mo2—O71.6997 (16)O10—O111.479 (2)
Mo2—O61.9274 (18)O12—C11.262 (3)
Mo2—O91.9530 (16)O13—C11.245 (3)
Mo1—O6—Mo2148.49 (9)C1—O13—Mo2132.16 (13)
C1—O12—Mo1130.50 (13)O13—C1—O12127.41 (19)
Selected geometric parameters (Å, º) for (II) top
Mo1—O11.701 (3)Mo2—O101.957 (3)
Mo1—O61.923 (3)Mo2—O81.958 (3)
Mo1—O41.952 (3)Mo2—O111.966 (3)
Mo1—O31.955 (3)Mo2—O132.345 (3)
Mo1—O21.961 (3)O2—O31.484 (4)
Mo1—O51.964 (3)O4—O51.479 (4)
Mo1—O122.342 (3)O8—O91.479 (4)
Mo2—O71.696 (3)O10—O111.488 (4)
Mo2—O61.925 (3)O12—C11.258 (5)
Mo2—O91.946 (3)O13—C11.247 (5)
Mo1—O6—Mo2150.14 (16)C1—O13—Mo2133.2 (3)
C1—O12—Mo1131.7 (3)O13—C1—O12127.1 (4)
Selected geometric parameters (Å, º) for (III) top
Mo1—O11.6886 (11)Mo1—O72.3520 (12)
Mo1—O61.9312 (7)O2—O31.4845 (15)
Mo1—O21.9532 (12)O4—O51.4792 (16)
Mo1—O41.9569 (11)O6—Mo1i1.9312 (7)
Mo1—O31.9600 (12)O7—C11.2508 (13)
Mo1—O51.9723 (12)C1—O7i1.2508 (13)
Mo1—O6—Mo1i149.10 (8)O7i—C1—O7126.65 (18)
C1—O7—Mo1134.87 (10)
Symmetry code: (i) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds