Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the novel triazolobenzothia­zines 2,4-di­hydro-1H-benzo[b][1,2,4]triazolo[4,3-d][1,4]thia­zin-1-one (IDPH-791), C9H7N3OS, (I), a potential muscle relaxant, its benzoyl derivative, 2-(2-oxo-2-phenyl­ethyl)-2,4-dihydro-1H-benzo[b][1,2,4]triazolo[4,3-d][1,4]thia­zin-1-one, C20H17N3O4S, (II), and the [beta]-keto ester derivative, ethyl 3-oxo-2-(1-oxo-2,4-dihydro-1H-benzo[b][1,2,4]triazolo[4,3-d][1,4]thia­zin-2-yl)-3-phenylpropano­ate, C17H13N3O2S, (III), are the first examples of benzothia­zine-fused triazoles in the crystallographic literature. The heterocyclic thia­zine rings in all three structures adopt a distorted half-chair conformation. Com­pound (III) exists in the trans-[beta]-diketo form. Other than N-H...O hydrogen bonds in (I) forming dimers, no formal inter­molecular hydrogen bonds are involved in the crystal packing of any of the three structures, which is dominated by C-H...O/N and [pi]-[pi] stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112040759/sf3180sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040759/sf3180Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040759/sf3180IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040759/sf3180IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112040759/sf3180Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112040759/sf3180IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112040759/sf3180IIIsup7.cml
Supplementary material

CCDC references: 914661; 914662; 914663

Comment top

The triazole scaffold, one of the most important and well known heterocycles, is a common and integral feature of a variety of natural products and medicinal agents. It is present as an important structural component in an array of drug categories such as antimicrobial (Girmenia, 2009), analgesic (Hafez et al., 2008), anticonvulsant (Guan et al., 2007), antimalarial (Gujjar et al., 2009), antiviral (Johns et al., 2009) and anticancer agents (Duran et al., 2002). In the last few decades, the structure–activity relationships of triazole derivatives have revealed that the substituents on the triazole ring can be varied but the greatest difference, both structurally and in terms of properties, is exerted by the groups attached to the N atom (Liu et al., 2008). The triazole ring is an attractive connecting unit, since it is stable to metabolic degradation and capable of hydrogen bonding, which can be favourable in the binding of biomolecular targets and in improving solubility (Dalvie et al., 2002; Horne et al., 2004). The synthesis of triazoles fused to another heterocyclic ring has attracted widespread attention due to possible diverse applications in therapeutics and as pesticides, herbicides, dyes, lubricants and analytical reagents (Holla et al., 2001, 2002).

1,4-Benzothiazines, structural analogues of phenothiazines, possess a wide range of pharmacological activities (Fringuelli et al., 1998; Matsumoto et al., 2000; Kobayashi et al., 1997), and the presence of a fold along the N···S axis is considered to be one of the structural features to impart these activities (Silverman, 2004; Gupta & Ojha, 1988). A novel series of triazolobenzothiazines was synthesized by Reddy Sastry et al. (1991) and they were reported to be potential centrally acting muscle relaxant agents. Among these, the compound IDPH-791, (I), was stated as exhibiting significant muscle relaxant activity, being twice as potent and with a longer duration of action than mephenesin (Junnarkar et al., 1992). Recently, we have reported the crystal structures of triazolobenzoxazines (Ravikumar et al., 2012). In continuation of our work on the structural elucidation of bioactive molecules (Ravikumar & Sridhar, 2010; Ravikumar et al., 2011), we report here the crystal structures of three novel 1,4-benzothiazine-fused triazoles, IDPH-791, (I), and its N-substituted derivatives, (II) and (III).

The structures of (I)–(III) (Figs. 1–3) consist of a tricyclic core, with triazole and benzene rings sharing the thiazine ring. The interatomic distances and angles are unexceptional and are comparable with those reported for related structures (de Meester et al., 1986; Pilati & Simonetta, 1986). In (III), atoms O4, C19 and C20 of the propanoate side chain are disordered over two sites with occupancies of 0.596 (15) and 0.404 (15).

The two crystallographically independent molecules in the asymmetric unit of (I), labelled with the suffixes A and B, are related by a pseudo-inversion centre which lies at (0.0, 0.62,0.63), and the r.m.s. deviation for the mutual fit of the two molecules is 0.047 Å. Dimers with pseudo-inversion centres are formed by hydrogen bonds between the triazole NH group of one molecule in the asymmetric unit and the carbonyl O atom of the other, generating an R22(8) graph-set ring motif (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995).

Significant structural similarities are seen in (I)–(III). In the thiazine ring the two S—C and N—C bond lengths (Table 1) are not equal, owing to different environments. The C2—S1—C3 angles of 99.3 (1) and 97.9 (1)° in (I), 97.4 (1)° in (II) and 98.1 (2)° in (III) suggest that atom S1 uses only its p-orbitals to form bonds with C2 and C3 (Aravindan et al., 2003). Thiazine atom N3 shows planarity, as the sums of the C—N3—C bond angles are 359.4 (1) and 359.9 (1)° in (I), 359.7 (2)° in (II) and 360.0 (2)° in (III).

In all three structures the tricyclic ring system is conformationally similar (Fig. 4). The thiazine ring is in a distorted half-chair conformation, with atoms S1 and C2 displaced by 1.057 (1) and -1.122 (1) and 0.473 (2) and -0.488 (2) Å, respectively, in (I), 1.177 (1) and 0.547 (2) Å, respectively, in (II), and 1.076 (1) and 0.428 (2) Å, respectively, in (III), from the plane defined by atoms C3/C4/N3/C5 (Nardelli, 1983). The dihedral angles between the triazole and benzene rings are 22.1 (1) and 21.8 (1)° in (I), 25.2 (1)° in (II) and 18.4 (1)° in (III), reflecting the twist created by the central thiazine ring in the tricyclic ring system. Another feature common to all three structures is an intramolecular interaction in the tricyclic ring system, observed between carbonyl atom O1 and atom C6 of the benzene ring, generating an S(6) graph-set motif.

The presence of bulky benzylol [in (II)] and phenylpropanoate [in (III)] substituents on N2 of the triazole ring is the cause of asymmetry in the angles around N2 (Table 1). In (II), the orientation of the phenyl ring with respect to the tricylic ring system is defined by the torsion angle N2—C10—C11—C12 = 165.4 (2)°, which also reflects the overall conformation of the molecule in extended form. On the other hand, in (III) the phenyl ring is in an almost perpendicular orientation [-81.1 (4)°], perhaps due to the propanoate substitution at C10. Compound (III) exists in the trans β-diketo form. As suggested by Bertolasi et al. (2008) on keto–enol tautomerization of β-diketones from X-ray structure data and density functional theory calculations, the steric hindrance of bulky group substituents plays a role in shifting the more common β-keto–enol tautomer to the β-diketo form. Furthermore, they also reported that the occurrence of the trans β-diketo form in crystal structures can be interpreted in terms of the existence of a high activation energy in the mechanism to attain the β-keto–enol form. The O atoms of both the ketone (O2) and the ester (O3) carbonyl groups do not point in the same direction. The dihedral angle between the planes defined by atoms O2/C11/C10 and O3/C18/C10 is 81.2 (3)°. The carbonyl atom O2 of the ketone group and the benzene ring are coplanar [O2—C11—C12—C17 = 0.9 (3)° in (II) and 3.0 (5)° in (III)].

The packing diagrams for (I)–(III) are given in Figs. 5–7. In the absence of conventional hydrogen bonds, other than N—H···O hydrogen bonds in (I) as mentioned earlier, the crystal packing of (I)–(III) is essentially governed by C—H···O/N and ππ stacking interactions (Tables 2–4).

In (I), dimers related to each other by an inversion centre are linked alternately in a head-to-tail manner via C—H···O interactions (C3A—H···O1Bi; details and symmetry code in Table 2), forming an R24(14) ring motif. These dimers are further linked by C—H···N and C—H···O interactions (C3B—H3D···N1Bii and C3B—H3C···O1Aii; details and symmetry code in Table 2), generating an R32(7) ring motif and forming a two-dimensional network in the [011] direction. A ππ stacking interaction is observed between the triazole and benzene ring systems [ring-centroid separation = 3.673 (2) Å; symmetry code: x, y - 1, z].

The molecules of (II) are linked together by paired C10—H···O1i (details and symmetry code in Table 3) interactions, forming a centrosymmetric R22(10) dimer. We believe this could be facilitated by the extended conformation of the molecule mentioned earlier. The face-to-face orientation of the two benzene rings, centrosymmetrically related, results in a ππ stacking interaction [ring-centroid separation = 3.651 (1) Å; symmetry code: ? Please complete] and links the dimers.

In (III) there are more intermolecular C—H···O interactions than in (II), due to the presence of the additional propanoate group. The molecules are linked by paired C3—H···O3i, C8—H···O3ii and C13—H···O1iii interactions (details and symmetry codes Table 4), forming centrosymmetric R22(16), R22(22) and R22(16) dimers, which are interconnected. As also seen in (II), there is a ππ stacking interaction between centrosymmetrically related benzene rings [ring-centroid separation = 3.987 (2) Å; symmetry code: ? Please complete].

In conclusion, this is the first report presenting the crystal structures of benzothiazine-fused triazoles. The tricyclic ring system generates an S(6) graph-set motif in all three title crystal structures. Crystallographic study shows that the N2 substitution has no significant effect on the conformation of the tricyclic ring system. The validity of the postulate that C—H···O/N interactions play a significant role in molecular assembly and crystal packing (Desiraju, 2005) has been illustrated. These structures are a useful addition to current knowledge of weak interactions and their role in supramolecular networks, molecular recognition and crystal engineering.

Related literature top

For related literature, see: Aravindan et al. (2003); Bernstein et al. (1995); Bertolasi et al. (2008); Dalvie et al. (2002); Desiraju (2005); Duran et al. (2002); Etter (1990); Etter, MacDonald & Bernstein (1990); Fringuelli et al. (1998); Girmenia (2009); Guan et al. (2007); Gujjar et al. (2009); Gupta & Ojha (1988); Hafez et al. (2008); Holla et al. (2001, 2002); Horne et al. (2004); Johns et al. (2009); Junnarkar et al. (1992); Kobayashi et al. (1997); Liu et al. (2008); Matsumoto et al. (2000); Meester et al. (1986); Nardelli (1983); Pilati & Simonetta (1986); Ravikumar & Sridhar (2010); Ravikumar et al. (2011, 2012); Reddy Sastry, Narayan, Krishnan, Vemana, Shridhar, Singh & Junnarkar (1991); Sheldrick (2008); Silverman (2004).

Experimental top

The synthesis of (I) and (II) (SMS Pharma Research Centre, Hyderabad) was reported previously (Reddy Sastry et al., 1991). They were recrystallized from solutions in methanol (30 ml) for (I) and ethylacetate (30 ml) for (II) by slow evaporation. Compound (III) (SMS Pharma Research Centre, Hyderabad) was prepared by heating a mixture of (I) (100 mmol) and ethyl-2-bromo-3-oxo-3-phenyl propanoate (105 mmol) in acetonitrile (20 ml) containing anhydrous K2CO3 (200 mmol) and tetrabutylammonium bromide (10 mmol) for 3 h under stirring and refluxing conditions. The reaction mixture was then cooled to room temperature, filtered, concentrated, triturated with ether (10 ml) and again filtered to yield (III). Suitable single crystals of (III) were grown by slow evaporation of a solution in methanol (30 ml).

Refinement top

In (III), the atoms O4, C19 and C20 are disordered over two sites and the site-occupancy factors refined to 0.596 (15) and 0.404 (15). The anisotropic displacement parameters of the disordered atoms were restrained to be similar [SIMU instruction in SHELXL97 (Sheldrick, 2008)], and the direction of motion along the axis between these atoms was also restrained (DELU instruction in SHELXL97). The C—C distances of the disordered groups were restrained to be 1.55 (2) Å and the C18—O4 and O4—C19 distances to be 1.33 (2) and 1.45 (2) Å. The N-bound H atoms of (I) were located in a difference Fourier map and their positions and isotropic displacement parameters were refined. The C-bound H atoms of (I), (II) and (III) were located in difference density maps, but were positioned geometrically and included as riding atoms, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene), and with Uiso(H) = 1.5Ueq(C) for the methyl groups or 1.2Ueq(C) otherwise. The methyl groups were allowed to rotate but not to tip.

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the two crystallographically independent molecules related by pseudo-inversion, and the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate intermolecular hydrogen bonds.
[Figure 2] Fig. 2. A view of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A view of the molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The minor components of the disordered atoms O41, C191 and C201 have been omitted for clarity.
[Figure 4] Fig. 4. A superposition of the molecular conformations of (I)–(III), showing the conformational similarity in their tricyclic ring systems, and also highlighting the fact that the N2 substitution has no significant effect on the conformation of the tricyclic ring systems. The overlay was made by making a least-squares fit through the benzene ring (C1/C2/C5–C8) of molecule A of (I) (labelled IA). The r.m.s deviations (Å) and labels are as follows: 0.005, molecule B of (I) (IB); 0.008, (II); and 0.012, (III).
[Figure 5] Fig. 5. A partial packing diagram for (I), showing the two-dimensional network formed by the intermolecular N—H···O and C—H···O interactions across the centres of symmetry, and by the C—H···N interactions. All these interactions are shown as dashed lines and non-associated H atoms have been omitted for clarity. Only atoms involved in the interactions are labelled. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 2 - x, 1/2 + y, 3/2 - z.]
[Figure 6] Fig. 6. A partial packing diagram for (II), showing the formation of the C—H···O centrosymmetric dimer [R22(10)] and the intermolecular ππ interaction (dashed lines). Cg1 is the centroid of the six-membered C1/C2/C5–C8 benzene ring. Non-associated H atoms have been omitted for clarity. Only atoms involved in the interactions are labelled. [Symmetry code: (i) 2 - x, -y, 2 - z.]
[Figure 7] Fig. 7. A partial packing diagram for (III), showing the formation of the centrosymmetric rings [R22(22) and R22(16)], along with another R22(16) ring built from C—H···O interactions (dashed lines). The minor components of the disordered atoms O41/C191/C201 and non-associated H atoms have been omitted for clarity. Only atoms involved in the interactions are labelled. [Symmetry codes: (i) 1/2 - x, 1/2 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) -x, y, 1/2 - z.]
(I) 4H-1,2,4-Triazolo[3,4-c][1,4]benzothiazin-1(2H)-one top
Crystal data top
C9H7N3OSF(000) = 1696
Mr = 205.24Dx = 1.548 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7940 reflections
a = 14.6307 (11) Åθ = 2.8–27.9°
b = 8.5718 (7) ŵ = 0.33 mm1
c = 28.083 (2) ÅT = 294 K
V = 3521.9 (5) Å3Block, colourless
Z = 160.18 × 0.16 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2895 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 1717
23641 measured reflectionsk = 1010
3092 independent reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.2353P]
where P = (Fo2 + 2Fc2)/3
3092 reflections(Δ/σ)max = 0.002
261 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H7N3OSV = 3521.9 (5) Å3
Mr = 205.24Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 14.6307 (11) ŵ = 0.33 mm1
b = 8.5718 (7) ÅT = 294 K
c = 28.083 (2) Å0.18 × 0.16 × 0.07 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2895 reflections with I > 2σ(I)
23641 measured reflectionsRint = 0.020
3092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
3092 reflectionsΔρmin = 0.18 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.84019 (11)0.11143 (18)0.61793 (6)0.0445 (4)
H1A0.83130.20290.60070.053*
C2A0.85524 (10)0.02781 (17)0.59376 (5)0.0357 (3)
C3A0.82292 (12)0.2168 (2)0.51776 (6)0.0469 (4)
H3A0.83290.24020.48440.056*
H3B0.75780.22140.52400.056*
C4A0.87140 (10)0.33258 (18)0.54789 (5)0.0395 (3)
C5A0.86734 (9)0.16437 (16)0.62042 (5)0.0323 (3)
C6A0.86333 (10)0.15985 (18)0.66991 (5)0.0391 (3)
H6A0.86970.25120.68750.047*
C7A0.84988 (11)0.0189 (2)0.69286 (6)0.0456 (4)
H7A0.84870.01530.72600.055*
C8A0.83823 (11)0.1162 (2)0.66694 (6)0.0483 (4)
H8A0.82910.21060.68250.058*
C9A0.93332 (10)0.43507 (17)0.61350 (5)0.0390 (3)
N1A0.90420 (10)0.46461 (16)0.53405 (5)0.0499 (4)
N2A0.94070 (10)0.52891 (16)0.57515 (5)0.0473 (3)
N3A0.88573 (8)0.30624 (13)0.59590 (4)0.0342 (3)
H1N0.9754 (13)0.608 (2)0.5746 (6)0.057 (5)*
O1A0.96071 (9)0.45606 (13)0.65440 (4)0.0504 (3)
S1A0.86581 (3)0.02384 (5)0.531275 (14)0.04670 (14)
C1B1.18683 (11)1.36233 (19)0.63302 (6)0.0453 (4)
H1B1.21781.43840.65020.054*
C2B1.16244 (10)1.22315 (17)0.65508 (5)0.0352 (3)
C3B1.09811 (12)1.07916 (19)0.73374 (5)0.0444 (4)
H3C1.10781.04000.76570.053*
H3D1.04441.14540.73400.053*
C4B1.08442 (10)0.94730 (17)0.70038 (5)0.0352 (3)
C5B1.11430 (9)1.11109 (16)0.62890 (5)0.0312 (3)
C6B1.09161 (10)1.13879 (18)0.58181 (5)0.0374 (3)
H6B1.05891.06480.56460.045*
C7B1.11793 (11)1.2773 (2)0.56047 (6)0.0457 (4)
H7B1.10341.29540.52870.055*
C8B1.16549 (12)1.38856 (19)0.58584 (6)0.0505 (4)
H8B1.18311.48110.57120.061*
C9B1.06956 (10)0.82465 (16)0.63058 (5)0.0359 (3)
N1B1.06615 (9)0.80492 (15)0.71179 (4)0.0421 (3)
N2B1.05896 (9)0.72947 (15)0.66834 (5)0.0426 (3)
N3B1.08893 (8)0.96891 (13)0.65165 (4)0.0320 (3)
H2N1.0370 (12)0.634 (2)0.6670 (6)0.054 (5)*
O1B1.06371 (8)0.79255 (12)0.58797 (4)0.0466 (3)
S1B1.19697 (3)1.19015 (5)0.714522 (14)0.04555 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0450 (8)0.0329 (8)0.0556 (10)0.0063 (7)0.0041 (7)0.0022 (7)
C2A0.0336 (7)0.0351 (8)0.0384 (8)0.0025 (6)0.0004 (6)0.0035 (6)
C3A0.0514 (9)0.0545 (10)0.0347 (8)0.0057 (8)0.0059 (7)0.0021 (7)
C4A0.0423 (8)0.0397 (8)0.0365 (8)0.0004 (7)0.0011 (6)0.0042 (6)
C5A0.0310 (7)0.0306 (7)0.0353 (7)0.0015 (6)0.0020 (5)0.0001 (6)
C6A0.0441 (8)0.0382 (8)0.0349 (8)0.0009 (7)0.0029 (6)0.0027 (6)
C7A0.0473 (9)0.0521 (10)0.0375 (8)0.0018 (7)0.0035 (7)0.0085 (7)
C8A0.0483 (9)0.0408 (9)0.0559 (10)0.0058 (7)0.0006 (8)0.0150 (7)
C9A0.0447 (8)0.0306 (7)0.0417 (8)0.0034 (6)0.0047 (6)0.0026 (6)
N1A0.0581 (9)0.0465 (8)0.0450 (8)0.0050 (7)0.0045 (6)0.0118 (6)
N2A0.0581 (9)0.0331 (7)0.0507 (8)0.0098 (6)0.0014 (6)0.0052 (6)
N3A0.0396 (6)0.0298 (6)0.0333 (6)0.0023 (5)0.0015 (5)0.0004 (5)
O1A0.0686 (8)0.0412 (6)0.0414 (6)0.0170 (5)0.0016 (5)0.0068 (5)
S1A0.0572 (3)0.0463 (2)0.0366 (2)0.00550 (18)0.00072 (17)0.01162 (17)
C1B0.0451 (9)0.0338 (8)0.0571 (10)0.0073 (7)0.0042 (7)0.0038 (7)
C2B0.0348 (7)0.0323 (7)0.0385 (7)0.0002 (6)0.0024 (6)0.0042 (6)
C3B0.0562 (9)0.0444 (9)0.0327 (8)0.0037 (7)0.0056 (7)0.0050 (7)
C4B0.0383 (7)0.0368 (7)0.0304 (7)0.0021 (6)0.0025 (6)0.0007 (6)
C5B0.0304 (7)0.0280 (7)0.0351 (7)0.0001 (5)0.0049 (5)0.0010 (6)
C6B0.0386 (7)0.0380 (8)0.0354 (7)0.0017 (6)0.0024 (6)0.0004 (6)
C7B0.0508 (9)0.0462 (9)0.0401 (8)0.0036 (7)0.0064 (7)0.0090 (7)
C8B0.0561 (10)0.0353 (8)0.0600 (10)0.0036 (7)0.0112 (8)0.0103 (7)
C9B0.0394 (8)0.0305 (7)0.0378 (8)0.0042 (6)0.0016 (6)0.0032 (6)
N1B0.0526 (8)0.0394 (7)0.0343 (7)0.0066 (6)0.0001 (5)0.0024 (5)
N2B0.0578 (8)0.0307 (7)0.0394 (7)0.0096 (6)0.0013 (6)0.0001 (5)
N3B0.0376 (6)0.0283 (6)0.0301 (6)0.0039 (5)0.0020 (5)0.0022 (5)
O1B0.0658 (7)0.0385 (6)0.0355 (6)0.0128 (5)0.0034 (5)0.0075 (4)
S1B0.0524 (3)0.0455 (2)0.0388 (2)0.00944 (17)0.00671 (16)0.00798 (16)
Geometric parameters (Å, º) top
C1A—C8A1.377 (2)C1B—C8B1.380 (2)
C1A—C2A1.391 (2)C1B—C2B1.391 (2)
C1A—H1A0.9300C1B—H1B0.9300
C2A—C5A1.401 (2)C2B—C5B1.400 (2)
C2A—S1A1.7619 (15)C2B—S1B1.7668 (15)
C3A—C4A1.485 (2)C3B—C4B1.482 (2)
C3A—S1A1.8092 (18)C3B—S1B1.8133 (17)
C3A—H3A0.9700C3B—H3C0.9700
C3A—H3B0.9700C3B—H3D0.9700
C4A—N1A1.289 (2)C4B—N1B1.2898 (19)
C4A—N3A1.3831 (18)C4B—N3B1.3826 (18)
C5A—C6A1.392 (2)C5B—C6B1.384 (2)
C5A—N3A1.4231 (18)C5B—N3B1.4252 (17)
C6A—C7A1.383 (2)C6B—C7B1.384 (2)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.379 (2)C7B—C8B1.379 (2)
C7A—H7A0.9300C7B—H7B0.9300
C8A—H8A0.9300C8B—H8B0.9300
C9A—O1A1.2299 (18)C9B—O1B1.2310 (18)
C9A—N2A1.348 (2)C9B—N2B1.347 (2)
C9A—N3A1.3959 (19)C9B—N3B1.3998 (18)
N1A—N2A1.386 (2)N1B—N2B1.3849 (18)
N2A—H1N0.85 (2)N2B—H2N0.88 (2)
C8A—C1A—C2A121.10 (15)C8B—C1B—C2B120.63 (15)
C8A—C1A—H1A119.4C8B—C1B—H1B119.7
C2A—C1A—H1A119.4C2B—C1B—H1B119.7
C1A—C2A—C5A118.45 (14)C1B—C2B—C5B118.93 (14)
C1A—C2A—S1A118.90 (11)C1B—C2B—S1B119.00 (12)
C5A—C2A—S1A122.51 (11)C5B—C2B—S1B122.02 (11)
C4A—C3A—S1A109.02 (11)C4B—C3B—S1B108.66 (10)
C4A—C3A—H3A109.9C4B—C3B—H3C110.0
S1A—C3A—H3A109.9S1B—C3B—H3C110.0
C4A—C3A—H3B109.9C4B—C3B—H3D110.0
S1A—C3A—H3B109.9S1B—C3B—H3D110.0
H3A—C3A—H3B108.3H3C—C3B—H3D108.3
N1A—C4A—N3A112.38 (14)N1B—C4B—N3B112.49 (12)
N1A—C4A—C3A126.36 (14)N1B—C4B—C3B126.36 (13)
N3A—C4A—C3A121.25 (13)N3B—C4B—C3B121.14 (13)
C6A—C5A—C2A120.35 (13)C6B—C5B—C2B120.32 (13)
C6A—C5A—N3A120.99 (13)C6B—C5B—N3B120.84 (13)
C2A—C5A—N3A118.64 (12)C2B—C5B—N3B118.84 (12)
C7A—C6A—C5A119.71 (14)C5B—C6B—C7B119.61 (14)
C7A—C6A—H6A120.1C5B—C6B—H6B120.2
C5A—C6A—H6A120.1C7B—C6B—H6B120.2
C8A—C7A—C6A120.35 (14)C8B—C7B—C6B120.65 (15)
C8A—C7A—H7A119.8C8B—C7B—H7B119.7
C6A—C7A—H7A119.8C6B—C7B—H7B119.7
C1A—C8A—C7A120.00 (15)C7B—C8B—C1B119.84 (15)
C1A—C8A—H8A120.0C7B—C8B—H8B120.1
C7A—C8A—H8A120.0C1B—C8B—H8B120.1
O1A—C9A—N2A129.24 (14)O1B—C9B—N2B128.46 (13)
O1A—C9A—N3A127.51 (14)O1B—C9B—N3B128.49 (13)
N2A—C9A—N3A103.25 (13)N2B—C9B—N3B103.04 (12)
C4A—N1A—N2A103.97 (13)C4B—N1B—N2B103.81 (12)
C9A—N2A—N1A113.39 (13)C9B—N2B—N1B113.71 (12)
C9A—N2A—H1N122.6 (13)C9B—N2B—H2N124.8 (12)
N1A—N2A—H1N122.3 (12)N1B—N2B—H2N120.1 (12)
C4A—N3A—C9A106.95 (12)C4B—N3B—C9B106.88 (11)
C4A—N3A—C5A125.63 (12)C4B—N3B—C5B124.80 (11)
C9A—N3A—C5A126.80 (12)C9B—N3B—C5B128.22 (11)
C2A—S1A—C3A99.26 (7)C2B—S1B—C3B97.88 (7)
C8A—C1A—C2A—C5A0.8 (2)C8B—C1B—C2B—C5B1.2 (2)
C8A—C1A—C2A—S1A175.12 (12)C8B—C1B—C2B—S1B176.39 (13)
S1A—C3A—C4A—N1A135.55 (15)S1B—C3B—C4B—N1B135.70 (14)
S1A—C3A—C4A—N3A44.59 (18)S1B—C3B—C4B—N3B45.50 (18)
C1A—C2A—C5A—C6A0.6 (2)C1B—C2B—C5B—C6B0.1 (2)
S1A—C2A—C5A—C6A176.39 (11)S1B—C2B—C5B—C6B177.41 (11)
C1A—C2A—C5A—N3A177.98 (13)C1B—C2B—C5B—N3B179.66 (13)
S1A—C2A—C5A—N3A2.23 (19)S1B—C2B—C5B—N3B2.84 (18)
C2A—C5A—C6A—C7A1.8 (2)C2B—C5B—C6B—C7B0.9 (2)
N3A—C5A—C6A—C7A176.78 (14)N3B—C5B—C6B—C7B179.36 (13)
C5A—C6A—C7A—C8A1.6 (2)C5B—C6B—C7B—C8B0.8 (2)
C2A—C1A—C8A—C7A1.0 (2)C6B—C7B—C8B—C1B0.3 (3)
C6A—C7A—C8A—C1A0.2 (3)C2B—C1B—C8B—C7B1.3 (3)
N3A—C4A—N1A—N2A0.83 (18)N3B—C4B—N1B—N2B0.40 (17)
C3A—C4A—N1A—N2A179.04 (15)C3B—C4B—N1B—N2B179.30 (15)
O1A—C9A—N2A—N1A177.94 (16)O1B—C9B—N2B—N1B177.27 (15)
N3A—C9A—N2A—N1A2.56 (18)N3B—C9B—N2B—N1B2.78 (17)
C4A—N1A—N2A—C9A2.19 (19)C4B—N1B—N2B—C9B2.08 (18)
N1A—C4A—N3A—C9A0.68 (18)N1B—C4B—N3B—C9B1.26 (17)
C3A—C4A—N3A—C9A179.44 (14)C3B—C4B—N3B—C9B177.70 (14)
N1A—C4A—N3A—C5A172.14 (14)N1B—C4B—N3B—C5B175.30 (13)
C3A—C4A—N3A—C5A8.0 (2)C3B—C4B—N3B—C5B5.7 (2)
O1A—C9A—N3A—C4A178.59 (16)O1B—C9B—N3B—C4B177.70 (15)
N2A—C9A—N3A—C4A1.90 (16)N2B—C9B—N3B—C4B2.35 (15)
O1A—C9A—N3A—C5A7.3 (2)O1B—C9B—N3B—C5B5.9 (3)
N2A—C9A—N3A—C5A173.22 (13)N2B—C9B—N3B—C5B174.06 (13)
C6A—C5A—N3A—C4A164.62 (14)C6B—C5B—N3B—C4B160.55 (13)
C2A—C5A—N3A—C4A16.8 (2)C2B—C5B—N3B—C4B19.2 (2)
C6A—C5A—N3A—C9A25.6 (2)C6B—C5B—N3B—C9B23.6 (2)
C2A—C5A—N3A—C9A153.01 (14)C2B—C5B—N3B—C9B156.61 (14)
C1A—C2A—S1A—C3A150.82 (13)C1B—C2B—S1B—C3B146.30 (13)
C5A—C2A—S1A—C3A33.45 (14)C5B—C2B—S1B—C3B36.20 (13)
C4A—C3A—S1A—C2A50.69 (12)C4B—C3B—S1B—C2B53.54 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H2N···O1A0.88 (2)1.93 (2)2.7771 (17)163.4 (17)
N2A—H1N···O1B0.85 (2)2.08 (2)2.9112 (18)168.4 (17)
C3A—H3A···O1Bi0.972.553.402 (2)147
C3B—H3C···O1Aii0.972.563.4238 (19)149
C3B—H3D···N1Bii0.972.613.444 (2)144
C6A—H6A···O1A0.932.392.9438 (19)118
C6B—H6B···O1B0.932.433.0009 (19)120
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1/2, z+3/2.
(II) 2-(2-Oxo-2-phenylethyl)-4H-1,2,4-triazolo[3,4- c][1,4]benzothiazin-1(2H)-one top
Crystal data top
C17H13N3O2SF(000) = 672
Mr = 323.36Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3459 reflections
a = 11.6248 (18) Åθ = 2.7–24.8°
b = 14.920 (2) ŵ = 0.24 mm1
c = 8.5909 (13) ÅT = 294 K
β = 102.564 (3)°Needle, colourless
V = 1454.3 (4) Å30.21 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2175 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω scansh = 1313
13803 measured reflectionsk = 1717
2562 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.4963P]
where P = (Fo2 + 2Fc2)/3
2562 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C17H13N3O2SV = 1454.3 (4) Å3
Mr = 323.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6248 (18) ŵ = 0.24 mm1
b = 14.920 (2) ÅT = 294 K
c = 8.5909 (13) Å0.21 × 0.12 × 0.08 mm
β = 102.564 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2175 reflections with I > 2σ(I)
13803 measured reflectionsRint = 0.035
2562 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
2562 reflectionsΔρmin = 0.15 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4068 (2)0.09302 (16)1.1514 (3)0.0476 (6)
H10.33100.11671.12530.057*
C20.49454 (18)0.12968 (14)1.0841 (2)0.0385 (5)
C30.59868 (19)0.27745 (14)0.9999 (3)0.0430 (5)
H3A0.59920.32810.92930.052*
H3B0.61100.29961.10840.052*
C40.69294 (18)0.21352 (14)0.9852 (3)0.0380 (5)
C50.60792 (17)0.09307 (13)1.1240 (2)0.0347 (5)
C60.6323 (2)0.02331 (14)1.2319 (3)0.0416 (5)
H60.70820.00001.26040.050*
C70.5428 (2)0.01189 (16)1.2975 (3)0.0482 (6)
H70.55910.05891.37000.058*
C80.4305 (2)0.02227 (17)1.2560 (3)0.0509 (6)
H80.37060.00241.29860.061*
C90.79549 (18)0.08501 (14)1.0186 (2)0.0378 (5)
C100.94467 (19)0.13928 (16)0.8692 (3)0.0458 (6)
H10A0.99510.09220.92450.055*
H10B0.98920.19480.88310.055*
C110.91012 (19)0.11681 (14)0.6929 (3)0.0408 (5)
C121.00213 (18)0.12699 (14)0.5969 (3)0.0392 (5)
C131.11552 (19)0.15584 (15)0.6638 (3)0.0454 (6)
H131.13640.16890.77220.055*
C141.1977 (2)0.16532 (17)0.5704 (3)0.0532 (6)
H141.27330.18540.61570.064*
C151.1678 (2)0.14515 (17)0.4112 (3)0.0552 (7)
H151.22330.15170.34860.066*
C161.0565 (2)0.11529 (18)0.3433 (3)0.0586 (7)
H161.03710.10070.23550.070*
C170.9732 (2)0.10688 (16)0.4353 (3)0.0500 (6)
H170.89740.08770.38870.060*
N10.77836 (17)0.22750 (12)0.9143 (2)0.0466 (5)
N20.84323 (16)0.14868 (12)0.9388 (2)0.0456 (5)
N30.69649 (14)0.12901 (11)1.05118 (19)0.0349 (4)
O10.83143 (13)0.00975 (10)1.05492 (19)0.0483 (4)
O20.81152 (14)0.09055 (12)0.6344 (2)0.0599 (5)
S10.45916 (5)0.21922 (4)0.94660 (7)0.0491 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0356 (12)0.0601 (15)0.0513 (14)0.0071 (11)0.0185 (11)0.0126 (12)
C20.0360 (11)0.0436 (12)0.0382 (11)0.0042 (9)0.0129 (9)0.0081 (9)
C30.0449 (13)0.0395 (12)0.0483 (13)0.0035 (10)0.0183 (10)0.0024 (10)
C40.0393 (12)0.0375 (11)0.0400 (12)0.0003 (9)0.0149 (9)0.0010 (9)
C50.0339 (11)0.0393 (11)0.0350 (11)0.0047 (9)0.0161 (9)0.0056 (9)
C60.0423 (12)0.0420 (12)0.0437 (12)0.0004 (10)0.0161 (10)0.0000 (10)
C70.0581 (15)0.0461 (13)0.0470 (13)0.0074 (11)0.0258 (11)0.0011 (11)
C80.0516 (14)0.0569 (15)0.0529 (14)0.0192 (12)0.0307 (12)0.0110 (12)
C90.0320 (11)0.0429 (12)0.0409 (12)0.0009 (9)0.0130 (9)0.0001 (10)
C100.0368 (12)0.0519 (14)0.0553 (14)0.0019 (10)0.0242 (10)0.0048 (11)
C110.0348 (12)0.0358 (11)0.0551 (14)0.0009 (9)0.0171 (10)0.0076 (10)
C120.0380 (12)0.0352 (11)0.0475 (13)0.0018 (9)0.0160 (10)0.0044 (9)
C130.0402 (12)0.0552 (14)0.0442 (13)0.0009 (11)0.0163 (10)0.0015 (11)
C140.0384 (13)0.0649 (16)0.0613 (16)0.0015 (11)0.0216 (11)0.0047 (13)
C150.0531 (15)0.0637 (16)0.0582 (16)0.0097 (12)0.0326 (13)0.0083 (13)
C160.0686 (18)0.0667 (17)0.0446 (14)0.0063 (14)0.0215 (13)0.0011 (12)
C170.0456 (13)0.0531 (15)0.0516 (14)0.0020 (11)0.0111 (11)0.0027 (11)
N10.0469 (11)0.0433 (11)0.0566 (12)0.0031 (9)0.0266 (9)0.0075 (9)
N20.0401 (10)0.0443 (11)0.0607 (12)0.0060 (8)0.0294 (9)0.0082 (9)
N30.0324 (9)0.0366 (9)0.0392 (10)0.0000 (7)0.0157 (7)0.0017 (7)
O10.0435 (9)0.0432 (9)0.0630 (10)0.0098 (7)0.0222 (8)0.0093 (8)
O20.0381 (9)0.0722 (12)0.0709 (12)0.0120 (8)0.0155 (8)0.0020 (9)
S10.0369 (3)0.0576 (4)0.0528 (4)0.0076 (3)0.0098 (3)0.0049 (3)
Geometric parameters (Å, º) top
C1—C81.375 (3)C9—N31.405 (3)
C1—C21.389 (3)C10—N21.440 (3)
C1—H10.9300C10—C111.518 (3)
C2—C51.399 (3)C10—H10A0.9700
C2—S11.772 (2)C10—H10B0.9700
C3—C41.479 (3)C11—O21.212 (3)
C3—S11.809 (2)C11—C121.494 (3)
C3—H3A0.9700C12—C131.387 (3)
C3—H3B0.9700C12—C171.388 (3)
C4—N11.290 (3)C13—C141.382 (3)
C4—N31.379 (3)C13—H130.9300
C5—C61.381 (3)C14—C151.370 (4)
C5—N31.421 (2)C14—H140.9300
C6—C71.389 (3)C15—C161.373 (4)
C6—H60.9300C15—H150.9300
C7—C81.374 (3)C16—C171.382 (3)
C7—H70.9300C16—H160.9300
C8—H80.9300C17—H170.9300
C9—O11.215 (3)N1—N21.388 (3)
C9—N21.358 (3)
C8—C1—C2120.9 (2)N2—C10—H10B109.2
C8—C1—H1119.6C11—C10—H10B109.2
C2—C1—H1119.6H10A—C10—H10B107.9
C1—C2—C5118.8 (2)O2—C11—C12122.0 (2)
C1—C2—S1119.30 (17)O2—C11—C10120.42 (19)
C5—C2—S1121.83 (16)C12—C11—C10117.57 (18)
C4—C3—S1108.00 (15)C13—C12—C17118.9 (2)
C4—C3—H3A110.1C13—C12—C11122.2 (2)
S1—C3—H3A110.1C17—C12—C11118.9 (2)
C4—C3—H3B110.1C14—C13—C12120.4 (2)
S1—C3—H3B110.1C14—C13—H13119.8
H3A—C3—H3B108.4C12—C13—H13119.8
N1—C4—N3112.62 (18)C15—C14—C13120.0 (2)
N1—C4—C3126.63 (19)C15—C14—H14120.0
N3—C4—C3120.75 (18)C13—C14—H14120.0
C6—C5—C2120.21 (19)C14—C15—C16120.4 (2)
C6—C5—N3121.15 (18)C14—C15—H15119.8
C2—C5—N3118.64 (18)C16—C15—H15119.8
C5—C6—C7119.6 (2)C15—C16—C17120.0 (2)
C5—C6—H6120.2C15—C16—H16120.0
C7—C6—H6120.2C17—C16—H16120.0
C8—C7—C6120.5 (2)C16—C17—C12120.3 (2)
C8—C7—H7119.8C16—C17—H17119.8
C6—C7—H7119.8C12—C17—H17119.8
C7—C8—C1119.9 (2)C4—N1—N2103.88 (17)
C7—C8—H8120.1C9—N2—N1113.63 (16)
C1—C8—H8120.1C9—N2—C10127.04 (19)
O1—C9—N2128.37 (19)N1—N2—C10119.11 (17)
O1—C9—N3129.14 (19)C4—N3—C9107.32 (16)
N2—C9—N3102.48 (18)C4—N3—C5124.48 (17)
N2—C10—C11111.90 (19)C9—N3—C5127.94 (17)
N2—C10—H10A109.2C2—S1—C397.36 (10)
C11—C10—H10A109.2
C8—C1—C2—C50.3 (3)C11—C12—C17—C16179.8 (2)
C8—C1—C2—S1178.64 (17)N3—C4—N1—N21.6 (2)
S1—C3—C4—N1132.3 (2)C3—C4—N1—N2178.2 (2)
S1—C3—C4—N347.9 (2)O1—C9—N2—N1179.0 (2)
C1—C2—C5—C61.8 (3)N3—C9—N2—N12.4 (2)
S1—C2—C5—C6179.94 (16)O1—C9—N2—C104.4 (4)
C1—C2—C5—N3178.11 (18)N3—C9—N2—C10177.0 (2)
S1—C2—C5—N30.2 (3)C4—N1—N2—C92.6 (3)
C2—C5—C6—C71.7 (3)C4—N1—N2—C10177.6 (2)
N3—C5—C6—C7178.20 (19)C11—C10—N2—C995.9 (3)
C5—C6—C7—C80.1 (3)C11—C10—N2—N178.4 (3)
C6—C7—C8—C11.4 (3)N1—C4—N3—C90.2 (2)
C2—C1—C8—C71.3 (3)C3—C4—N3—C9179.6 (2)
N2—C10—C11—O215.5 (3)N1—C4—N3—C5174.29 (19)
N2—C10—C11—C12165.41 (18)C3—C4—N3—C55.9 (3)
O2—C11—C12—C13179.1 (2)O1—C9—N3—C4179.9 (2)
C10—C11—C12—C130.0 (3)N2—C9—N3—C41.3 (2)
O2—C11—C12—C170.9 (3)O1—C9—N3—C55.8 (4)
C10—C11—C12—C17180.0 (2)N2—C9—N3—C5175.59 (19)
C17—C12—C13—C140.7 (3)C6—C5—N3—C4158.2 (2)
C11—C12—C13—C14179.3 (2)C2—C5—N3—C421.9 (3)
C12—C13—C14—C150.8 (4)C6—C5—N3—C928.4 (3)
C13—C14—C15—C160.1 (4)C2—C5—N3—C9151.4 (2)
C14—C15—C16—C171.1 (4)C1—C2—S1—C3146.39 (18)
C15—C16—C17—C121.1 (4)C5—C2—S1—C335.34 (19)
C13—C12—C17—C160.2 (4)C4—C3—S1—C255.21 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.513.040 (3)117
C10—H10A···O1i0.972.503.377 (3)150
Symmetry code: (i) x+2, y, z+2.
(III) Ethyl 3-oxo-2-(1-oxo-1H,4H-1,2,4-triazolo[3,4- c][1,4]benzothiazin-2-yl)-3-phenylpropanoate top
Crystal data top
C20H17N3O4SF(000) = 1648
Mr = 395.43Dx = 1.380 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.6533 (14) ÅCell parameters from 8703 reflections
b = 12.7279 (13) Åθ = 2.2–27.6°
c = 22.2927 (19) ŵ = 0.20 mm1
β = 100.601 (3)°T = 294 K
V = 3807.9 (6) Å3Plate, colourless
Z = 80.16 × 0.14 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2804 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 1616
17579 measured reflectionsk = 1515
3355 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0585P)2 + 5.1188P]
where P = (Fo2 + 2Fc2)/3
3355 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.46 e Å3
52 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H17N3O4SV = 3807.9 (6) Å3
Mr = 395.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.6533 (14) ŵ = 0.20 mm1
b = 12.7279 (13) ÅT = 294 K
c = 22.2927 (19) Å0.16 × 0.14 × 0.05 mm
β = 100.601 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2804 reflections with I > 2σ(I)
17579 measured reflectionsRint = 0.048
3355 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06452 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.19Δρmax = 0.46 e Å3
3355 reflectionsΔρmin = 0.28 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1257 (3)0.6780 (3)0.49936 (17)0.0713 (9)
H10.17070.71710.52700.086*
C20.1566 (2)0.5858 (2)0.47527 (14)0.0561 (8)
C30.2717 (2)0.4125 (3)0.49316 (17)0.0663 (9)
H3A0.33650.37980.49590.080*
H3B0.24490.39230.52890.080*
C40.2046 (2)0.3758 (2)0.43767 (14)0.0508 (7)
C50.0868 (2)0.5255 (2)0.43667 (13)0.0479 (7)
C60.0116 (2)0.5580 (3)0.42121 (15)0.0583 (8)
H60.05840.51670.39630.070*
C70.0390 (3)0.6533 (3)0.44355 (19)0.0731 (10)
H70.10400.67740.43190.088*
C80.0284 (3)0.7121 (3)0.48249 (19)0.0786 (11)
H80.00880.77530.49770.094*
C90.0701 (2)0.3720 (2)0.36308 (14)0.0512 (7)
C100.1045 (2)0.1956 (3)0.32654 (15)0.0570 (8)
H100.06480.21510.28690.068*
C110.1969 (2)0.1345 (3)0.31531 (15)0.0588 (8)
C120.2457 (2)0.1677 (3)0.26426 (15)0.0588 (8)
C130.2119 (3)0.2520 (3)0.22691 (17)0.0736 (10)
H130.15810.29160.23420.088*
C140.2591 (4)0.2773 (4)0.1783 (2)0.0971 (13)
H140.23680.33380.15300.117*
C150.3389 (4)0.2178 (5)0.1682 (2)0.1049 (16)
H150.37030.23420.13570.126*
C160.3723 (3)0.1355 (5)0.2052 (2)0.0965 (14)
H160.42690.09690.19810.116*
C170.3264 (3)0.1085 (3)0.25296 (17)0.0759 (10)
H170.34890.05120.27760.091*
C180.0409 (3)0.1266 (3)0.35988 (17)0.0711 (9)
C190.0499 (11)0.0273 (12)0.3580 (5)0.108 (4)0.596 (15)
H19A0.09830.01210.37570.129*0.596 (15)
H19B0.00740.06630.39000.129*0.596 (15)
C200.1003 (9)0.0990 (9)0.3092 (5)0.125 (5)0.596 (15)
H20A0.13260.05830.27500.188*0.596 (15)
H20B0.14890.14050.32460.188*0.596 (15)
H20C0.05170.14450.29660.188*0.596 (15)
C1910.0936 (11)0.0043 (9)0.3354 (8)0.086 (3)0.404 (15)
H19C0.14990.01330.30230.103*0.404 (15)
H19D0.11770.02160.37100.103*0.404 (15)
C2010.0385 (14)0.1068 (13)0.3497 (11)0.129 (7)0.404 (15)
H20D0.00220.12290.31780.194*0.404 (15)
H20E0.08540.16200.35250.194*0.404 (15)
H20F0.00710.10070.38780.194*0.404 (15)
N10.21558 (17)0.2914 (2)0.40800 (13)0.0592 (7)
N20.13419 (17)0.2904 (2)0.36024 (12)0.0578 (7)
N30.11885 (16)0.42965 (18)0.41295 (11)0.0474 (6)
O10.00803 (16)0.3894 (2)0.32908 (10)0.0698 (7)
O20.2266 (2)0.0622 (2)0.34810 (13)0.0842 (8)
O30.03282 (19)0.1373 (3)0.41169 (12)0.0878 (8)
O40.0093 (8)0.0430 (8)0.3264 (5)0.091 (3)0.596 (15)
O410.0202 (9)0.0687 (9)0.3178 (6)0.073 (3)0.404 (15)
S10.28467 (6)0.55313 (7)0.49131 (5)0.0726 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.090 (3)0.055 (2)0.073 (2)0.0011 (18)0.0260 (19)0.0096 (17)
C20.0635 (18)0.0490 (17)0.0590 (18)0.0027 (14)0.0198 (15)0.0010 (14)
C30.0559 (19)0.0572 (19)0.079 (2)0.0015 (15)0.0043 (16)0.0038 (17)
C40.0424 (15)0.0464 (16)0.0624 (18)0.0051 (12)0.0067 (13)0.0011 (14)
C50.0512 (16)0.0467 (15)0.0503 (16)0.0045 (12)0.0212 (13)0.0035 (13)
C60.0512 (17)0.0616 (19)0.0671 (19)0.0080 (14)0.0239 (14)0.0053 (16)
C70.066 (2)0.070 (2)0.093 (3)0.0186 (18)0.041 (2)0.006 (2)
C80.097 (3)0.056 (2)0.096 (3)0.014 (2)0.051 (2)0.009 (2)
C90.0418 (15)0.0578 (18)0.0547 (17)0.0035 (13)0.0110 (13)0.0003 (14)
C100.0527 (16)0.0626 (19)0.0563 (18)0.0011 (14)0.0115 (14)0.0158 (15)
C110.0608 (19)0.0549 (19)0.0608 (19)0.0033 (15)0.0114 (15)0.0112 (16)
C120.0554 (17)0.063 (2)0.0593 (19)0.0015 (15)0.0144 (14)0.0100 (16)
C130.078 (2)0.077 (2)0.069 (2)0.0050 (19)0.0207 (18)0.0039 (19)
C140.119 (4)0.098 (3)0.079 (3)0.006 (3)0.028 (3)0.010 (2)
C150.105 (3)0.141 (5)0.079 (3)0.025 (3)0.043 (3)0.015 (3)
C160.076 (3)0.142 (4)0.078 (3)0.009 (3)0.032 (2)0.024 (3)
C170.065 (2)0.093 (3)0.072 (2)0.0142 (19)0.0188 (18)0.019 (2)
C180.065 (2)0.085 (2)0.068 (2)0.0078 (17)0.0224 (17)0.0222 (18)
C190.109 (9)0.122 (8)0.096 (7)0.053 (7)0.030 (6)0.012 (6)
C200.125 (9)0.110 (7)0.132 (8)0.061 (6)0.000 (7)0.001 (6)
C1910.084 (8)0.086 (7)0.087 (9)0.014 (4)0.011 (6)0.006 (6)
C2010.124 (13)0.100 (8)0.161 (17)0.002 (8)0.018 (12)0.044 (11)
N10.0419 (13)0.0564 (15)0.0753 (17)0.0074 (11)0.0001 (12)0.0112 (13)
N20.0450 (13)0.0596 (15)0.0659 (16)0.0069 (11)0.0031 (11)0.0143 (13)
N30.0415 (12)0.0463 (13)0.0546 (14)0.0039 (10)0.0099 (10)0.0015 (11)
O10.0531 (13)0.0799 (16)0.0703 (15)0.0147 (11)0.0047 (11)0.0089 (12)
O20.101 (2)0.0672 (16)0.0906 (18)0.0221 (14)0.0334 (15)0.0120 (14)
O30.0776 (17)0.124 (2)0.0666 (16)0.0106 (15)0.0268 (13)0.0198 (15)
O40.099 (6)0.100 (6)0.085 (5)0.042 (5)0.040 (4)0.030 (4)
O410.075 (6)0.065 (4)0.082 (5)0.010 (4)0.027 (4)0.019 (4)
S10.0596 (5)0.0562 (5)0.0978 (7)0.0064 (4)0.0033 (5)0.0099 (5)
Geometric parameters (Å, º) top
C1—C81.382 (5)C12—C171.396 (5)
C1—C21.388 (5)C13—C141.396 (6)
C1—H10.9300C13—H130.9300
C2—C51.392 (4)C14—C151.380 (7)
C2—S11.769 (3)C14—H140.9300
C3—C41.473 (4)C15—C161.359 (7)
C3—S11.800 (3)C15—H150.9300
C3—H3A0.9700C16—C171.375 (6)
C3—H3B0.9700C16—H160.9300
C4—N11.284 (4)C17—H170.9300
C4—N31.382 (3)C18—O31.188 (4)
C5—C61.387 (4)C18—O41.325 (7)
C5—N31.429 (4)C18—O411.354 (9)
C6—C71.388 (5)C19—O41.469 (8)
C6—H60.9300C19—C201.488 (9)
C7—C81.367 (5)C19—H19A0.9700
C7—H70.9300C19—H19B0.9700
C8—H80.9300C20—H20A0.9600
C9—O11.210 (3)C20—H20B0.9600
C9—N21.367 (4)C20—H20C0.9600
C9—N31.394 (4)C191—O411.473 (9)
C10—N21.439 (4)C191—C2011.510 (9)
C10—C181.522 (5)C191—H19C0.9700
C10—C111.541 (4)C191—H19D0.9700
C10—H100.9800C201—H20D0.9600
C11—O21.198 (4)C201—H20E0.9600
C11—C121.482 (5)C201—H20F0.9600
C12—C131.384 (5)N1—N21.390 (3)
C8—C1—C2120.4 (4)C15—C14—C13119.4 (5)
C8—C1—H1119.8C15—C14—H14120.3
C2—C1—H1119.8C13—C14—H14120.3
C1—C2—C5119.0 (3)C16—C15—C14120.7 (4)
C1—C2—S1118.7 (3)C16—C15—H15119.6
C5—C2—S1122.2 (2)C14—C15—H15119.6
C4—C3—S1110.2 (2)C15—C16—C17120.9 (4)
C4—C3—H3A109.6C15—C16—H16119.6
S1—C3—H3A109.6C17—C16—H16119.6
C4—C3—H3B109.6C16—C17—C12119.5 (4)
S1—C3—H3B109.6C16—C17—H17120.3
H3A—C3—H3B108.1C12—C17—H17120.3
N1—C4—N3112.3 (3)O3—C18—O4124.1 (6)
N1—C4—C3125.8 (3)O3—C18—O41125.5 (8)
N3—C4—C3121.8 (3)O3—C18—C10124.9 (3)
C6—C5—C2120.6 (3)O4—C18—C10110.2 (5)
C6—C5—N3120.7 (3)O41—C18—C10108.0 (7)
C2—C5—N3118.6 (3)O4—C19—C20104.2 (7)
C5—C6—C7119.0 (3)O4—C19—H19A110.9
C5—C6—H6120.5C20—C19—H19A110.9
C7—C6—H6120.5O4—C19—H19B110.9
C8—C7—C6120.8 (3)C20—C19—H19B110.9
C8—C7—H7119.6H19A—C19—H19B108.9
C6—C7—H7119.6O41—C191—C201105.3 (12)
C7—C8—C1120.1 (3)O41—C191—H19C110.7
C7—C8—H8119.9C201—C191—H19C110.7
C1—C8—H8119.9O41—C191—H19D110.7
O1—C9—N2127.4 (3)C201—C191—H19D110.7
O1—C9—N3129.7 (3)H19C—C191—H19D108.8
N2—C9—N3102.8 (2)C191—C201—H20D109.5
N2—C10—C18111.1 (3)C191—C201—H20E109.5
N2—C10—C11110.3 (2)H20D—C201—H20E109.5
C18—C10—C11110.2 (3)C191—C201—H20F109.5
N2—C10—H10108.4H20D—C201—H20F109.5
C18—C10—H10108.4H20E—C201—H20F109.5
C11—C10—H10108.4C4—N1—N2104.5 (2)
O2—C11—C12122.6 (3)C9—N2—N1112.7 (2)
O2—C11—C10118.9 (3)C9—N2—C10122.7 (2)
C12—C11—C10118.5 (3)N1—N2—C10121.1 (2)
C13—C12—C17119.8 (3)C4—N3—C9107.6 (2)
C13—C12—C11122.5 (3)C4—N3—C5124.8 (2)
C17—C12—C11117.7 (3)C9—N3—C5127.6 (2)
C12—C13—C14119.8 (4)C18—O4—C19111.8 (8)
C12—C13—H13120.1C18—O41—C191121.4 (13)
C14—C13—H13120.1C2—S1—C398.09 (15)
C8—C1—C2—C53.6 (5)N3—C4—N1—N21.5 (3)
C8—C1—C2—S1172.9 (3)C3—C4—N1—N2179.4 (3)
S1—C3—C4—N1141.6 (3)O1—C9—N2—N1177.5 (3)
S1—C3—C4—N340.6 (4)N3—C9—N2—N14.1 (3)
C1—C2—C5—C61.6 (4)O1—C9—N2—C1018.7 (5)
S1—C2—C5—C6174.7 (2)N3—C9—N2—C10162.9 (3)
C1—C2—C5—N3178.9 (3)C4—N1—N2—C93.6 (4)
S1—C2—C5—N34.8 (4)C4—N1—N2—C10162.8 (3)
C2—C5—C6—C71.7 (5)C18—C10—N2—C974.8 (4)
N3—C5—C6—C7177.8 (3)C11—C10—N2—C9162.6 (3)
C5—C6—C7—C83.1 (5)C18—C10—N2—N182.3 (3)
C6—C7—C8—C11.1 (6)C11—C10—N2—N140.3 (4)
C2—C1—C8—C72.3 (6)N1—C4—N3—C91.0 (3)
N2—C10—C11—O298.8 (4)C3—C4—N3—C9177.0 (3)
C18—C10—C11—O224.3 (4)N1—C4—N3—C5179.3 (3)
N2—C10—C11—C1281.1 (4)C3—C4—N3—C51.3 (4)
C18—C10—C11—C12155.8 (3)O1—C9—N3—C4178.6 (3)
O2—C11—C12—C13179.2 (3)N2—C9—N3—C43.0 (3)
C10—C11—C12—C130.7 (5)O1—C9—N3—C50.4 (5)
O2—C11—C12—C173.0 (5)N2—C9—N3—C5178.7 (3)
C10—C11—C12—C17177.1 (3)C6—C5—N3—C4160.9 (3)
C17—C12—C13—C140.2 (6)C2—C5—N3—C419.6 (4)
C11—C12—C13—C14177.9 (4)C6—C5—N3—C917.1 (4)
C12—C13—C14—C150.0 (7)C2—C5—N3—C9162.4 (3)
C13—C14—C15—C160.4 (7)O3—C18—O4—C198.5 (12)
C14—C15—C16—C171.0 (8)O41—C18—O4—C1993 (3)
C15—C16—C17—C121.2 (7)C10—C18—O4—C19178.2 (8)
C13—C12—C17—C160.8 (6)C20—C19—O4—C18165.6 (16)
C11—C12—C17—C16178.6 (3)O3—C18—O41—C19111.8 (15)
N2—C10—C18—O314.2 (5)O4—C18—O41—C19183 (3)
C11—C10—C18—O3108.4 (4)C10—C18—O41—C191178.2 (9)
N2—C10—C18—O4176.1 (7)C201—C191—O41—C1888 (2)
C11—C10—C18—O461.2 (7)C1—C2—S1—C3146.7 (3)
N2—C10—C18—O41152.3 (7)C5—C2—S1—C337.0 (3)
C11—C10—C18—O4185.1 (7)C4—C3—S1—C251.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3i0.972.473.153 (4)127
C6—H6···O10.932.392.977 (4)121
C8—H8···O3ii0.932.463.265 (4)145
C13—H13···O1iii0.932.583.330 (4)138
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC9H7N3OSC17H13N3O2SC20H17N3O4S
Mr205.24323.36395.43
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)294294294
a, b, c (Å)14.6307 (11), 8.5718 (7), 28.083 (2)11.6248 (18), 14.920 (2), 8.5909 (13)13.6533 (14), 12.7279 (13), 22.2927 (19)
α, β, γ (°)90, 90, 9090, 102.564 (3), 9090, 100.601 (3), 90
V3)3521.9 (5)1454.3 (4)3807.9 (6)
Z1648
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.330.240.20
Crystal size (mm)0.18 × 0.16 × 0.070.21 × 0.12 × 0.080.16 × 0.14 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23641, 3092, 2895 13803, 2562, 2175 17579, 3355, 2804
Rint0.0200.0350.048
(sin θ/λ)max1)0.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.03 0.046, 0.110, 1.09 0.064, 0.166, 1.19
No. of reflections309225623355
No. of parameters261208283
No. of restraints0052
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.180.29, 0.150.46, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2B—H2N···O1A0.88 (2)1.93 (2)2.7771 (17)163.4 (17)
N2A—H1N···O1B0.85 (2)2.08 (2)2.9112 (18)168.4 (17)
C3A—H3A···O1Bi0.972.553.402 (2)146.9
C3B—H3C···O1Aii0.972.563.4238 (19)148.5
C3B—H3D···N1Bii0.972.613.444 (2)144.4
C6A—H6A···O1A0.932.392.9438 (19)117.9
C6B—H6B···O1B0.932.433.0009 (19)120.0
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.513.040 (3)116.5
C10—H10A···O1i0.972.503.377 (3)150.1
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3i0.972.473.153 (4)126.9
C6—H6···O10.932.392.977 (4)120.8
C8—H8···O3ii0.932.463.265 (4)144.5
C13—H13···O1iii0.932.583.330 (4)137.7
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1/2.
Selected geometric parameters (Å ,° ) for (I), (II) and (III) top
Parameter(IA)(IB)(II)(III)
C2-S11.762 (2)1.767 (2)1.772 (2)1.769 (3)
C3-S11.809 (2)1.813 (2)1.809 (2)1.800 (3)
C4-N31.383 (2)1.383 (2)1.379 (3)1.382 (3)
C5-N31.423 (2)1.425 (2)1.421 (2)1.429 (4)
C9-N21.348 (2)1.347 (2)1.358 (3)1.367 (4)
C4-N3-C9106.95 (12)106.88 (11)107.32 (16)107.6 (2)
C4-N3-C5125.63 (12)124.80 (11)124.48 (17)124.8 (2)
C9-N3-C5126.80 (12)128.22 (11)127.94 (17)127.6 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds