Download citation
Download citation
link to html
Cocrystallization of melamine (1,3,5-triazine-2,4,6-triamine, ma) with (2-carb­oxy­eth­yl)(phen­yl)phosphinic acid (H2L) from water affords the title compound, C3H7N6+·C9H10O4P-·H2O or (maH)(HL)·H2O, (I). The phosphinic acid H atom of each H2L mol­ecule is transferred to a melamine mol­ecule. Structural analysis reveals that there are two types of secondary building units in the crystal structure, namely cationic [(maH+)2][infinity] ribbons and anionic {[(HL)2(H2O)2]2-}[infinity] layers, the combination of which through hydro­gen-bond and electrostatic inter­actions, generates a large-scale two-dimensional layered structure. The thick layer is sandwich-like, with the central [(maH+)2][infinity] ribbons being further stabilized by [pi]-[pi] stacking inter­actions. It is also worthy of note that two conformational isomeric R65(24) hydrogen-bond ring motifs can be identified in the {[(HL)2(H2O)2]2-}[infinity] layer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112033392/sf3176sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112033392/sf3176Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112033392/sf3176Isup3.cml
Supplementary material

CCDC reference: 908137

Comment top

The understanding of intermolecular interactions in molecular crystals is very significant for the design of novel materials with tailored structures and properties (Seddon & Zaworotko, 1999; Desiraju, 2007). Specifically, the hydrogen bond is one of the most important intermolecular interactions owing to its directionality and energetic favourability (Moulton & Zaworotko, 2001; Reddy et al., 2006).

As an excellent H-atom donor and acceptor, melamine, a famous organic base with a 1,3,5-triazine skeleton, has been widely utilized to create one-, two- and three-dimensional networks in combination with various carboxylic acids such as glutaric acid, maleic acid, terephthalic acid, benzene-1,3,5-tricarboxylic acid, malonic acid, 3,5-dinitrobenzoic acid, bile acid and tris(2-carboxyethyl)isocyanuric acid (Janczak & Perpétuo, 2002; Janczak & Perpétuo, 2004; Zhang & Chen, 2005; Eppel & Bernstein, 2009; Ikonen et al., 2010; Dai et al., 2012). However, the use of phosphinic acid, a formally analogous acid of carboxylic acid [i.e. both contain one (P/C)O group and one (P/C)–OH group], as the counterpart component, has never been investigated.

Recently, we have undertaken a study of the coordination and supramolecular chemistry of (2-carboxyethyl)(phenyl)phosphinic acid (H2L), an an asymmetric binary acid containing both carboxy and phosphinic acid groups separated by a flexible –CH2CH2– spacer, with the latter being additionally bonded to a phenyl group (Sun et al., 2011; Hu et al., 2011; Dong et al., 2012). As an expansion of our work, we report here a cocrystal of melamine (ma) and H2L obtained from a water solution, namely, melaminium (2-carboxyethyl)(phenyl)phosphinate monohydrate, (maH)(HL).H2O, (I), which exhibits an interesting architecture with diversified hydrogen-bonding modes.

Compound (I) crystallizes in the triclinic space group P1. The asymmetric unit contains two (2-carboxyethyl)(phenyl)phosphinate (HL-) anions, two melaminium (2,4,6-triamino-1,3,5-triazin-1-ium, maH+) cations and two water molecules (Fig. 1). Judging from the P—O and C—O bond lengths of the HL- anion (Table 1), the phosphinic H atom of each H2L molecule is transferred to a ring N atom of each melamine molecule (N2 and N8), while the carboxy group remains protonated. The 1H-protonation of two melamine molecules in (I) is also evidenced by the fact that the internal C—N—C angle involving the protonated ring N atom is significantly greater than the remaining two C—N—C angles involving the nonprotonated ring N atoms (Table 1).

Extensive hydrogen-bond interactions are observed in (I) (Fig. 2 and Table 2). A close analysis reveals that there are two types of secondary building units (SBUs) in the crystal structure, namely cationic [(maH+)2] ribbons and anionic {[(HL)2(H2O)2]2-} layers (denoted A and B, respectively). SBU A, a one-dimensional [maH+] ribbon running along the b axis, is formed by pairs of almost linear N—H···N hydrogen bonds (Fig. 2a and Table 2) between two crystallographically independent maH+ cations. Such a ribbon has been observed frequently in cocrystals of melamine (Janczak & Perpétuo, 2002; Janczak & Perpétuo, 2004; Zhang & Chen, 2005; Eppel & Bernstein, 2009; Ikonen et al., 2010; Dai et al., 2012) and it features an R22(8) ring motif, discussed here according to the graph-set analysis nomenclature of Bernstein et al. (1995). On the other hand, SBU B, an anionic {[(HL)2(H2O)2]2-} layer, is formed by six types of O—H···O hydrogen bonds among two unique HL- anions and two unique water molecules, in almost linear geometries (Fig. 3 and Table 2). The layer features two edge-sharing but essentially similar R65(24) ring motifs, both with five phosphinate O atoms acting as hydrogen-bond acceptors and two carboxy –OH groups as well as two water molecules serving as hydrogen-bond donors. The two hydrogen-bond ring motifs are conformational isomeric and they differ slightly in their geometric parameters. For example, the O4···O7 distance between two carboxy O atoms is 6.131 (3) Å in one ring containing one P1 and two P2 atoms, whereas the distance is 7.080 (3) Å in the other ring containing one P2 and two P1 atoms.

The combination of these cationic A ribbons and a couple of charge-balanced B layers via the hydrogen-bond and electrostatic interactions generates a two-dimensional sandwich-like `BAB' layer, in which ππ packing interactions are also present between the melaminium rings of adjacent A ribbons along the a axis (Fig. 4). Furthermore, these large-scale `BAB' layers stack along the c axis through van der Waals interactions to form a three-dimensional supramolecular structure.

Related literature top

For related literature, see: Bernstein et al. (1995); Birum & Jansen (1978); Dai et al. (2012); Desiraju (2007); Dong et al. (2012); Eppel & Bernstein (2009); Hu et al. (2011); Ikonen et al. (2010); Janczak & Perpétuo (2002, 2004); Moulton & Zaworotko (2001); Reddy et al. (2006); Seddon & Zaworotko (1999); Sun et al. (2011); Zhang & Chen (2005).

Experimental top

(2-Carboxyethyl)(phenyl)phosphinic acid (H2L) was synthesized according to the published procedure of Birum & Jansen (1978). Compound (I) was prepared by mixing hot aqueous solutions of melamine and H2L in a 1:1 molar ratio. The hot mixtures were stirred at room temperature and filtered. After a few days, colorless block-shaped crystals of (I) were deposited from the filtrates in a ca 70% yield based on H2L. Analysis calculated for C24H38N12O10P2: C 40.23, H 5.35, N 23.46%; found: C 40.11, H 5.50, N 23.38%. IR data (KBr, cm-1): 3362 (s), 3147 (s), 2954 (m), 2471 (m), 1895 (m), 1665 (s), 1578 (m), 1508 (s), 1436 (m), 1343 (m), 1315 (m), 1248 (m), 1189 (m), 1155 (s), 1122 (s), 1017 (s), 907 (m), 859 (m), 777 (m), 721 (s), 698 (m), 546 (m), 512 (m).

Refinement top

All C-bound and N-bound H atoms, except for H2B and H8C, were positioned geometrically (C—H = 0.93 or 0.97 Å and N—H = 0.86 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(N). Atoms H2B and H8C and all O-bound H atoms were located in a difference map and refined with Uiso(H) values set at 1.2Ueq(N) or 1.5Ueq(O). The O—H distance of each carboxy group was restrained to be 0.93 (1) Å, while the O—H and H···H distances in each water molecule were restrained to be 0.85 (1) and 1.38 (1) Å, respectively.

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Hydrogen-bonding modes of (a) the maH+ cations, (b) the HL- anions and (c) the water molecules in (I). Hydrogen-bond interactions are represented by dashed lines. (In the electronic version of the paper, P, C, N, O and H atoms are drawn as purple, black, blue, red and green spheres, respectively.)
[Figure 3] Fig. 3. The two-dimensional hydrogen-bonded network formed among the HL- anions and water molecules of (I).
[Figure 4] Fig. 4. A view of the structure of (I) down the a axis. Hydrogen bonding and ππ interactions are represented by black and grey (gold in the electronic version of the paper) dashed lines, respectively.
2,4,6-Triamino-1,3,5-triazin-1-ium (2-carboxyethyl)(phenyl)phosphinate monohydrate top
Crystal data top
C3H7N6+·C9H10O4P·H2OZ = 4
Mr = 358.30F(000) = 752
Triclinic, P1Dx = 1.450 Mg m3
a = 7.2280 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4251 (2) ÅCell parameters from 4106 reflections
c = 18.9837 (3) Åθ = 3.3–26.9°
α = 105.388 (1)°µ = 0.21 mm1
β = 91.348 (1)°T = 296 K
γ = 92.604 (1)°Block, colourless
V = 1640.96 (4) Å30.35 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6378 independent reflections
Radiation source: fine-focus sealed tube4783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.673, Tmax = 0.746k = 1512
14192 measured reflectionsl = 1923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.056P)2 + 0.0025P]
where P = (Fo2 + 2Fc2)/3
6378 reflections(Δ/σ)max < 0.001
457 parametersΔρmax = 0.31 e Å3
8 restraintsΔρmin = 0.37 e Å3
Crystal data top
C3H7N6+·C9H10O4P·H2Oγ = 92.604 (1)°
Mr = 358.30V = 1640.96 (4) Å3
Triclinic, P1Z = 4
a = 7.2280 (1) ÅMo Kα radiation
b = 12.4251 (2) ŵ = 0.21 mm1
c = 18.9837 (3) ÅT = 296 K
α = 105.388 (1)°0.35 × 0.15 × 0.15 mm
β = 91.348 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6378 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4783 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.026
14192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0458 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.31 e Å3
6378 reflectionsΔρmin = 0.37 e Å3
457 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.53508 (8)0.92005 (4)0.22888 (3)0.03041 (15)
P20.06311 (8)0.42633 (4)0.20166 (3)0.03250 (15)
N10.7524 (2)0.90493 (12)0.53207 (8)0.0335 (4)
N20.6745 (3)0.95091 (14)0.42338 (9)0.0367 (4)
H2B0.641 (3)0.9239 (16)0.3783 (11)0.044*
N30.7930 (2)1.09446 (12)0.52305 (8)0.0326 (4)
N40.8718 (3)1.04513 (13)0.62684 (8)0.0450 (5)
H4B0.88090.99660.65150.054*
H4C0.90681.11390.64650.054*
N50.7095 (3)1.13171 (14)0.41506 (8)0.0472 (5)
H5B0.73971.20150.43340.057*
H5C0.66701.10830.37060.057*
N60.6421 (3)0.77001 (13)0.43095 (9)0.0508 (5)
H6B0.64990.72030.45480.061*
H6C0.60240.75090.38610.061*
N70.2677 (2)0.41348 (12)0.49784 (8)0.0355 (4)
N80.1550 (3)0.46825 (15)0.39698 (9)0.0398 (5)
H8C0.110 (3)0.4465 (17)0.3549 (11)0.048*
N90.2306 (2)0.60849 (13)0.50500 (8)0.0346 (4)
N100.3370 (3)0.55108 (13)0.60225 (8)0.0420 (5)
H10A0.34490.62010.62710.050*
H10B0.36810.49990.62240.050*
N110.1250 (3)0.65278 (15)0.40180 (9)0.0505 (5)
H11B0.13250.72270.42460.061*
H11C0.08690.63180.35670.061*
N120.1865 (3)0.28298 (14)0.39018 (9)0.0555 (6)
H12B0.21640.23050.40940.067*
H12C0.14500.26680.34560.067*
C10.6643 (3)0.90063 (15)0.14637 (10)0.0320 (5)
C20.7385 (3)0.79907 (16)0.11263 (10)0.0381 (5)
H2A0.73100.74100.13500.046*
C30.8229 (3)0.78321 (19)0.04640 (11)0.0480 (6)
H3A0.87360.71530.02500.058*
C40.8322 (3)0.8677 (2)0.01207 (11)0.0475 (6)
H4A0.88580.85620.03320.057*
C50.7620 (4)0.9690 (2)0.04471 (12)0.0518 (6)
H5A0.77031.02650.02180.062*
C60.6794 (3)0.98609 (17)0.11119 (11)0.0438 (6)
H6A0.63321.05530.13290.053*
C70.3001 (3)0.87998 (15)0.19500 (10)0.0360 (5)
H7A0.29810.80570.16160.043*
H7B0.22470.87560.23580.043*
C80.2117 (3)0.95782 (17)0.15582 (10)0.0417 (5)
H8A0.29670.97160.12000.050*
H8B0.10050.91990.12940.050*
C90.1613 (3)1.06804 (17)0.20392 (11)0.0366 (5)
C100.1031 (3)0.39956 (16)0.12557 (10)0.0328 (5)
C110.1959 (3)0.29639 (17)0.09751 (11)0.0428 (5)
H11A0.17760.23880.11940.051*
C120.3159 (4)0.2786 (2)0.03703 (13)0.0566 (7)
H12A0.37840.20930.01870.068*
C130.3432 (4)0.3623 (2)0.00405 (13)0.0604 (7)
H13A0.42320.34970.03670.072*
C140.2525 (4)0.4648 (2)0.03116 (13)0.0602 (7)
H14A0.27080.52170.00870.072*
C150.1340 (3)0.48383 (18)0.09171 (11)0.0467 (6)
H15A0.07410.55390.11010.056*
C160.2819 (3)0.41621 (16)0.15769 (10)0.0365 (5)
H16A0.28950.34120.12610.044*
H16B0.28790.46780.12730.044*
C170.4468 (3)0.44217 (15)0.21179 (11)0.0391 (5)
H17A0.42540.40260.24880.047*
H17B0.55590.41300.18610.047*
C180.4869 (3)0.56317 (16)0.24917 (11)0.0360 (5)
C190.6910 (3)0.87479 (16)0.46298 (10)0.0330 (5)
C200.7282 (3)1.06109 (16)0.45480 (10)0.0326 (5)
C210.8046 (3)1.01435 (15)0.55929 (10)0.0303 (5)
C220.2040 (3)0.38766 (16)0.42896 (10)0.0371 (5)
C230.1715 (3)0.57849 (16)0.43558 (10)0.0345 (5)
C240.2775 (3)0.52399 (16)0.53364 (10)0.0314 (5)
O10.5526 (2)1.04009 (10)0.27145 (7)0.0407 (4)
O20.5939 (2)0.83649 (10)0.26998 (7)0.0378 (4)
O30.1075 (2)1.08447 (11)0.26516 (7)0.0478 (4)
O40.1755 (3)1.14779 (13)0.17030 (8)0.0640 (5)
H4D0.128 (4)1.2165 (17)0.1990 (14)0.096*
O50.0475 (2)0.54070 (11)0.25065 (7)0.0502 (4)
O60.0457 (2)0.33445 (11)0.24030 (7)0.0452 (4)
O70.4748 (3)0.62976 (12)0.20648 (8)0.0533 (5)
H7C0.516 (4)0.7035 (15)0.2339 (12)0.080*
O80.5325 (3)0.59681 (12)0.31291 (8)0.0603 (5)
O1W0.6868 (3)1.25393 (13)0.28193 (10)0.0614 (5)
H1WA0.655 (4)1.1872 (15)0.2717 (15)0.092*
H1WB0.796 (3)1.265 (2)0.2677 (15)0.092*
O2W0.0427 (3)0.75858 (13)0.27911 (10)0.0578 (5)
H2WA0.031 (4)0.6908 (14)0.2638 (14)0.087*
H2WB0.151 (3)0.777 (2)0.2709 (14)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0414 (3)0.0239 (3)0.0262 (3)0.0005 (2)0.0019 (2)0.0079 (2)
P20.0406 (3)0.0292 (3)0.0273 (3)0.0048 (2)0.0011 (2)0.0066 (2)
N10.0465 (11)0.0239 (9)0.0288 (9)0.0011 (8)0.0015 (8)0.0053 (7)
N20.0522 (12)0.0322 (10)0.0237 (8)0.0011 (9)0.0046 (8)0.0050 (8)
N30.0438 (11)0.0266 (9)0.0280 (9)0.0004 (8)0.0009 (8)0.0090 (7)
N40.0781 (15)0.0262 (9)0.0293 (9)0.0059 (9)0.0114 (9)0.0077 (7)
N50.0759 (15)0.0359 (10)0.0324 (9)0.0042 (10)0.0106 (9)0.0157 (8)
N60.0848 (17)0.0260 (10)0.0366 (10)0.0040 (10)0.0123 (10)0.0023 (8)
N70.0490 (12)0.0268 (9)0.0291 (9)0.0000 (8)0.0036 (8)0.0056 (7)
N80.0536 (13)0.0411 (11)0.0229 (9)0.0018 (9)0.0049 (8)0.0067 (8)
N90.0481 (12)0.0300 (9)0.0274 (9)0.0023 (8)0.0027 (8)0.0107 (7)
N100.0679 (14)0.0283 (9)0.0300 (9)0.0015 (9)0.0120 (9)0.0095 (7)
N110.0770 (16)0.0452 (11)0.0332 (10)0.0077 (10)0.0090 (10)0.0175 (9)
N120.0882 (17)0.0350 (11)0.0362 (10)0.0002 (11)0.0068 (10)0.0013 (8)
C10.0362 (12)0.0298 (11)0.0298 (10)0.0045 (9)0.0052 (9)0.0094 (8)
C20.0490 (14)0.0316 (11)0.0340 (11)0.0006 (10)0.0021 (10)0.0096 (9)
C30.0551 (16)0.0415 (13)0.0413 (12)0.0012 (12)0.0055 (11)0.0007 (10)
C40.0502 (15)0.0594 (15)0.0306 (11)0.0093 (12)0.0058 (10)0.0095 (11)
C50.0693 (18)0.0511 (15)0.0426 (13)0.0036 (13)0.0062 (12)0.0266 (11)
C60.0562 (16)0.0325 (12)0.0449 (12)0.0013 (11)0.0056 (11)0.0140 (10)
C70.0436 (14)0.0265 (11)0.0353 (11)0.0018 (10)0.0044 (10)0.0035 (9)
C80.0452 (14)0.0429 (13)0.0339 (11)0.0061 (11)0.0056 (10)0.0048 (10)
C90.0398 (13)0.0384 (12)0.0337 (12)0.0043 (10)0.0050 (10)0.0136 (10)
C100.0345 (12)0.0308 (11)0.0319 (10)0.0045 (9)0.0040 (9)0.0059 (9)
C110.0471 (15)0.0306 (12)0.0485 (13)0.0031 (11)0.0008 (11)0.0067 (10)
C120.0490 (16)0.0427 (14)0.0642 (16)0.0030 (12)0.0133 (13)0.0080 (12)
C130.0544 (17)0.0668 (18)0.0519 (14)0.0071 (14)0.0222 (13)0.0033 (13)
C140.0703 (19)0.0596 (16)0.0552 (15)0.0046 (14)0.0190 (14)0.0247 (13)
C150.0523 (16)0.0395 (13)0.0501 (13)0.0032 (11)0.0126 (12)0.0171 (11)
C160.0465 (14)0.0305 (11)0.0302 (10)0.0023 (10)0.0010 (10)0.0052 (9)
C170.0398 (13)0.0290 (11)0.0458 (12)0.0030 (10)0.0027 (10)0.0052 (9)
C180.0415 (14)0.0301 (11)0.0374 (12)0.0015 (10)0.0037 (10)0.0113 (9)
C190.0389 (13)0.0268 (11)0.0318 (11)0.0015 (9)0.0017 (9)0.0051 (9)
C200.0399 (13)0.0291 (11)0.0294 (10)0.0021 (9)0.0035 (9)0.0086 (9)
C210.0367 (12)0.0271 (11)0.0266 (10)0.0027 (9)0.0031 (9)0.0061 (8)
C220.0447 (14)0.0318 (12)0.0326 (11)0.0026 (10)0.0032 (10)0.0053 (9)
C230.0377 (13)0.0362 (12)0.0316 (11)0.0023 (10)0.0026 (9)0.0127 (9)
C240.0373 (13)0.0294 (11)0.0281 (10)0.0005 (9)0.0006 (9)0.0092 (9)
O10.0578 (10)0.0245 (7)0.0365 (8)0.0032 (7)0.0027 (7)0.0038 (6)
O20.0523 (10)0.0312 (8)0.0335 (7)0.0015 (7)0.0024 (7)0.0151 (6)
O30.0732 (12)0.0379 (9)0.0361 (8)0.0115 (8)0.0111 (8)0.0142 (7)
O40.1109 (16)0.0458 (10)0.0450 (9)0.0226 (10)0.0208 (10)0.0243 (8)
O50.0642 (11)0.0395 (9)0.0383 (8)0.0137 (8)0.0071 (8)0.0055 (7)
O60.0571 (11)0.0462 (9)0.0405 (8)0.0094 (8)0.0057 (7)0.0243 (7)
O70.0880 (14)0.0325 (8)0.0407 (9)0.0096 (9)0.0127 (8)0.0155 (7)
O80.1060 (16)0.0327 (9)0.0400 (9)0.0055 (9)0.0281 (9)0.0097 (7)
O1W0.0844 (15)0.0326 (9)0.0639 (11)0.0072 (10)0.0180 (10)0.0076 (8)
O2W0.0593 (12)0.0346 (9)0.0751 (11)0.0035 (9)0.0190 (10)0.0086 (8)
Geometric parameters (Å, º) top
P1—O11.4940 (13)C2—C31.381 (3)
P1—O21.5238 (13)C2—H2A0.9300
P1—C71.802 (2)C3—C41.375 (3)
P1—C11.809 (2)C3—H3A0.9300
P2—O51.4884 (13)C4—C51.373 (3)
P2—O61.5142 (13)C4—H4A0.9300
P2—C161.799 (2)C5—C61.378 (3)
P2—C101.808 (2)C5—H5A0.9300
N1—C191.325 (2)C6—H6A0.9300
N1—C211.352 (2)C7—C81.521 (3)
N2—C191.363 (2)C7—H7A0.9700
N2—C201.374 (2)C7—H7B0.9700
N2—H2B0.86 (2)C8—C91.497 (3)
N3—C201.319 (2)C8—H8A0.9700
N3—C211.356 (2)C8—H8B0.9700
N4—C211.312 (2)C9—O31.203 (2)
N4—H4B0.8600C9—O41.315 (2)
N4—H4C0.8600C10—C111.386 (3)
N5—C201.309 (2)C10—C151.390 (3)
N5—H5B0.8600C11—C121.386 (3)
N5—H5C0.8600C11—H11A0.9300
N6—C191.311 (2)C12—C131.368 (3)
N6—H6B0.8600C12—H12A0.9300
N6—H6C0.8600C13—C141.370 (3)
N7—C221.327 (2)C13—H13A0.9300
N7—C241.359 (2)C14—C151.379 (3)
N8—C221.357 (2)C14—H14A0.9300
N8—C231.370 (2)C15—H15A0.9300
N8—H8C0.82 (2)C16—C171.520 (3)
N9—C231.325 (2)C16—H16A0.9700
N9—C241.356 (2)C16—H16B0.9700
N10—C241.312 (2)C17—C181.494 (3)
N10—H10A0.8600C17—H17A0.9700
N10—H10B0.8600C17—H17B0.9700
N11—C231.307 (2)C18—O81.203 (2)
N11—H11B0.8600C18—O71.307 (2)
N11—H11C0.8600O4—H4D0.967 (17)
N12—C221.312 (2)O7—H7C0.956 (16)
N12—H12B0.8600O1W—H1WA0.820 (16)
N12—H12C0.8600O1W—H1WB0.856 (17)
C1—C21.392 (3)O2W—H2WA0.824 (16)
C1—C61.398 (3)O2W—H2WB0.847 (17)
O1—P1—O2115.60 (8)C9—C8—C7115.43 (16)
O1—P1—C7110.97 (9)C9—C8—H8A108.4
O2—P1—C7107.24 (9)C7—C8—H8A108.4
O1—P1—C1109.70 (8)C9—C8—H8B108.4
O2—P1—C1109.24 (8)C7—C8—H8B108.4
C7—P1—C1103.35 (9)H8A—C8—H8B107.5
O5—P2—O6113.92 (8)O3—C9—O4122.19 (18)
O5—P2—C16110.26 (10)O3—C9—C8125.95 (18)
O6—P2—C16108.06 (9)O4—C9—C8111.80 (17)
O5—P2—C10110.79 (9)C11—C10—C15118.35 (19)
O6—P2—C10110.30 (9)C11—C10—P2122.49 (15)
C16—P2—C10102.90 (9)C15—C10—P2119.10 (15)
C19—N1—C21115.77 (16)C12—C11—C10120.3 (2)
C19—N2—C20119.52 (16)C12—C11—H11A119.9
C19—N2—H2B115.7 (14)C10—C11—H11A119.9
C20—N2—H2B124.5 (14)C13—C12—C11120.5 (2)
C20—N3—C21116.36 (16)C13—C12—H12A119.8
C21—N4—H4B120.0C11—C12—H12A119.8
C21—N4—H4C120.0C12—C13—C14119.9 (2)
H4B—N4—H4C120.0C12—C13—H13A120.0
C20—N5—H5B120.0C14—C13—H13A120.0
C20—N5—H5C120.0C13—C14—C15120.1 (2)
H5B—N5—H5C120.0C13—C14—H14A119.9
C19—N6—H6B120.0C15—C14—H14A119.9
C19—N6—H6C120.0C14—C15—C10120.8 (2)
H6B—N6—H6C120.0C14—C15—H15A119.6
C22—N7—C24115.94 (16)C10—C15—H15A119.6
C22—N8—C23120.20 (16)C17—C16—P2112.83 (13)
C22—N8—H8C116.3 (15)C17—C16—H16A109.0
C23—N8—H8C123.4 (15)P2—C16—H16A109.0
C23—N9—C24115.80 (16)C17—C16—H16B109.0
C24—N10—H10A120.0P2—C16—H16B109.0
C24—N10—H10B120.0H16A—C16—H16B107.8
H10A—N10—H10B120.0C18—C17—C16115.44 (17)
C23—N11—H11B120.0C18—C17—H17A108.4
C23—N11—H11C120.0C16—C17—H17A108.4
H11B—N11—H11C120.0C18—C17—H17B108.4
C22—N12—H12B120.0C16—C17—H17B108.4
C22—N12—H12C120.0H17A—C17—H17B107.5
H12B—N12—H12C120.0O8—C18—O7122.34 (18)
C2—C1—C6117.75 (18)O8—C18—C17123.01 (18)
C2—C1—P1122.03 (14)O7—C18—C17114.61 (17)
C6—C1—P1120.02 (15)N6—C19—N1120.42 (17)
C3—C2—C1121.03 (19)N6—C19—N2118.02 (17)
C3—C2—H2A119.5N1—C19—N2121.56 (17)
C1—C2—H2A119.5N5—C20—N3121.40 (18)
C4—C3—C2120.1 (2)N5—C20—N2117.67 (17)
C4—C3—H3A120.0N3—C20—N2120.93 (17)
C2—C3—H3A120.0N4—C21—N1116.69 (16)
C5—C4—C3119.9 (2)N4—C21—N3117.50 (16)
C5—C4—H4A120.0N1—C21—N3125.81 (16)
C3—C4—H4A120.0N12—C22—N7120.49 (19)
C4—C5—C6120.4 (2)N12—C22—N8118.42 (18)
C4—C5—H5A119.8N7—C22—N8121.09 (17)
C6—C5—H5A119.8N11—C23—N9121.28 (18)
C5—C6—C1120.78 (19)N11—C23—N8117.68 (17)
C5—C6—H6A119.6N9—C23—N8121.04 (17)
C1—C6—H6A119.6N10—C24—N9117.22 (17)
C8—C7—P1115.26 (14)N10—C24—N7116.87 (17)
C8—C7—H7A108.5N9—C24—N7125.91 (17)
P1—C7—H7A108.5C9—O4—H4D111.7 (17)
C8—C7—H7B108.5C18—O7—H7C108.3 (15)
P1—C7—H7B108.5H1WA—O1W—H1WB112 (3)
H7A—C7—H7B107.5H2WA—O2W—H2WB113 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.82 (2)1.94 (2)2.742 (2)166 (3)
N2—H2B···O20.86 (2)2.07 (2)2.914 (2)169 (2)
O2W—H2WA···O50.82 (2)1.93 (2)2.729 (2)164 (3)
N5—H5C···O10.861.992.847 (2)173
N6—H6C···O80.862.082.735 (2)133
O7—H7C···O20.96 (2)1.68 (2)2.6265 (19)172 (2)
N8—H8C···O60.82 (2)2.28 (2)3.063 (2)160 (2)
N11—H11C···O50.862.042.867 (2)162
O1W—H1WB···O6i0.86 (2)2.10 (2)2.939 (2)165 (3)
O2W—H2WB···O2ii0.85 (2)2.02 (2)2.858 (2)170 (3)
N4—H4B···O3iii0.862.092.929 (2)165
N4—H4C···O2Wiii0.862.022.824 (2)155
O4—H4D···O6iv0.97 (2)1.61 (2)2.578 (2)175 (3)
N5—H5B···N9iii0.862.343.186 (2)169
N6—H6B···N7v0.862.193.030 (2)166
N10—H10A···O1Wiii0.862.032.822 (2)154
N10—H10B···O8v0.862.072.918 (2)168
N11—H11B···N3iii0.862.263.109 (2)169
N12—H12B···N1v0.862.273.117 (2)170
N12—H12C···O3vi0.862.372.957 (2)126
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC3H7N6+·C9H10O4P·H2O
Mr358.30
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2280 (1), 12.4251 (2), 18.9837 (3)
α, β, γ (°)105.388 (1), 91.348 (1), 92.604 (1)
V3)1640.96 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.673, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14192, 6378, 4783
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.10
No. of reflections6378
No. of parameters457
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Bruker, 2008).

Selected geometric parameters (Å, º) top
P1—O11.4940 (13)C9—O31.203 (2)
P1—O21.5238 (13)C9—O41.315 (2)
P2—O51.4884 (13)C18—O81.203 (2)
P2—O61.5142 (13)C18—O71.307 (2)
C19—N1—C21115.77 (16)C22—N7—C24115.94 (16)
C19—N2—C20119.52 (16)C22—N8—C23120.20 (16)
C20—N3—C21116.36 (16)C23—N9—C24115.80 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.820 (16)1.940 (17)2.742 (2)166 (3)
N2—H2B···O20.86 (2)2.07 (2)2.914 (2)169 (2)
O2W—H2WA···O50.824 (16)1.928 (17)2.729 (2)164 (3)
N5—H5C···O10.861.992.847 (2)173.3
N6—H6C···O80.862.082.735 (2)132.7
O7—H7C···O20.956 (16)1.677 (17)2.6265 (19)172 (2)
N8—H8C···O60.82 (2)2.28 (2)3.063 (2)160 (2)
N11—H11C···O50.862.042.867 (2)161.7
O1W—H1WB···O6i0.856 (17)2.103 (17)2.939 (2)165 (3)
O2W—H2WB···O2ii0.847 (17)2.020 (17)2.858 (2)170 (3)
N4—H4B···O3iii0.862.092.929 (2)164.7
N4—H4C···O2Wiii0.862.022.824 (2)155.4
O4—H4D···O6iv0.967 (17)1.613 (17)2.578 (2)175 (3)
N5—H5B···N9iii0.862.343.186 (2)169.1
N6—H6B···N7v0.862.193.030 (2)166.2
N10—H10A···O1Wiii0.862.032.822 (2)153.5
N10—H10B···O8v0.862.072.918 (2)168.4
N11—H11B···N3iii0.862.263.109 (2)169.2
N12—H12B···N1v0.862.273.117 (2)170.4
N12—H12C···O3vi0.862.372.957 (2)125.6
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds