Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, 2C9H6N2O2·C12H24O6·4H2O, the 18-crown-6 (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane) mol­ecule resides across a centre of inversion. The adduct exists as a mol­ecular hydrogen-bonded complex featuring integration of two kinds of synthons, viz. [(18-crown-6)(H2O)4] [O...O = 2.8645 (18)-2.9014 (18) Å] and an oxime/aqua ensemble, PhC(O)C(CN)NOH...OH2 [O...O = 2.5930 (18) Å]. The reliability of the oxime/aqua motif, sustained by the highly acidic cyano­oxime, is an essential factor in the construction of multicomponent cocrystals and the accommodation of oxime species in macrocyclic hosts. The supra­molecular structure is generated by the alternation of hydro­philic [(18-crown-6)(H2O)4] layers and bilayers of benzoyl(hydroxy­imino)­aceto­nitrile mol­ecules, resulting in stacking inter­actions between the phenyl and cyano groups of 3.666 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112034208/sf3178sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112034208/sf3178Isup2.hkl
Contains datablock I

CCDC reference: 908138

Comment top

2-Cyano-substituted oximes (cyanooximes) are widely exploited as powerful N- and O-donor ligands in coordination chemistry (Travis et al., 2008; Turner et al., 2011) and as versatile building blocks for supramolecular synthesis (Ponomarova & Domasevitch, 2002). Their new applications as effective cocrystallizing agents towards N-heteroaryl bases imply selective hydrogen bonding of the acidic oxime group according to the best-donor/best-acceptor principle (Aakeröy et al., 2009, 2012). This approach is particularly supportive of a further evolution of the pattern when combining a single NOH donor and multivalent hydrogen-bond acceptors. The claim for an increase in the effective donor functionality in such a case could be fulfilled by the incorporation of water molecules (Infantes et al., 2007), NOH···A to NOH···OH2···2A, which allows multiplication of the OH groups for the most dense interaction of the components. In fact, such an aqua complex is especially relevant for the highly acidic cyanooximes (pKa = 4.6–6.4; Ilkun et al., 2008) as a most reliable supramolecular synthon. For example, the symmetric entity HONC(R1)C(R2)NOH (R1 and R2 = CN) acts as a double NOH···OH2 donor (Chertanova et al., 1989), while the monohydrate of the ambifunctional prototype (R1 = CN and R2 = NH2) manifests a selective cyanooxime/water bonding (Arulsamy & Bohle, 2000). This allows the development of new hydrogen-bonded cocrystals relying on the combination of the cyanooxime/aqua pair and an appropriate multiple acceptor as illustrative three-component systems. In this context, we have examined 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6), a common molecular host suited to the accommodation of hydrogen-bonded aquaclusters (Ermer & Neudörfl, 2001; Albert & Mootz, 1997), and we report here the structure of its water-rich hydrate complex with a representative single hydrogen-bond donating cyanooxime tecton, benzoyl(hydroxyimino)acetonitrile (HBCO) (Travis et al., 2008), namely benzoyl(hydroxyimino)acetonitrile–18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane)–water (2/1/4), (I).

Compound (I) exists as a discrete centrosymmetric hydrogen-bonded complex with the 18-crown-6 molecule situated across a centre of inversion (Fig. 1). The central core of the complex is made up of a tetraaqua [(18-crown-6)(H2O)4] assembly with two pairs of water dimers, HOH···OH2, which are disposed on opposite axial sides of the host and provide O—H···O hydrogen bonding to each of the six polyether O atoms [O···O = 2.8645 (18)–2.9014 (18) Å; Table 2]. Such a group is a characteristic archetype of 18-crown-6 hydrates and it also remains intact in molecular adducts with CH3COOH (Albert & Mootz, 1997), and with polyfunctional carboxylic acids (Ermer & Neudörfl, 2001) and phenols (Belamri et al., 1990).

Two HBCO molecules are bonded to the outer water acceptors (O6), with relatively short O···O separations of 2.5930 (18) Å. This is in agreement with the values observed [2.519 (3)–2.584 (4) Å] in the cyanooxime hydrates RC(CN)NOH···OH2 [R = quinolin-2-yl (Mokhir et al., 1999), N-methylbenzimidazol-2-yl (Ilkun et al., 2008) and benzothiazol-2-yl (Domasevitch et al., 1997)] and reflects the relatively high acidity of the cyanooxime group (Ilkun et al., 2008). However, this acidity is still not sufficient for generation of typical oxonium/18-crown-6 encapsulates (Junk, 2008) in the presence of highly nucleophilic oximate anions. The IR spectrum of (I) confirms the neutral form of the cyanoxime, since the NO absorption band is found at 1070 cm-1, similar to what is observed for HBCO (1060 cm-1), and significantly lower than for the BCO- (1260 cm-1) and H(BCO)2- (1160 cm-1) anions (Ponomarova & Domasevitch, 2002). Additional supramolecular forces contributing to the stabilization of the adduct are very weak C—H···N and C—H···π hydrogen bonds (Table 2). The cyanooxime fragment is planar to within ±0.004 Å, while adopting an angle of 23.85 (17)° to the plane of the carbonyl group (C4/C2/O2). Effective conjugation in the cyanooxime fragment is indicated by a shortening of the N—O [1.3610 (17) versus 1.376 (3) Å] and a lengthening of the CN [1.287 (2) versus 1.262 (3) Å] bonds, compared with the prototypal aldoxime PhC(O)CHNOH (Raston et al., 1978).

Thus, the entire adduct may be viewed as the result of the rational combination of two distinct supramolecular synthons, [(18-crown-6)(H2O)4] and RC(CN)NOH···OH2. The reliability of the oxime/aqua interaction allows the utilization of the water molecule as an anchor for the accommodation of the oxime at the macrocyclic host. Compound (I) is a particularly water-rich complex [Rephrasing OK?] formed by oximic species and 18-crown-6. Thus, the presence of an additional multiple hydrogen-bond donating group (R = CONH2) leads to a very dense interaction between the components and effects partial dehydratation to [(18-crown-6)(HACO)(H2O)] (HACO = isonitrosocyanoacetamide), while preserving only the primary cyanooxime/aqua synthon [O···O = 2.556 (3) Å; Domasevich et al., 1995].

The crystal packing of (I) presents a layered motif parallel to the ab plane. The hydrophilic [(18-crown-6)(H2O)4] units form a two-dimensional stack, which is almost identical to that in 18-crown-6 tetrahydrate itself (Albert & Mootz, 1997), whereas the HBCO `pendants' provide separation of these stacks (at c/2 = 16.08 Å) and fill the interlayer space (Fig. 2). Interaction between the HBCO molecules occurs by means of weak C—H···O(carbonyl) and C—H···N(nitrile) hydrogen bonds [C5···O2ii = 3.372 (2) Å and C5—H5···O2ii = 174°, and C7···N2iii = 3.454 (2) Å and C7—H7···N2iii = 125°; symmetry codes: (ii) x + 3/2, y - 1/2, z; (iii) x - 1, y, z], arranging them in layers parallel to the ab plane. Pairwise association of these layers provides bilayers with stacking interactions between the phenyl and nitrile groups: Cg(C4–C9)···Cg(N2/C3)iv = 3.666 (2) Å [symmetry code: (iv) x - 1/2, y, -z + 1/2; Cg is the group centroid]. The Cg(N2/C3)iv···π axis makes an angle with the plane of the ring of 82.3 (2)° (Fig. 3).

In brief, the results of the present study suggest an even wider structural potential of highly acidic cyanooximes for the design of hydrogen-bonded cocrystals. The cyanooxime/aqua motif may be viewed as a reliable supramolecular synthon which is compatible with multiple hydrogen-bond acceptors. It remains intact in a complex hydrate environment and may be integrated into the structures of molecular clathrates.

Related literature top

For related literature, see: Aakeröy et al. (2009, 2012); Albert & Mootz (1997); Arulsamy & Bohle (2000); Belamri et al. (1990); Chertanova et al. (1989); Domasevich et al. (1995); Domasevitch et al. (1997); Ermer & Neudörfl (2001); Ilkun et al. (2008); Infantes et al. (2007); Junk (2008); Mokhir et al. (1999); Ponomareva et al. (1996); Ponomarova & Domasevitch (2002); Raston et al. (1978); Travis et al. (2008); Turner et al. (2011).

Experimental top

The title adduct, (I), was prepared by reacting 2-hydroxyiminobenzoylacetonitrile (0.087 g, 0.50 mmol) (Ponomareva et al., 1996) and 18-crown-6 (0.066 g, 0.25 mmol) in acetonitrile (5 ml). The resulting colourless solution was filtered and evaporated slowly in air for 3–4 d, after which large colourless prisms of (I) were collected and dried (yield 0.137 g, 80%). Spectroscopic analysis: IR (Nujol, ν, cm-1): 2230 (CN), 1650 (CO), 1070 (NO). Elemental analysis, calculated: C 52.62, H 6.48, N 8.18%; found: C 52.71, H 6.36, N 8.05%.

Refinement top

All H atoms were found in intermediate difference Fourier maps and were refined fully with isotropic displacement parameters [phenyl C—H = 0.938 (19)–0.987 (17) Å, aliphatic C—H = 0.972 (18)–1.026 (17) Å, water O—H = 0.84 (3)–0.91 (2) Å and oxime O—H = 0.98 (2) Å].

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. N and O atoms are shaded grey and the dashed lines indicate hydrogen bonding. [Symmetry code: (i) -x + 1, -y + 1, -z.]
[Figure 2] Fig. 2. A projection of the structure of (I) on the ac plane, showing the formation of hydrophilic [(18-crown-6)(H2O)4] layers, which are separated by double layers of HBCO molecules. Dashed lines indicate hydrogen bonding.
[Figure 3] Fig. 3. The arrangement of HBCO molecules in (I) with the formation of C—H···N/O hydrogen bonds (dashed lines), presented in a projection on the ab plane. Note the phenyl/CN stacking interactions which occur between pairs of separate layers (the bottom layer is indicated with open bonds). [Symmetry codes: (ii) -x + 3/2, y - 1/2, z; (iii) x - 1, y, z.]
benzoyl(hydroxyimino)acetonitrile–18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane)–water (2/1/4) top
Crystal data top
2C9H6N2O2·C12H24O6·4H2ODx = 1.277 Mg m3
Mr = 684.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 14785 reflections
a = 10.6645 (7) Åθ = 1.3–26.2°
b = 10.3818 (7) ŵ = 0.10 mm1
c = 32.164 (2) ÅT = 213 K
V = 3561.1 (4) Å3Plate, colourless
Z = 40.26 × 0.22 × 0.18 mm
F(000) = 1456
Data collection top
Siemens SMART CCD area-detector
diffractometer
3563 independent reflections
Radiation source: fine-focus sealed tube2685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.3°, θmin = 1.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.970, Tmax = 0.982k = 1212
14786 measured reflectionsl = 4038
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.9784P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3562 reflectionsΔρmax = 0.14 e Å3
306 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (3)
Crystal data top
2C9H6N2O2·C12H24O6·4H2OV = 3561.1 (4) Å3
Mr = 684.69Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 10.6645 (7) ŵ = 0.10 mm1
b = 10.3818 (7) ÅT = 213 K
c = 32.164 (2) Å0.26 × 0.22 × 0.18 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3563 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2685 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.982Rint = 0.038
14786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.084All H-atom parameters refined
S = 1.09Δρmax = 0.14 e Å3
3562 reflectionsΔρmin = 0.14 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83242 (11)0.56750 (13)0.12373 (4)0.0466 (3)
O20.73186 (11)0.90789 (11)0.20474 (4)0.0494 (3)
O30.43559 (10)0.25060 (11)0.00795 (3)0.0401 (3)
O40.43306 (10)0.38868 (11)0.08419 (3)0.0379 (3)
O50.43577 (10)0.65740 (11)0.06640 (3)0.0366 (3)
O60.69941 (13)0.41658 (13)0.07702 (4)0.0462 (3)
O70.68115 (13)0.49922 (15)0.00253 (4)0.0475 (3)
N10.74288 (12)0.63309 (13)0.14520 (4)0.0364 (3)
N21.02307 (15)0.76097 (19)0.18133 (5)0.0664 (5)
C10.78619 (14)0.71733 (16)0.17079 (5)0.0346 (4)
C20.69615 (14)0.80257 (15)0.19304 (5)0.0341 (4)
C30.91885 (16)0.74186 (19)0.17647 (5)0.0447 (4)
C40.56566 (14)0.75802 (15)0.19984 (5)0.0308 (4)
C50.53853 (14)0.63062 (16)0.20975 (5)0.0314 (4)
C60.41612 (15)0.59448 (19)0.21838 (5)0.0381 (4)
C70.32066 (17)0.6843 (2)0.21575 (5)0.0449 (5)
C80.34692 (17)0.8103 (2)0.20559 (6)0.0474 (5)
C90.46885 (17)0.84891 (18)0.19833 (5)0.0412 (4)
C100.4888 (2)0.17106 (17)0.02352 (6)0.0442 (4)
C110.4408 (2)0.19024 (18)0.04787 (6)0.0445 (5)
C120.36960 (18)0.26926 (18)0.07832 (6)0.0429 (4)
C130.35963 (17)0.48004 (18)0.10643 (6)0.0403 (4)
C140.42882 (17)0.60513 (18)0.10752 (5)0.0384 (4)
C150.5197 (2)0.76388 (18)0.06480 (6)0.0434 (4)
H10.785 (2)0.507 (2)0.1061 (7)0.079 (7)*
H1W0.625 (2)0.403 (2)0.0846 (7)0.086 (9)*
H2W0.695 (2)0.442 (2)0.0500 (8)0.087 (8)*
H3W0.645 (2)0.577 (2)0.0028 (7)0.091 (9)*
H4W0.641 (2)0.448 (2)0.0195 (8)0.100 (9)*
H50.6042 (14)0.5657 (15)0.2104 (5)0.033 (4)*
H60.3989 (15)0.5042 (16)0.2262 (5)0.041 (5)*
H70.2338 (19)0.6582 (18)0.2208 (5)0.060 (6)*
H80.2834 (18)0.8726 (19)0.2037 (5)0.060 (6)*
H90.4907 (16)0.9358 (18)0.1912 (5)0.049 (5)*
H10A0.4433 (16)0.0856 (19)0.0245 (5)0.053 (5)*
H10B0.5779 (17)0.1554 (17)0.0158 (5)0.047 (5)*
H11A0.5318 (18)0.1813 (17)0.0562 (6)0.053 (5)*
H11B0.4023 (16)0.1056 (18)0.0461 (5)0.046 (5)*
H12A0.2840 (17)0.2878 (16)0.0683 (5)0.047 (5)*
H12B0.3630 (16)0.2231 (17)0.1052 (6)0.053 (5)*
H13A0.3442 (15)0.4504 (15)0.1350 (5)0.042 (5)*
H13B0.2749 (17)0.4923 (16)0.0918 (5)0.044 (5)*
H14A0.3846 (16)0.6676 (16)0.1258 (5)0.046 (5)*
H14B0.5157 (17)0.5917 (17)0.1186 (5)0.047 (5)*
H15A0.6074 (18)0.7329 (17)0.0694 (5)0.054 (5)*
H15B0.4964 (17)0.8246 (19)0.0869 (6)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0336 (7)0.0667 (9)0.0395 (7)0.0043 (6)0.0065 (5)0.0050 (6)
O20.0483 (7)0.0391 (7)0.0608 (8)0.0116 (6)0.0079 (6)0.0012 (6)
O30.0525 (7)0.0332 (6)0.0347 (6)0.0035 (6)0.0011 (5)0.0012 (5)
O40.0360 (6)0.0401 (7)0.0376 (6)0.0063 (5)0.0024 (5)0.0008 (5)
O50.0408 (6)0.0403 (6)0.0289 (6)0.0039 (5)0.0027 (5)0.0000 (5)
O60.0400 (8)0.0580 (8)0.0407 (8)0.0054 (7)0.0009 (6)0.0012 (6)
O70.0527 (8)0.0491 (8)0.0407 (8)0.0048 (7)0.0094 (6)0.0010 (6)
N10.0304 (7)0.0447 (8)0.0341 (7)0.0030 (6)0.0041 (6)0.0046 (7)
N20.0333 (9)0.1049 (15)0.0611 (12)0.0140 (10)0.0017 (8)0.0052 (10)
C10.0263 (8)0.0458 (10)0.0319 (9)0.0059 (7)0.0019 (7)0.0080 (8)
C20.0337 (9)0.0361 (9)0.0323 (9)0.0036 (8)0.0060 (7)0.0070 (7)
C30.0355 (10)0.0628 (12)0.0358 (10)0.0076 (9)0.0014 (8)0.0067 (9)
C40.0305 (8)0.0353 (8)0.0265 (8)0.0006 (7)0.0026 (6)0.0025 (7)
C50.0288 (8)0.0371 (9)0.0282 (8)0.0022 (8)0.0009 (7)0.0027 (7)
C60.0342 (9)0.0500 (11)0.0299 (9)0.0070 (9)0.0023 (7)0.0026 (8)
C70.0294 (10)0.0707 (14)0.0347 (10)0.0003 (10)0.0040 (7)0.0092 (9)
C80.0363 (10)0.0599 (13)0.0459 (11)0.0174 (10)0.0023 (8)0.0113 (10)
C90.0443 (10)0.0396 (10)0.0396 (10)0.0077 (9)0.0046 (8)0.0047 (8)
C100.0532 (12)0.0323 (9)0.0472 (11)0.0008 (9)0.0006 (9)0.0018 (8)
C110.0576 (13)0.0345 (10)0.0414 (11)0.0070 (10)0.0049 (9)0.0083 (8)
C120.0468 (11)0.0453 (11)0.0368 (10)0.0154 (9)0.0013 (9)0.0057 (8)
C130.0384 (10)0.0535 (11)0.0289 (9)0.0009 (9)0.0046 (8)0.0001 (8)
C140.0394 (10)0.0480 (11)0.0279 (9)0.0041 (9)0.0002 (8)0.0029 (8)
C150.0524 (12)0.0376 (10)0.0402 (11)0.0059 (9)0.0001 (9)0.0063 (9)
Geometric parameters (Å, º) top
O1—N11.3610 (17)C6—H60.987 (17)
O1—H10.98 (2)C7—C81.377 (3)
O2—C21.2174 (19)C7—H70.98 (2)
O3—C101.424 (2)C8—C91.381 (3)
O3—C111.430 (2)C8—H80.938 (19)
O4—C131.423 (2)C9—H90.959 (18)
O4—C121.425 (2)C10—C15i1.492 (3)
O5—C151.423 (2)C10—H10A1.012 (19)
O5—C141.4315 (19)C10—H10B0.995 (17)
O6—H1W0.84 (3)C11—C121.486 (3)
O6—H2W0.91 (2)C11—H11A1.011 (18)
O7—H3W0.90 (3)C11—H11B0.972 (18)
O7—H4W0.87 (3)C12—H12A0.988 (18)
N1—C11.287 (2)C12—H12B0.990 (18)
N2—C31.140 (2)C13—C141.494 (3)
C1—C31.449 (2)C13—H13A0.982 (17)
C1—C21.489 (2)C13—H13B1.026 (17)
C2—C41.483 (2)C14—H14A0.994 (18)
C4—C51.391 (2)C14—H14B1.003 (18)
C4—C91.400 (2)C15—C10i1.492 (3)
C5—C61.386 (2)C15—H15A1.000 (19)
C5—H50.972 (15)C15—H15B0.98 (2)
C6—C71.383 (2)
N1—O1—H1104.7 (12)C15i—C10—H10A110.0 (10)
C10—O3—C11111.64 (13)O3—C10—H10B107.4 (10)
C13—O4—C12112.66 (13)C15i—C10—H10B110.6 (10)
C15—O5—C14111.13 (13)H10A—C10—H10B108.8 (14)
H1W—O6—H2W106 (2)O3—C11—C12109.28 (15)
H3W—O7—H4W109 (2)O3—C11—H11A108.4 (10)
C1—N1—O1114.39 (13)C12—C11—H11A111.4 (10)
N1—C1—C3123.39 (15)O3—C11—H11B109.1 (10)
N1—C1—C2118.68 (14)C12—C11—H11B108.8 (10)
C3—C1—C2117.69 (15)H11A—C11—H11B109.7 (15)
O2—C2—C4121.88 (15)O4—C12—C11108.97 (14)
O2—C2—C1118.73 (15)O4—C12—H12A108.2 (10)
C4—C2—C1119.39 (14)C11—C12—H12A111.3 (10)
N2—C3—C1179.35 (19)O4—C12—H12B109.8 (10)
C5—C4—C9119.71 (15)C11—C12—H12B110.1 (10)
C5—C4—C2121.72 (14)H12A—C12—H12B108.3 (14)
C9—C4—C2118.49 (15)O4—C13—C14108.63 (14)
C6—C5—C4119.94 (16)O4—C13—H13A110.7 (10)
C6—C5—H5119.1 (9)C14—C13—H13A109.4 (10)
C4—C5—H5120.9 (9)O4—C13—H13B109.7 (9)
C7—C6—C5119.88 (18)C14—C13—H13B109.7 (9)
C7—C6—H6121.2 (10)H13A—C13—H13B108.7 (13)
C5—C6—H6118.9 (10)O5—C14—C13109.47 (14)
C8—C7—C6120.35 (17)O5—C14—H14A108.9 (10)
C8—C7—H7119.7 (11)C13—C14—H14A110.3 (10)
C6—C7—H7120.0 (11)O5—C14—H14B109.5 (10)
C7—C8—C9120.51 (18)C13—C14—H14B110.1 (10)
C7—C8—H8121.6 (12)H14A—C14—H14B108.5 (14)
C9—C8—H8117.9 (12)O5—C15—C10i110.23 (15)
C8—C9—C4119.54 (18)O5—C15—H15A109.5 (11)
C8—C9—H9122.8 (11)C10i—C15—H15A109.5 (10)
C4—C9—H9117.6 (11)O5—C15—H15B108.2 (11)
O3—C10—C15i110.23 (15)C10i—C15—H15B109.8 (11)
O3—C10—H10A109.8 (10)H15A—C15—H15B109.6 (15)
O1—N1—C1—C30.3 (2)C5—C6—C7—C81.6 (3)
O1—N1—C1—C2174.58 (13)C6—C7—C8—C90.7 (3)
N1—C1—C2—O2153.70 (15)C7—C8—C9—C42.3 (3)
C3—C1—C2—O220.9 (2)C5—C4—C9—C81.8 (2)
N1—C1—C2—C425.5 (2)C2—C4—C9—C8178.39 (15)
C3—C1—C2—C4159.91 (14)C11—O3—C10—C15i179.25 (15)
O2—C2—C4—C5142.19 (16)C10—O3—C11—C12172.65 (15)
C1—C2—C4—C538.7 (2)C13—O4—C12—C11168.51 (15)
O2—C2—C4—C934.4 (2)O3—C11—C12—O466.83 (19)
C1—C2—C4—C9144.78 (15)C12—O4—C13—C14174.76 (14)
C9—C4—C5—C60.5 (2)C15—O5—C14—C13169.50 (15)
C2—C4—C5—C6176.03 (14)O4—C13—C14—O567.16 (18)
C4—C5—C6—C72.2 (2)C14—O5—C15—C10i171.57 (15)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.98 (2)1.61 (2)2.5930 (18)176 (2)
O6—H1W···O40.84 (3)2.05 (3)2.8645 (18)162 (2)
O6—H2W···O70.91 (2)1.80 (2)2.7059 (19)177 (2)
O7—H3W···O3i0.90 (3)1.99 (3)2.8856 (18)176 (2)
O7—H4W···O5i0.87 (3)2.04 (3)2.9014 (18)171 (2)
C5—H5···O2ii0.972 (15)2.403 (16)3.372 (2)174.4 (12)
C7—H7···N2iii0.98 (2)2.793 (19)3.454 (2)125.5 (13)
C14—H14B···N11.003 (18)2.604 (18)3.574 (2)162.5 (14)
C14—H14A···Cg0.994 (18)2.770 (17)3.4503 (17)126.1 (12)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula2C9H6N2O2·C12H24O6·4H2O
Mr684.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)213
a, b, c (Å)10.6645 (7), 10.3818 (7), 32.164 (2)
V3)3561.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
14786, 3563, 2685
Rint0.038
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.084, 1.09
No. of reflections3562
No. of parameters306
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—N11.3610 (17)O5—C151.423 (2)
O2—C21.2174 (19)O5—C141.4315 (19)
O3—C101.424 (2)N1—C11.287 (2)
O3—C111.430 (2)N2—C31.140 (2)
O4—C131.423 (2)C1—C31.449 (2)
O4—C121.425 (2)C1—C21.489 (2)
C1—N1—O1114.39 (13)C3—C1—C2117.69 (15)
N1—C1—C3123.39 (15)O2—C2—C1118.73 (15)
N1—C1—C2118.68 (14)N2—C3—C1179.35 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.98 (2)1.61 (2)2.5930 (18)176 (2)
O6—H1W···O40.84 (3)2.05 (3)2.8645 (18)162 (2)
O6—H2W···O70.91 (2)1.80 (2)2.7059 (19)177 (2)
O7—H3W···O3i0.90 (3)1.99 (3)2.8856 (18)176 (2)
O7—H4W···O5i0.87 (3)2.04 (3)2.9014 (18)171 (2)
C5—H5···O2ii0.972 (15)2.403 (16)3.372 (2)174.4 (12)
C7—H7···N2iii0.98 (2)2.793 (19)3.454 (2)125.5 (13)
C14—H14B···N11.003 (18)2.604 (18)3.574 (2)162.5 (14)
C14—H14A···Cg0.994 (18)2.770 (17)3.4503 (17)126.1 (12)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z; (iii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds