Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, tris­(1,10-phenanthroline-[kappa]2N,N')iron(II) bis­(2,4,5-tricarb­oxy­benzoate) monohydrate, [Fe(C12H8N2)3](C10H5O8)2·H2O, (I), and tris­(2,2'-bipyridine-[kappa]2N,N')iron(II) 2,5-dicarb­oxy­benzene-1,4-dicarboxyl­ate-benzene-1,2,4,5-tetra­carb­oxy­lic acid-water (1/1/2), [Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O, (II), were obtained during an attempt to synthesize a mixed-ligand complex of FeII with an N-con­taining ligand and benzene-1,2,4,5-tetra­carb­oxy­lic acid via a solvothermal reaction. In both mononuclear complexes, each FeII metal ion is six-coordinated in a distorted octa­hedral manner by six N atoms from three chelating 1,10-phenanthroline or 2,2'-bipyridine ligands. In compound (I), the FeII atom lies on a twofold axis in the space group C2/c, whereas (II) crystallizes in the space group P21/n. In both compounds, the uncoordinated carboxyl­ate anions and water mol­ecules are linked by typical O-H...O hydrogen bonds, generating extensive three-dimensional hydrogen-bond networks which surround the cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112034567/sf3175sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112034567/sf3175Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112034567/sf3175IIsup3.hkl
Contains datablock II

CCDC references: 778937; 825888

Comment top

In the past few years, the design and synthesis of new coordination polymers, especially those constructed by hydrogen bonding and ππ stacking interactions, have attracted great attention, owing to their interesting structural topologies and potential application as functional materials (Batten & Robson, 1998; Wang et al., 2006; Yan & Huang, 2010; Robin & Fromm, 2006). Benzene-1,2,4,5-tetracarboxylic acid has been widely used in constructing coordination polymers, because it can act not only as a hydrogen-bond acceptor but also as hydrogen-bond donor, depending upon the number of deprotonated carboxy groups (Cheng et al., 2000; Li et al., 2003; Chen et al., 2010; Cui et al., 2010). Many transition metal complexes with benzene-1,2,4,5-tetracarboxylate have been synthesized and reported, e.g. with Zn (Rochon & Massarweh, 2000), Ni (Poleti et al., 1988; Murugavel et al., 2002), Mn (Hu et al., 2001), Co (Cheng et al., 2002), Cu (Cao et al., 2002), Ag (Jaber et al., 1997) and Fe (Chu et al., 2001). As far as we know, reports of 1,2,4,5-benzenetetracarboxylate acting only as a counter-anion are few, e.g bis[tetraaqua(1,10-phenanthroline-κ2N,N')cobalt(II)] benzene-1,2,4,5-tetracarboxylate (Wang et al., 2005), tris(2,2'-bipyridine)nickel(II) 2,5-dicarboxyterephthalate benzene-1,2,4,5-tetracarboxylic acid dihydrate (Sun et al., 2010) and aquabis(2,2'-bipyridine)chloronickel(II) 2,4,5-tricarboxybenzoate trihydrate (Sun et al., 2010). The title compounds, (I) and (II), were obtained unintentionally during an attempt to synthesize mixed-ligand transition metal complexes with benzene-1,2,4,5-tetracarboxylic acid and N-containing ligands via a solvothermal reaction.

Compound (I) crystallizes in the space group C2/c in which the FeII cation lies on a twofold axis which bisects the 1,10-phenanthroline (phen) ligand containing atom N3, whereas (II) crystallizes in the space group P21/n. In the asymmetric unit of (I), the metal ion is six-coordinated in a distorted octahedral manner by six N atoms from three chelating phen ligands. The N2—Fe—N2i angle is nearly linear [175.2 (1)°; symmetry code: (i) -x, y, -z + 1/2]. The planes of the adjacent chelating N2/C2 [N1/C1–C10/N2/C11/C12, (N1/C1–C10/N2/C11/C12)i and C13–C17/N3/C18/C13i–C17i/N3i/C18i?] groups are oriented at angles of 85.0 (1) and 75.3 (1)°, respectively [To what? Definitions need clarifying] (Fig. 1). In the anion, the three appended –COOH groups make dihedral angles of 4.1 (2) (C25/O1/O2), 87.3 (2) (C26/O3/O4) and 4.3 (2) (C27/O5/O6) with the least-squares plane of the benzene ring. The corresponding angle for the –COO- group (C28/O7/O8) is 16.8 (2)°. Thus, three of the appended groups are roughly coplanar with the central benzene ring while the fourth is approximately perpendicular to it.

In the crystal structure of (I), there is clearly an offset face-to-face ππ stacking interaction (centroid-to-centroid distance = 3.91 Å) between pairs of 2,4,5-tricarboxybenzoate anions. At the same time, the benzene-1,2,4,5-tetracarboxylate anions interact via O6v—H6v···O7 and O4ii—Hii···O8 hydrogen bonds [see Table 2 for symmetry codes; additionally, (v) -x + 1/2, y + 1/2, -z + 1/2] between the –COOH and –COO- groups of neighbouring anions to form two-dimensional sheets extending parallel to the bc plane, within which an R66(38) motif (Bernstein et al., 1995) can be discerned (Fig. 3). These sheets are interconnected by water–carboxylate O—H···O hydrogen bonds (O1W—H···O3), forming a three-dimensional supermolecular structure with one-dimensional rectangular channels through hydrogen-bond interactions (Fig. 4). The rectangular channels are filled by [Fe(phen)3]2+ cations along c, the arrangement of [Fe(phen)3]2+ cations forming a well known supramolecular motif described as an `aryl–aryl embrace' in the literature (Dance & Scudder, 1998), The separation between pairs of FeII centres is 9.440 (1) Å (Fig. 4).

The asymmetric unit of (II) consists of one tris(2,2'-bipyridine)iron(II) complex dication, one 2,5-dicarboxybenzene-1,4-dicarboxylate dianion, one benzene-1,2,4,5-tetracarboxylic acid molecule and two water molecules (Fig. 2). In the complex cation, the coordination is such that six N atoms from three 2,2'-bipyridine (bipy) ligands complete a distorted sixfold environment around the FeII cation. The planes of the adjacent chelating N2/C2 [N1/C21–C30/N2, N3/C31–C40/N4 and N5/C41–C49/N6 ?] groups make dihedral angles of 82.4 (3), 83.0 (2) and 88.9 (1)° [with what? Definitions need clarifying]. The Fe—N bond lengths are in good agreement with those observed in (I). The dihedral angles between the least-squares plane of the benzene ring of the 2,5-dicarboxybenzene-1,4-dicarboxylate anion and the carboxy/carboxylate groups are 19.8 (5) (C1/O1/O2), 21.1 (4) (C2/O3/O4), 84.6 (3) (C3/O5/O6) and 7.0 (5)° (C4/O7/O8) (Fig. 2). Thus, similar to (I), three of the groups are nearly coplanar with the central benzene ring while the fourth is approximately perpendicular to it. The corresponding dihedral angles in the benzene-1,2,4,5-tetracarboxylic acid molecule are 79.4 (2) (C11/O9/O10), 5.7 (5) (C12/O11/O12), 10.4 (3) (C13/O13/O14) and 82.2 (3)° (C14/O15/O16). In this arrangement, two groups are orthogonal to the benzene plane and two are approximately coplanar with it. The two benzene rings of the benzene-1,2,4,5-tetracarboxylic acid molecule and the 2,5-dicarboxybenzene-1,4-dicarboxylate anion are oriented at 69.9 (2)° to each other.

In the hydrogen-bonding pattern of (II), neighbouring benzene-1,2,4,5-tetracarboxylic acid molecules interact through a pair of carboxy–carboxylate O—H···O hydrogen bonds (O15—H15···O14iii and O15iii—H15iii···O14; see Table 4 for details and all symmetry codes), forming a ring with the graph-set notation R22(14). These hydrogen-bonded dimers interact with water molecules via carboxy–water O—H···O (O9—H9···O1W) and water–carboxy O—H···O (O1Wiv—H1WBiv···O10) hydrogen bonds to generate a supermolecular R44(12) ring. The R22(14) and R44(12) motifs extend alternately to create a supramolecular chain (Fig. 5). Neighbouring chains are linked through O13—H13···O8ii and O1Wvi—H···O8ii [symmetry code: (vi) x + 1, y, z] hydrogen bonds, thus building up an extended two-dimensional layer network parallel to the (001) plane (Fig. 6). These two-dimensional layers are interconnected by O2W—H···O3 and O2W—H2···O5v hydrogen bonds extending along the c cell direction, generating an extensive three-dimensional hydrogen-bonded framework (Fig. 7). As in (I), the nanoporous host of (II) manifests one-dimensional approximately square channels along b, into which are embedded embracing [Fe(bipy)3]2+ cations. Pairs of FeII centres are a little closer [8.228 (2) Å] than in (I) (Fig. 7).

Related literature top

For related literature, see: Batten & Robson (1998); Bernstein et al. (1995); Cao et al. (2002); Chen et al. (2010); Cheng et al. (2000, 2002); Chu et al. (2001); Cui et al. (2010); Dance & Scudder (1998); Hu et al. (2001); Jaber et al. (1997); Li et al. (2003); Murugavel (2002); Poleti et al. (1988); Robin & Fromm (2006); Rochon & Massarweh (2000); Sun et al. (2010); Wang et al. (2005, 2006); Yan & Huang (2010).

Experimental top

1,10-Phenanthroline (0.2 mmol), benzene-1,2,4,5-tetracarboxylic acid (0.1 mmol), FeSO4.7H2O (0.1 mmol) and water (2 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 388 K for 72 h, whereupon red block-shaped crystals of (I) suitable for X-ray diffraction were obtained. Analysis, found: C 58.66, H 3.43, N 9.01%; calculated for C56H36FeN6O17: C 59.96, H 3.21, N 9.50%. Red block-shaped crystals of (II) were obtained by a similar procedure, using 2,2'-bipyridine instead of 1,10-phenanthroline. Analysis, found: C 55.14, H 3.91, N 7.48%; calculated for C50H38FeN6O18: C 56.25, H 3.56, N 7.87%.

Refinement top

H atoms bonded to C and O atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The H atoms of the water molecules were either located in difference Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bond network. Initially, their positions were refined with tight restraints on the O—H and H···H distances [0.82 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, y, -z + 1/2.]
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines represent O—H···O interactions.
[Figure 3] Fig. 3. A two-dimensional view of the hydrogen bonding in (I), showing the R66(38) ring motifs. Dashed lines represent O—H···O interactions. H atoms not involved in hydrogen bonds have been omitted for clarity, as have the complex cations and water molecules. [Symmetry codes: (ii) -x + 1/2, -y + 1/2, -z; (v) -x + 1/2, y + 1/2, -z + 1/2.]
[Figure 4] Fig. 4. Top: the packing of (I), viewed along the c axis. Hydrogen bonds are represented by dotted lines and all C-bound H atoms in the cations have been omitted for clarity. Bottom: the infinite chain of [Fe(phen)3]2+ cations with an `aryl embrace', viewed down the a axis.
[Figure 5] Fig. 5. A one-dimensional view of the hydrogen bonding in (II), showing the R22(14) and R44(12) ring motifs. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x + 1, -y + 3, -z; (iv) -x, -y + 2, -z.]
[Figure 6] Fig. 6. The O—H···O hydrogen-bonded two-dimensional layer of (II), parallel to the (001) plane. [Symmetry codes: (ii) -x + 1, -y + 2, -z; (vi) x + 1, y, z.]
[Figure 7] Fig. 7. Top: the packing of (II), viewed down the c axis. Hydrogen bonds are shown as dashed lines and all C-bound H atoms in the cations have been omitted for clarity. Bottom: the infinite chain of [Fe(bipy)3]2+ cations with an `aryl embrace', viewed down the c axis.
(I) Tris(1,10-phenanthroline-κ2N,N')iron(II) bis(2,4,5-tricarboxybenzoate) monohydrate top
Crystal data top
[Fe(C12H8N2)3](C10H5O8)2·H2OF(000) = 2304
Mr = 1120.76Dx = 1.563 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 9791 reflections
a = 24.151 (5) Åθ = 3.2–27.5°
b = 14.088 (3) ŵ = 0.41 mm1
c = 15.651 (3) ÅT = 223 K
β = 116.54 (3)°Block, red
V = 4764 (2) Å30.46 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4190 independent reflections
Radiation source: fine-focus sealed tube3613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 2128
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1516
Tmin = 0.836, Tmax = 0.923l = 1818
11666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0436P)2 + 3.7531P]
where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max < 0.001
366 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
[Fe(C12H8N2)3](C10H5O8)2·H2OV = 4764 (2) Å3
Mr = 1120.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.151 (5) ŵ = 0.41 mm1
b = 14.088 (3) ÅT = 223 K
c = 15.651 (3) Å0.46 × 0.22 × 0.20 mm
β = 116.54 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4190 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3613 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.923Rint = 0.041
11666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.31 e Å3
4190 reflectionsΔρmin = 0.37 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.18738 (3)0.25000.02212 (16)
N10.02446 (10)0.28252 (14)0.31913 (15)0.0237 (5)
N20.07970 (10)0.19321 (14)0.36566 (15)0.0244 (5)
N30.02734 (10)0.08130 (14)0.19453 (15)0.0235 (5)
C10.07746 (13)0.32961 (18)0.2930 (2)0.0294 (6)
H1A0.10790.32390.23030.035*
C20.08935 (14)0.3872 (2)0.3556 (2)0.0344 (7)
H2A0.12710.41850.33450.041*
C30.04528 (13)0.39742 (19)0.4482 (2)0.0313 (7)
H3A0.05310.43510.49050.038*
C40.01164 (13)0.35064 (18)0.47892 (19)0.0271 (6)
C50.06205 (14)0.35795 (19)0.5730 (2)0.0321 (7)
H5A0.05690.39270.61940.039*
C60.11662 (14)0.31552 (19)0.5952 (2)0.0318 (7)
H6A0.14890.32320.65610.038*
C70.12632 (13)0.25864 (19)0.52691 (19)0.0278 (6)
C80.18198 (13)0.21333 (19)0.5447 (2)0.0334 (7)
H8A0.21600.21820.60420.040*
C90.18567 (13)0.1619 (2)0.4734 (2)0.0347 (7)
H9A0.22280.13320.48360.042*
C100.13391 (12)0.15226 (19)0.3854 (2)0.0297 (6)
H10A0.13730.11580.33840.036*
C110.07670 (12)0.24697 (17)0.43607 (18)0.0238 (6)
C120.01991 (12)0.29464 (17)0.41157 (18)0.0229 (6)
C130.01415 (15)0.17877 (19)0.2214 (2)0.0393 (8)
H13A0.02350.23630.20170.047*
C140.02996 (13)0.09186 (19)0.1904 (2)0.0304 (6)
C150.05964 (15)0.0862 (2)0.1315 (2)0.0386 (8)
H15A0.07060.14130.11000.046*
C160.07249 (15)0.0006 (2)0.1057 (2)0.0389 (7)
H16A0.09230.00480.06680.047*
C170.05571 (13)0.08285 (19)0.13819 (19)0.0291 (6)
H17A0.06470.14140.11980.035*
C180.01500 (12)0.00580 (18)0.22019 (18)0.0245 (6)
C190.34024 (12)0.26772 (18)0.07340 (19)0.0252 (6)
C200.35245 (13)0.17643 (18)0.0525 (2)0.0299 (6)
H20A0.37500.16960.01780.036*
C210.33296 (12)0.09545 (18)0.08056 (19)0.0255 (6)
C220.29900 (12)0.10456 (18)0.13234 (18)0.0233 (6)
C230.28616 (12)0.19515 (17)0.15374 (18)0.0240 (6)
H23A0.26310.20110.18770.029*
C240.30636 (12)0.27782 (17)0.12667 (18)0.0225 (6)
C250.36870 (15)0.3430 (2)0.0349 (2)0.0359 (7)
C260.35310 (14)0.00205 (19)0.0565 (2)0.0311 (7)
C270.27979 (12)0.01653 (19)0.16563 (18)0.0268 (6)
C280.28801 (13)0.36947 (18)0.1580 (2)0.0284 (6)
O10.35933 (11)0.43281 (13)0.04296 (17)0.0497 (6)
H10.33720.43890.06980.075*
O1W0.50000.0805 (3)0.25000.0922 (16)
H1W0.526 (2)0.043 (3)0.289 (3)0.13 (2)*
O20.39998 (13)0.31844 (15)0.0036 (2)0.0620 (8)
O30.40358 (9)0.03143 (14)0.10578 (16)0.0406 (5)
O40.31610 (10)0.03704 (13)0.02634 (14)0.0377 (5)
H40.28570.00310.05440.056*
O50.29198 (9)0.06166 (12)0.14631 (14)0.0331 (5)
O60.25118 (11)0.03190 (13)0.21869 (15)0.0446 (6)
H60.24210.01900.23440.067*
O70.27058 (11)0.36543 (14)0.22097 (16)0.0476 (6)
O80.28975 (9)0.44736 (12)0.11732 (14)0.0348 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0262 (3)0.0201 (3)0.0229 (3)0.0000.0135 (2)0.000
N10.0270 (12)0.0177 (11)0.0274 (12)0.0018 (9)0.0131 (10)0.0018 (9)
N20.0303 (13)0.0189 (11)0.0276 (12)0.0004 (10)0.0162 (10)0.0018 (10)
N30.0277 (12)0.0209 (11)0.0243 (12)0.0026 (9)0.0137 (10)0.0017 (9)
C10.0303 (15)0.0268 (14)0.0306 (15)0.0044 (12)0.0133 (13)0.0033 (13)
C20.0360 (17)0.0287 (15)0.0444 (18)0.0047 (13)0.0231 (15)0.0009 (14)
C30.0432 (18)0.0219 (14)0.0410 (17)0.0017 (13)0.0298 (15)0.0031 (13)
C40.0364 (16)0.0204 (13)0.0311 (15)0.0064 (12)0.0210 (13)0.0013 (12)
C50.0476 (19)0.0256 (15)0.0308 (16)0.0077 (14)0.0244 (14)0.0031 (13)
C60.0418 (18)0.0295 (15)0.0213 (14)0.0080 (14)0.0115 (13)0.0002 (12)
C70.0333 (16)0.0244 (14)0.0270 (14)0.0056 (12)0.0145 (13)0.0045 (12)
C80.0301 (16)0.0328 (16)0.0289 (16)0.0025 (13)0.0056 (13)0.0047 (13)
C90.0285 (16)0.0339 (16)0.0390 (17)0.0036 (13)0.0127 (14)0.0042 (14)
C100.0306 (16)0.0271 (14)0.0329 (16)0.0044 (13)0.0155 (13)0.0010 (13)
C110.0310 (15)0.0192 (13)0.0240 (14)0.0039 (12)0.0149 (12)0.0030 (11)
C120.0289 (15)0.0181 (13)0.0238 (14)0.0026 (11)0.0136 (12)0.0015 (11)
C130.058 (2)0.0214 (14)0.0504 (19)0.0031 (14)0.0347 (17)0.0002 (14)
C140.0366 (16)0.0261 (14)0.0350 (16)0.0002 (13)0.0220 (14)0.0029 (13)
C150.054 (2)0.0277 (15)0.0480 (19)0.0031 (14)0.0348 (17)0.0041 (14)
C160.053 (2)0.0356 (17)0.0446 (18)0.0041 (15)0.0371 (17)0.0001 (15)
C170.0373 (16)0.0266 (14)0.0328 (15)0.0029 (12)0.0242 (14)0.0001 (12)
C180.0281 (15)0.0239 (14)0.0250 (14)0.0009 (11)0.0150 (12)0.0004 (12)
C190.0289 (15)0.0213 (13)0.0296 (15)0.0002 (11)0.0169 (13)0.0016 (12)
C200.0366 (16)0.0284 (15)0.0349 (16)0.0005 (13)0.0252 (14)0.0010 (13)
C210.0294 (15)0.0230 (14)0.0271 (14)0.0002 (12)0.0154 (13)0.0012 (12)
C220.0263 (14)0.0212 (13)0.0241 (14)0.0002 (11)0.0129 (12)0.0012 (11)
C230.0266 (14)0.0270 (14)0.0207 (13)0.0018 (12)0.0126 (12)0.0011 (11)
C240.0252 (14)0.0219 (13)0.0204 (13)0.0003 (11)0.0104 (12)0.0006 (11)
C250.0498 (19)0.0249 (15)0.0443 (18)0.0016 (14)0.0311 (16)0.0030 (14)
C260.0390 (18)0.0241 (14)0.0406 (17)0.0020 (14)0.0270 (15)0.0048 (14)
C270.0263 (15)0.0295 (15)0.0239 (14)0.0019 (12)0.0106 (12)0.0017 (12)
C280.0315 (16)0.0246 (15)0.0308 (15)0.0002 (12)0.0156 (13)0.0034 (12)
O10.0760 (17)0.0237 (11)0.0799 (17)0.0007 (11)0.0621 (15)0.0039 (11)
O1W0.085 (3)0.047 (2)0.094 (4)0.0000.005 (3)0.000
O20.100 (2)0.0355 (12)0.098 (2)0.0021 (13)0.0866 (19)0.0022 (13)
O30.0365 (13)0.0333 (11)0.0522 (13)0.0092 (10)0.0200 (11)0.0001 (10)
O40.0485 (13)0.0277 (11)0.0397 (12)0.0090 (10)0.0223 (11)0.0047 (10)
O50.0433 (12)0.0218 (10)0.0401 (12)0.0003 (9)0.0238 (10)0.0008 (9)
O60.0737 (16)0.0272 (11)0.0603 (14)0.0010 (11)0.0544 (13)0.0041 (10)
O70.0844 (17)0.0289 (11)0.0587 (14)0.0056 (11)0.0580 (14)0.0014 (10)
O80.0481 (13)0.0198 (10)0.0459 (12)0.0036 (9)0.0295 (11)0.0024 (9)
Geometric parameters (Å, º) top
Fe1—N11.972 (2)C13—H13A0.9300
Fe1—N21.968 (2)C14—C151.400 (4)
Fe1—N31.984 (2)C14—C181.403 (4)
Fe1—N2i1.968 (2)C15—C161.365 (4)
Fe1—N1i1.972 (2)C15—H15A0.9300
Fe1—N3i1.984 (2)C16—C171.396 (4)
N1—C11.333 (3)C16—H16A0.9300
N1—C121.373 (3)C17—H17A0.9300
N2—C101.335 (3)C18—C18i1.414 (5)
N2—C111.366 (3)C19—C201.391 (4)
N3—C171.337 (3)C19—C241.412 (4)
N3—C181.365 (3)C19—C251.526 (4)
C1—C21.398 (4)C20—C211.379 (4)
C1—H1A0.9300C20—H20A0.9300
C2—C31.370 (4)C21—C221.393 (4)
C2—H2A0.9300C21—C261.508 (4)
C3—C41.402 (4)C22—C231.389 (3)
C3—H3A0.9300C22—C271.497 (4)
C4—C121.401 (4)C23—C241.399 (3)
C4—C51.435 (4)C23—H23A0.9300
C6—C51.344 (4)C24—C281.516 (3)
C6—C71.436 (4)C25—O21.209 (3)
C6—H6A0.9300C25—O11.301 (3)
C5—H5A0.9300C26—O31.210 (3)
C7—C81.399 (4)C26—O41.322 (3)
C7—C111.401 (4)C27—O51.213 (3)
C8—C91.367 (4)C27—O61.314 (3)
C8—H8A0.9300C28—O71.234 (3)
C9—C101.392 (4)C28—O81.279 (3)
C9—H9A0.9300O1—H10.8200
C10—H10A0.9300O1W—H1W0.84 (3)
C11—C121.418 (4)O4—H40.8200
C13—C13i1.348 (6)O6—H60.8200
C13—C141.430 (4)
N2—Fe1—N2i175.22 (12)C7—C11—C12120.3 (2)
N2—Fe1—N1i93.83 (9)N1—C12—C4123.8 (2)
N2—Fe1—N182.91 (9)N1—C12—C11115.6 (2)
N2—Fe1—N3i90.51 (9)C4—C12—C11120.6 (2)
N3i—Fe1—N382.24 (12)C13i—C13—C14121.12 (16)
N2i—Fe1—N1i82.91 (9)C13i—C13—H13A119.4
N2i—Fe1—N193.83 (9)C14—C13—H13A119.4
N1i—Fe1—N194.34 (12)C15—C14—C18116.9 (2)
N2i—Fe1—N3i93.09 (9)C15—C14—C13124.4 (3)
N1i—Fe1—N3i172.85 (8)C18—C14—C13118.7 (2)
N1—Fe1—N3i91.84 (8)C16—C15—C14119.8 (3)
N2—Fe1—N393.09 (9)C16—C15—H15A120.1
N2i—Fe1—N390.51 (9)C14—C15—H15A120.1
N1i—Fe1—N391.84 (8)C15—C16—C17119.6 (3)
N1—Fe1—N3172.85 (8)C15—C16—H16A120.2
C1—N1—C12116.8 (2)C17—C16—H16A120.2
C1—N1—Fe1130.68 (19)N3—C17—C16122.9 (2)
C12—N1—Fe1112.26 (17)N3—C17—H17A118.5
C10—N2—C11117.0 (2)C16—C17—H17A118.5
C10—N2—Fe1130.53 (19)N3—C18—C14123.8 (2)
C11—N2—Fe1112.50 (17)N3—C18—C18i115.97 (14)
C17—N3—C18116.9 (2)C14—C18—C18i120.21 (15)
C17—N3—Fe1130.18 (18)C20—C19—C24118.1 (2)
C18—N3—Fe1112.91 (17)C20—C19—C25111.7 (2)
N1—C1—C2122.9 (3)C24—C19—C25130.1 (2)
N1—C1—H1A118.5C21—C20—C19123.5 (2)
C2—C1—H1A118.5C21—C20—H20A118.2
C3—C2—C1119.8 (3)C19—C20—H20A118.2
C3—C2—H2A120.1C20—C21—C22118.9 (2)
C1—C2—H2A120.1C20—C21—C26116.6 (2)
C2—C3—C4119.5 (3)C22—C21—C26124.4 (2)
C2—C3—H3A120.2C23—C22—C21118.5 (2)
C4—C3—H3A120.2C23—C22—C27122.7 (2)
C12—C4—C3117.1 (2)C21—C22—C27118.7 (2)
C12—C4—C5118.1 (3)C22—C23—C24123.1 (2)
C3—C4—C5124.8 (3)C22—C23—H23A118.4
C5—C6—C7121.6 (3)C24—C23—H23A118.4
C5—C6—H6A119.2C23—C24—C19117.8 (2)
C7—C6—H6A119.2C23—C24—C28114.8 (2)
C6—C5—C4121.2 (3)C19—C24—C28127.4 (2)
C6—C5—H5A119.4O2—C25—O1120.1 (3)
C4—C5—H5A119.4O2—C25—C19119.3 (3)
C8—C7—C11117.3 (3)O1—C25—C19120.6 (3)
C8—C7—C6124.6 (3)O3—C26—O4120.7 (3)
C11—C7—C6118.1 (3)O3—C26—C21121.8 (3)
C9—C8—C7119.1 (3)O4—C26—C21117.2 (2)
C9—C8—H8A120.4O5—C27—O6124.2 (2)
C7—C8—H8A120.4O5—C27—C22121.2 (2)
C8—C9—C10120.1 (3)O6—C27—C22114.6 (2)
C8—C9—H9A119.9O7—C28—O8122.4 (2)
C10—C9—H9A119.9O7—C28—C24118.2 (2)
N2—C10—C9122.8 (3)O8—C28—C24119.3 (2)
N2—C10—H10A118.6C25—O1—H1109.5
C9—C10—H10A118.6C26—O4—H4109.5
N2—C11—C7123.7 (2)C27—O6—H6109.5
N2—C11—C12116.0 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O8ii0.821.822.628 (3)170
O6—H6···O7iii0.821.852.667 (3)174
O1—H1···O80.821.622.443 (3)176
O1W—H1W···O3iv0.84 (3)2.05 (3)2.882 (3)171 (5)
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z+1/2.
(II) tris(2,2'-bipyridine-κ2N,N')iron(II) 2,5-dicarboxybenzene-1,4-dicarboxylate–benzene-1,2,4,5-tetracarboxylic acid–water (1/1/2) top
Crystal data top
[Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2OF(000) = 2200
Mr = 1066.71Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19949 reflections
a = 13.767 (3) Åθ = 3.0–27.5°
b = 13.911 (3) ŵ = 0.42 mm1
c = 24.202 (5) ÅT = 223 K
β = 102.68 (3)°Block, red
V = 4521.7 (16) Å30.40 × 0.35 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
7925 independent reflections
Radiation source: fine-focus sealed tube6272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1416
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1616
Tmin = 0.849, Tmax = 0.959l = 2628
22163 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0284P)2 + 7.0361P]
where P = (Fo2 + 2Fc2)/3
7925 reflections(Δ/σ)max < 0.001
676 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2OV = 4521.7 (16) Å3
Mr = 1066.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.767 (3) ŵ = 0.42 mm1
b = 13.911 (3) ÅT = 223 K
c = 24.202 (5) Å0.40 × 0.35 × 0.10 mm
β = 102.68 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
7925 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
6272 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.959Rint = 0.074
22163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.23Δρmax = 0.43 e Å3
7925 reflectionsΔρmin = 0.33 e Å3
676 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.90033 (5)0.67650 (5)0.23293 (3)0.0288 (2)
N11.0281 (3)0.6191 (3)0.27004 (18)0.0328 (10)
N20.8860 (3)0.5532 (3)0.19218 (18)0.0332 (10)
N30.8288 (3)0.6213 (3)0.28746 (17)0.0302 (10)
N40.7653 (3)0.7216 (3)0.19734 (17)0.0300 (10)
N50.9282 (3)0.7985 (3)0.27426 (18)0.0317 (10)
N60.9633 (3)0.7439 (3)0.17877 (17)0.0289 (10)
O10.1022 (4)0.4288 (3)0.0236 (2)0.0778 (16)
O20.0607 (4)0.3355 (3)0.03997 (19)0.0691 (14)
H20.06850.33300.07490.104*
O30.1306 (4)0.3003 (3)0.13913 (19)0.0637 (13)
O40.2504 (4)0.3572 (3)0.20825 (19)0.0571 (12)
O50.3743 (3)0.7088 (3)0.21193 (17)0.0509 (11)
O60.2149 (3)0.7459 (3)0.20569 (15)0.0418 (10)
H60.23890.78620.23020.063*
O70.2831 (3)0.7999 (2)0.09331 (15)0.0417 (10)
O80.2010 (2)0.7494 (2)0.00846 (15)0.0340 (8)
O90.1418 (3)1.1331 (3)0.04668 (16)0.0450 (10)
H90.08541.10880.03960.068*
O100.1505 (3)1.0687 (3)0.03662 (16)0.0408 (9)
O110.2891 (3)0.9612 (2)0.04911 (16)0.0395 (9)
H110.29350.90480.06060.059*
O120.4554 (3)0.9543 (3)0.07071 (18)0.0460 (10)
O130.6496 (3)1.2180 (3)0.03636 (17)0.0463 (10)
H130.70321.24330.03400.069*
O140.5871 (3)1.3554 (3)0.00258 (19)0.0535 (12)
O150.4067 (3)1.4551 (3)0.03123 (17)0.0500 (11)
H150.40691.51170.02040.075*
O160.3747 (3)1.4231 (3)0.06068 (18)0.0591 (12)
C10.1054 (5)0.4115 (4)0.0261 (3)0.0492 (16)
C20.1912 (5)0.3649 (4)0.1610 (3)0.0454 (15)
C30.2868 (4)0.7002 (4)0.1894 (2)0.0334 (13)
C40.2343 (4)0.7381 (4)0.0607 (2)0.0338 (13)
C50.1598 (4)0.4775 (4)0.0719 (2)0.0340 (13)
C60.1945 (4)0.4591 (3)0.1300 (2)0.0335 (13)
C70.2367 (4)0.5343 (3)0.1652 (2)0.0334 (13)
H7A0.25910.52230.20410.040*
C80.2469 (4)0.6261 (3)0.1450 (2)0.0276 (11)
C90.2197 (4)0.6428 (3)0.0870 (2)0.0285 (12)
C100.1751 (4)0.5683 (4)0.0523 (2)0.0349 (13)
H10A0.15420.58040.01320.042*
C110.1877 (4)1.1121 (4)0.0056 (2)0.0317 (12)
C120.3780 (4)0.9963 (4)0.0527 (2)0.0303 (12)
C130.5767 (4)1.2775 (4)0.0173 (2)0.0333 (12)
C140.3908 (4)1.3976 (4)0.0129 (3)0.0375 (13)
C150.2904 (4)1.1536 (3)0.0153 (2)0.0270 (11)
C160.3766 (4)1.0996 (3)0.0325 (2)0.0279 (11)
C170.4685 (4)1.1420 (3)0.0340 (2)0.0285 (11)
H17A0.52671.10500.04490.034*
C180.4761 (4)1.2383 (4)0.0197 (2)0.0305 (12)
C190.3898 (4)1.2933 (3)0.0046 (2)0.0305 (12)
C200.2983 (4)1.2505 (4)0.0022 (2)0.0339 (12)
H20A0.24011.28770.00840.041*
C211.1038 (4)0.6620 (5)0.3061 (2)0.0468 (15)
H21A1.09840.72770.31410.056*
C221.1904 (4)0.6128 (5)0.3320 (3)0.0553 (18)
H22A1.24360.64510.35570.066*
C231.1956 (5)0.5164 (5)0.3220 (3)0.0564 (18)
H23A1.25160.48120.34050.068*
C241.1197 (5)0.4707 (5)0.2852 (3)0.0526 (17)
H24A1.12270.40440.27840.063*
C251.0390 (4)0.5246 (4)0.2584 (2)0.0391 (14)
C260.9578 (4)0.4868 (4)0.2131 (3)0.0436 (14)
C270.9556 (5)0.3933 (4)0.1918 (3)0.0579 (18)
H27A1.00340.34760.20850.069*
C280.8810 (5)0.3702 (5)0.1456 (3)0.063 (2)
H28A0.87910.30880.12930.076*
C290.8106 (5)0.4362 (4)0.1237 (3)0.0581 (18)
H29A0.75970.42100.09220.070*
C300.8148 (4)0.5263 (4)0.1485 (3)0.0463 (15)
H30A0.76450.57080.13360.056*
C310.8664 (4)0.5707 (4)0.3345 (2)0.0388 (14)
H31A0.93510.55750.34310.047*
C320.8099 (5)0.5372 (4)0.3706 (2)0.0456 (15)
H32A0.83950.50270.40340.055*
C330.7097 (5)0.5550 (4)0.3581 (3)0.0481 (16)
H33A0.66960.53220.38210.058*
C340.6679 (4)0.6059 (4)0.3103 (3)0.0485 (16)
H34A0.59910.61860.30100.058*
C350.7297 (4)0.6384 (4)0.2759 (2)0.0341 (13)
C360.6932 (4)0.6951 (4)0.2245 (2)0.0336 (13)
C370.5943 (4)0.7203 (4)0.2045 (3)0.0455 (15)
H37A0.54580.70110.22420.055*
C380.5677 (4)0.7732 (4)0.1559 (3)0.0450 (15)
H38A0.50080.78990.14170.054*
C390.6393 (4)0.8016 (4)0.1284 (2)0.0421 (14)
H39A0.62240.83860.09510.050*
C400.7375 (4)0.7750 (4)0.1500 (2)0.0367 (13)
H40A0.78650.79510.13090.044*
C410.9079 (4)0.8224 (4)0.3237 (2)0.0444 (14)
H41A0.87250.77830.34120.053*
C420.9363 (5)0.9093 (4)0.3507 (3)0.0498 (16)
H42A0.92030.92300.38570.060*
C430.9875 (5)0.9742 (4)0.3263 (3)0.0514 (16)
H43A1.00921.03250.34470.062*
C441.0071 (4)0.9529 (4)0.2738 (2)0.0440 (15)
H44A1.04070.99750.25550.053*
C450.9767 (4)0.8652 (4)0.2485 (2)0.0362 (13)
C460.9941 (3)0.8351 (4)0.1929 (2)0.0305 (12)
C471.0360 (4)0.8936 (4)0.1586 (2)0.0364 (13)
H47A1.05700.95610.17020.044*
C481.0464 (4)0.8588 (4)0.1072 (2)0.0407 (14)
H48A1.07460.89750.08290.049*
C491.0156 (4)0.7676 (4)0.0915 (2)0.0351 (13)
H49A1.02160.74330.05620.042*
C500.9753 (4)0.7110 (4)0.1280 (2)0.0375 (13)
H50A0.95570.64780.11710.045*
O1W0.0520 (3)1.1110 (3)0.03642 (17)0.0473 (10)
H1WA0.09601.15310.01820.071*
H1WB0.08071.06020.03310.071*
O2W0.0498 (4)0.1267 (3)0.1672 (2)0.0772 (15)
H2WA0.07180.13260.20130.116*
H2WB0.06100.17530.15040.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0280 (4)0.0268 (4)0.0302 (4)0.0008 (3)0.0036 (3)0.0003 (3)
N10.030 (2)0.035 (3)0.032 (3)0.000 (2)0.006 (2)0.004 (2)
N20.035 (2)0.029 (2)0.035 (3)0.001 (2)0.006 (2)0.000 (2)
N30.033 (2)0.026 (2)0.030 (2)0.0028 (19)0.004 (2)0.0004 (19)
N40.028 (2)0.028 (2)0.033 (3)0.0035 (19)0.006 (2)0.000 (2)
N50.026 (2)0.031 (2)0.038 (3)0.0017 (19)0.006 (2)0.001 (2)
N60.026 (2)0.030 (2)0.030 (2)0.0001 (19)0.005 (2)0.0012 (19)
O10.130 (5)0.054 (3)0.046 (3)0.023 (3)0.012 (3)0.010 (2)
O20.095 (4)0.041 (3)0.063 (3)0.026 (3)0.001 (3)0.004 (2)
O30.093 (4)0.030 (2)0.069 (3)0.017 (2)0.020 (3)0.008 (2)
O40.088 (3)0.034 (2)0.051 (3)0.002 (2)0.019 (3)0.018 (2)
O50.033 (2)0.060 (3)0.055 (3)0.005 (2)0.001 (2)0.014 (2)
O60.039 (2)0.043 (2)0.042 (2)0.0023 (19)0.0065 (19)0.0144 (19)
O70.058 (3)0.027 (2)0.039 (2)0.0161 (18)0.008 (2)0.0037 (17)
O80.035 (2)0.034 (2)0.033 (2)0.0023 (17)0.0047 (17)0.0109 (17)
O90.034 (2)0.056 (3)0.045 (2)0.0101 (19)0.0087 (19)0.008 (2)
O100.042 (2)0.041 (2)0.038 (2)0.0055 (19)0.0039 (19)0.0068 (19)
O110.036 (2)0.0256 (19)0.056 (3)0.0045 (17)0.0078 (19)0.0089 (18)
O120.034 (2)0.031 (2)0.071 (3)0.0041 (18)0.008 (2)0.014 (2)
O130.030 (2)0.047 (2)0.061 (3)0.0036 (18)0.008 (2)0.023 (2)
O140.047 (2)0.028 (2)0.092 (3)0.0021 (19)0.028 (2)0.014 (2)
O150.073 (3)0.025 (2)0.054 (3)0.002 (2)0.018 (2)0.0042 (19)
O160.086 (3)0.040 (2)0.043 (3)0.012 (2)0.004 (2)0.013 (2)
C10.065 (4)0.030 (3)0.050 (4)0.006 (3)0.008 (3)0.005 (3)
C20.062 (4)0.026 (3)0.053 (4)0.007 (3)0.023 (4)0.005 (3)
C30.036 (3)0.025 (3)0.039 (3)0.002 (2)0.009 (3)0.003 (2)
C40.033 (3)0.026 (3)0.044 (4)0.002 (2)0.014 (3)0.004 (3)
C50.040 (3)0.027 (3)0.034 (3)0.004 (2)0.005 (3)0.001 (2)
C60.036 (3)0.022 (3)0.046 (4)0.001 (2)0.016 (3)0.002 (2)
C70.044 (3)0.026 (3)0.030 (3)0.005 (2)0.007 (3)0.008 (2)
C80.027 (3)0.023 (3)0.035 (3)0.002 (2)0.011 (2)0.001 (2)
C90.029 (3)0.026 (3)0.031 (3)0.001 (2)0.010 (2)0.007 (2)
C100.043 (3)0.030 (3)0.030 (3)0.004 (3)0.005 (3)0.003 (2)
C110.030 (3)0.027 (3)0.036 (3)0.003 (2)0.003 (3)0.008 (3)
C120.036 (3)0.026 (3)0.031 (3)0.005 (2)0.012 (3)0.001 (2)
C130.037 (3)0.031 (3)0.031 (3)0.002 (3)0.006 (3)0.001 (2)
C140.042 (3)0.032 (3)0.037 (4)0.004 (3)0.005 (3)0.002 (3)
C150.031 (3)0.026 (3)0.026 (3)0.002 (2)0.008 (2)0.003 (2)
C160.034 (3)0.023 (3)0.028 (3)0.001 (2)0.009 (2)0.004 (2)
C170.030 (3)0.026 (3)0.030 (3)0.000 (2)0.008 (2)0.004 (2)
C180.033 (3)0.029 (3)0.029 (3)0.003 (2)0.008 (2)0.003 (2)
C190.037 (3)0.021 (3)0.032 (3)0.001 (2)0.005 (2)0.001 (2)
C200.033 (3)0.026 (3)0.042 (3)0.003 (2)0.005 (3)0.004 (2)
C210.044 (3)0.055 (4)0.040 (4)0.002 (3)0.005 (3)0.015 (3)
C220.037 (3)0.091 (6)0.036 (4)0.001 (4)0.006 (3)0.019 (4)
C230.042 (4)0.074 (5)0.056 (4)0.021 (4)0.018 (3)0.020 (4)
C240.048 (4)0.058 (4)0.056 (4)0.015 (3)0.019 (3)0.015 (3)
C250.040 (3)0.040 (3)0.042 (4)0.010 (3)0.019 (3)0.009 (3)
C260.051 (4)0.035 (3)0.048 (4)0.001 (3)0.017 (3)0.003 (3)
C270.069 (5)0.041 (4)0.067 (5)0.008 (3)0.022 (4)0.002 (3)
C280.070 (5)0.040 (4)0.084 (6)0.003 (4)0.022 (4)0.016 (4)
C290.063 (4)0.046 (4)0.063 (5)0.004 (3)0.009 (4)0.019 (3)
C300.045 (4)0.036 (3)0.058 (4)0.003 (3)0.011 (3)0.004 (3)
C310.045 (3)0.031 (3)0.039 (3)0.003 (3)0.005 (3)0.002 (3)
C320.063 (4)0.038 (3)0.034 (3)0.005 (3)0.006 (3)0.003 (3)
C330.054 (4)0.052 (4)0.042 (4)0.014 (3)0.018 (3)0.004 (3)
C340.041 (3)0.059 (4)0.049 (4)0.007 (3)0.016 (3)0.000 (3)
C350.028 (3)0.038 (3)0.035 (3)0.003 (2)0.004 (2)0.006 (3)
C360.022 (3)0.033 (3)0.044 (3)0.001 (2)0.004 (2)0.001 (3)
C370.034 (3)0.046 (4)0.058 (4)0.003 (3)0.011 (3)0.000 (3)
C380.031 (3)0.045 (4)0.054 (4)0.004 (3)0.001 (3)0.004 (3)
C390.047 (4)0.030 (3)0.042 (4)0.004 (3)0.005 (3)0.001 (3)
C400.042 (3)0.029 (3)0.038 (3)0.000 (3)0.005 (3)0.005 (3)
C410.048 (4)0.052 (4)0.035 (3)0.008 (3)0.014 (3)0.008 (3)
C420.060 (4)0.050 (4)0.042 (4)0.005 (3)0.017 (3)0.018 (3)
C430.060 (4)0.042 (4)0.050 (4)0.000 (3)0.007 (3)0.017 (3)
C440.053 (4)0.040 (3)0.038 (4)0.001 (3)0.006 (3)0.002 (3)
C450.032 (3)0.039 (3)0.036 (3)0.005 (3)0.002 (3)0.002 (3)
C460.021 (2)0.032 (3)0.037 (3)0.001 (2)0.003 (2)0.006 (2)
C470.034 (3)0.034 (3)0.040 (3)0.001 (2)0.006 (3)0.005 (3)
C480.035 (3)0.050 (4)0.037 (3)0.000 (3)0.008 (3)0.011 (3)
C490.031 (3)0.051 (4)0.024 (3)0.007 (3)0.007 (2)0.003 (3)
C500.034 (3)0.037 (3)0.039 (3)0.005 (3)0.002 (3)0.007 (3)
O1W0.034 (2)0.047 (2)0.060 (3)0.0034 (18)0.006 (2)0.006 (2)
O2W0.086 (4)0.050 (3)0.112 (4)0.013 (3)0.054 (3)0.010 (3)
Geometric parameters (Å, º) top
Fe1—N11.961 (4)C17—H17A0.9400
Fe1—N21.966 (4)C18—C191.393 (7)
Fe1—N31.967 (4)C19—C201.384 (7)
Fe1—N41.971 (4)C20—H20A0.9400
Fe1—N51.964 (4)C21—C221.398 (8)
Fe1—N61.961 (4)C21—H21A0.9400
N1—C211.343 (7)C22—C231.367 (9)
N1—C251.360 (7)C22—H22A0.9400
N2—C301.328 (7)C23—C241.371 (9)
N2—C261.367 (7)C23—H23A0.9400
N3—C311.341 (6)C24—C251.379 (8)
N3—C351.352 (6)C24—H24A0.9400
N4—C401.349 (6)C25—C261.480 (8)
N4—C361.357 (6)C26—C271.396 (8)
N5—C411.328 (6)C27—C281.380 (9)
N5—C451.371 (7)C27—H27A0.9400
N6—C501.356 (6)C28—C291.355 (9)
N6—C461.357 (6)C28—H28A0.9400
O1—C11.217 (7)C29—C301.386 (8)
O2—C11.305 (7)C29—H29A0.9400
O2—H20.8300C30—H30A0.9400
O3—C21.261 (7)C31—C321.374 (8)
O4—C21.255 (7)C31—H31A0.9400
O5—C31.214 (6)C32—C331.369 (8)
O6—C31.308 (6)C32—H32A0.9400
O6—H60.8300C33—C341.371 (8)
O7—C41.257 (6)C33—H33A0.9400
O8—C41.257 (6)C34—C351.390 (7)
O9—C111.322 (6)C34—H34A0.9400
O9—H90.8300C35—C361.466 (7)
O10—C111.201 (6)C36—C371.386 (7)
O11—C121.302 (6)C37—C381.367 (8)
O11—H110.8300C37—H37A0.9400
O12—C121.210 (6)C38—C391.364 (8)
O13—C131.305 (6)C38—H38A0.9400
O13—H130.8300C39—C401.388 (7)
O14—C131.206 (6)C39—H39A0.9400
O15—C141.313 (6)C40—H40A0.9400
O15—H150.8300C41—C421.390 (8)
O16—C141.184 (6)C41—H41A0.9400
C1—C51.506 (8)C42—C431.358 (8)
C2—C61.516 (7)C42—H42A0.9400
C3—C81.503 (7)C43—C441.389 (8)
C4—C91.503 (7)C43—H43A0.9400
C5—C101.382 (7)C44—C451.388 (7)
C5—C61.406 (7)C44—H44A0.9400
C6—C71.393 (7)C45—C461.479 (7)
C7—C81.385 (6)C46—C471.376 (7)
C7—H7A0.9400C47—C481.372 (7)
C8—C91.391 (7)C47—H47A0.9400
C9—C101.389 (7)C48—C491.365 (8)
C10—H10A0.9400C48—H48A0.9400
C11—C151.497 (7)C49—C501.386 (7)
C12—C161.516 (7)C49—H49A0.9400
C13—C181.501 (7)C50—H50A0.9400
C14—C191.512 (7)O1W—H1WA0.8872
C15—C161.389 (7)O1W—H1WB0.8050
C15—C201.395 (7)O2W—H2WA0.8201
C16—C171.389 (7)O2W—H2WB0.8202
C17—C181.394 (7)
N1—Fe1—N281.71 (18)C19—C20—C15121.4 (5)
N3—Fe1—N481.64 (17)C19—C20—H20A119.3
N5—Fe1—N682.06 (17)C15—C20—H20A119.3
N1—Fe1—N690.98 (17)N1—C21—C22122.5 (6)
N1—Fe1—N593.62 (18)N1—C21—H21A118.7
N6—Fe1—N295.27 (17)C22—C21—H21A118.7
N5—Fe1—N2174.60 (17)C23—C22—C21118.3 (6)
N1—Fe1—N393.70 (17)C23—C22—H22A120.9
N6—Fe1—N3173.95 (17)C21—C22—H22A120.9
N5—Fe1—N393.79 (17)C22—C23—C24120.5 (6)
N2—Fe1—N389.22 (17)C22—C23—H23A119.7
N1—Fe1—N4174.02 (18)C24—C23—H23A119.7
N6—Fe1—N493.94 (17)C23—C24—C25118.3 (6)
N5—Fe1—N490.44 (17)C23—C24—H24A120.9
N2—Fe1—N494.43 (18)C25—C24—H24A120.9
C21—N1—C25117.3 (5)N1—C25—C24122.9 (6)
C21—N1—Fe1127.4 (4)N1—C25—C26113.4 (5)
C25—N1—Fe1115.3 (4)C24—C25—C26123.7 (6)
C30—N2—C26116.9 (5)N2—C26—C27122.5 (6)
C30—N2—Fe1128.3 (4)N2—C26—C25113.6 (5)
C26—N2—Fe1114.8 (4)C27—C26—C25123.8 (6)
C31—N3—C35116.9 (5)C28—C27—C26117.9 (6)
C31—N3—Fe1128.1 (4)C28—C27—H27A121.0
C35—N3—Fe1115.1 (3)C26—C27—H27A121.0
C40—N4—C36117.3 (4)C29—C28—C27120.0 (6)
C40—N4—Fe1127.7 (4)C29—C28—H28A120.0
C36—N4—Fe1115.0 (3)C27—C28—H28A120.0
C41—N5—C45117.4 (5)C28—C29—C30119.0 (6)
C41—N5—Fe1128.2 (4)C28—C29—H29A120.5
C45—N5—Fe1114.4 (3)C30—C29—H29A120.5
C50—N6—C46116.7 (4)N2—C30—C29123.6 (6)
C50—N6—Fe1127.2 (4)N2—C30—H30A118.2
C46—N6—Fe1116.0 (3)C29—C30—H30A118.2
C1—O2—H2109.5N3—C31—C32123.4 (5)
C3—O6—H6109.5N3—C31—H31A118.3
C11—O9—H9109.5C32—C31—H31A118.3
C12—O11—H11109.5C33—C32—C31118.8 (6)
C13—O13—H13109.5C33—C32—H32A120.6
C14—O15—H15109.5C31—C32—H32A120.6
O1—C1—O2119.8 (6)C32—C33—C34119.8 (6)
O1—C1—C5120.7 (6)C32—C33—H33A120.1
O2—C1—C5119.4 (6)C34—C33—H33A120.1
O4—C2—O3124.0 (5)C33—C34—C35118.3 (6)
O4—C2—C6116.2 (5)C33—C34—H34A120.8
O3—C2—C6119.8 (6)C35—C34—H34A120.8
O5—C3—O6124.0 (5)N3—C35—C34122.8 (5)
O5—C3—C8124.0 (5)N3—C35—C36114.3 (4)
O6—C3—C8111.5 (4)C34—C35—C36122.9 (5)
O7—C4—O8124.9 (5)N4—C36—C37121.9 (5)
O7—C4—C9116.2 (5)N4—C36—C35114.0 (4)
O8—C4—C9118.9 (5)C37—C36—C35124.1 (5)
C10—C5—C6117.8 (5)C38—C37—C36119.6 (6)
C10—C5—C1113.2 (5)C38—C37—H37A120.2
C6—C5—C1129.1 (5)C36—C37—H37A120.2
C7—C6—C5118.7 (5)C39—C38—C37119.4 (5)
C7—C6—C2113.6 (5)C39—C38—H38A120.3
C5—C6—C2127.7 (5)C37—C38—H38A120.3
C8—C7—C6122.5 (5)C38—C39—C40119.1 (5)
C8—C7—H7A118.7C38—C39—H39A120.5
C6—C7—H7A118.7C40—C39—H39A120.5
C7—C8—C9118.9 (5)N4—C40—C39122.6 (5)
C7—C8—C3115.4 (5)N4—C40—H40A118.7
C9—C8—C3125.7 (4)C39—C40—H40A118.7
C10—C9—C8118.2 (5)N5—C41—C42123.3 (6)
C10—C9—C4118.9 (5)N5—C41—H41A118.4
C8—C9—C4122.9 (5)C42—C41—H41A118.4
C5—C10—C9123.6 (5)C43—C42—C41119.5 (6)
C5—C10—H10A118.2C43—C42—H42A120.2
C9—C10—H10A118.2C41—C42—H42A120.2
O10—C11—O9124.5 (5)C42—C43—C44118.7 (6)
O10—C11—C15122.6 (5)C42—C43—H43A120.7
O9—C11—C15112.8 (5)C44—C43—H43A120.7
O12—C12—O11125.7 (5)C45—C44—C43119.4 (6)
O12—C12—C16121.4 (5)C45—C44—H44A120.3
O11—C12—C16112.9 (4)C43—C44—H44A120.3
O14—C13—O13124.1 (5)N5—C45—C44121.6 (5)
O14—C13—C18122.2 (5)N5—C45—C46114.5 (5)
O13—C13—C18113.6 (4)C44—C45—C46123.9 (5)
O16—C14—O15125.1 (5)N6—C46—C47123.4 (5)
O16—C14—C19123.3 (5)N6—C46—C45113.0 (4)
O15—C14—C19111.6 (5)C47—C46—C45123.6 (5)
C16—C15—C20119.1 (5)C48—C47—C46118.7 (5)
C16—C15—C11123.6 (4)C48—C47—H47A120.7
C20—C15—C11117.1 (4)C46—C47—H47A120.7
C17—C16—C15119.5 (4)C49—C48—C47119.4 (5)
C17—C16—C12116.5 (4)C49—C48—H48A120.3
C15—C16—C12123.9 (4)C47—C48—H48A120.3
C16—C17—C18121.3 (5)C48—C49—C50119.7 (5)
C16—C17—H17A119.4C48—C49—H49A120.1
C18—C17—H17A119.4C50—C49—H49A120.1
C19—C18—C17119.2 (5)N6—C50—C49122.1 (5)
C19—C18—C13122.1 (4)N6—C50—H50A119.0
C17—C18—C13118.6 (5)C49—C50—H50A119.0
C20—C19—C18119.4 (4)H1WA—O1W—H1WB105.3
C20—C19—C14117.7 (5)H2WA—O2W—H2WB110.3
C18—C19—C14122.7 (5)
N6—Fe1—N1—C2176.7 (5)C16—C17—C18—C13174.8 (5)
N5—Fe1—N1—C215.4 (5)O14—C13—C18—C196.9 (8)
N2—Fe1—N1—C21171.8 (5)O13—C13—C18—C19175.8 (5)
N3—Fe1—N1—C2199.5 (5)O14—C13—C18—C17169.0 (5)
N6—Fe1—N1—C25104.8 (4)O13—C13—C18—C178.3 (7)
N5—Fe1—N1—C25173.1 (4)C17—C18—C19—C202.3 (8)
N2—Fe1—N1—C259.6 (4)C13—C18—C19—C20173.6 (5)
N3—Fe1—N1—C2579.0 (4)C17—C18—C19—C14178.6 (5)
N1—Fe1—N2—C30173.1 (5)C13—C18—C19—C142.7 (8)
N6—Fe1—N2—C3082.9 (5)O16—C14—C19—C2079.0 (7)
N3—Fe1—N2—C3093.0 (5)O15—C14—C19—C2097.8 (6)
N4—Fe1—N2—C3011.5 (5)O16—C14—C19—C1897.4 (7)
N1—Fe1—N2—C268.9 (4)O15—C14—C19—C1885.8 (6)
N6—Fe1—N2—C2699.1 (4)C18—C19—C20—C150.7 (8)
N3—Fe1—N2—C2684.9 (4)C14—C19—C20—C15177.3 (5)
N4—Fe1—N2—C26166.5 (4)C16—C15—C20—C191.9 (8)
N1—Fe1—N3—C315.0 (4)C11—C15—C20—C19173.8 (5)
N5—Fe1—N3—C3188.9 (4)C25—N1—C21—C221.3 (8)
N2—Fe1—N3—C3186.6 (4)Fe1—N1—C21—C22177.2 (4)
N4—Fe1—N3—C31178.8 (5)N1—C21—C22—C232.9 (9)
N1—Fe1—N3—C35176.1 (4)C21—C22—C23—C243.2 (9)
N5—Fe1—N3—C3590.0 (4)C22—C23—C24—C250.5 (9)
N2—Fe1—N3—C3594.5 (4)C21—N1—C25—C245.3 (8)
N4—Fe1—N3—C350.1 (4)Fe1—N1—C25—C24173.4 (4)
N6—Fe1—N4—C403.5 (4)C21—N1—C25—C26172.8 (5)
N5—Fe1—N4—C4085.6 (4)Fe1—N1—C25—C268.5 (6)
N2—Fe1—N4—C4092.1 (4)C23—C24—C25—N15.0 (9)
N3—Fe1—N4—C40179.3 (4)C23—C24—C25—C26172.9 (5)
N6—Fe1—N4—C36176.3 (4)C30—N2—C26—C272.5 (8)
N5—Fe1—N4—C3694.2 (4)Fe1—N2—C26—C27175.7 (5)
N2—Fe1—N4—C3688.1 (4)C30—N2—C26—C25175.0 (5)
N3—Fe1—N4—C360.5 (4)Fe1—N2—C26—C256.8 (6)
N1—Fe1—N5—C4189.7 (5)N1—C25—C26—N21.1 (7)
N6—Fe1—N5—C41179.8 (5)C24—C25—C26—N2179.2 (5)
N3—Fe1—N5—C414.3 (5)N1—C25—C26—C27176.4 (5)
N4—Fe1—N5—C4185.9 (5)C24—C25—C26—C271.7 (9)
N1—Fe1—N5—C4588.8 (4)N2—C26—C27—C284.1 (9)
N6—Fe1—N5—C451.7 (3)C25—C26—C27—C28173.2 (6)
N3—Fe1—N5—C45177.3 (4)C26—C27—C28—C292.7 (10)
N4—Fe1—N5—C4595.6 (4)C27—C28—C29—C300.1 (10)
N1—Fe1—N6—C5089.4 (4)C26—N2—C30—C290.4 (8)
N5—Fe1—N6—C50177.0 (4)Fe1—N2—C30—C29178.3 (5)
N2—Fe1—N6—C507.7 (4)C28—C29—C30—N21.7 (10)
N4—Fe1—N6—C5087.1 (4)C35—N3—C31—C320.6 (8)
N1—Fe1—N6—C4693.8 (4)Fe1—N3—C31—C32178.3 (4)
N5—Fe1—N6—C460.2 (3)N3—C31—C32—C330.8 (9)
N2—Fe1—N6—C46175.5 (3)C31—C32—C33—C340.4 (9)
N4—Fe1—N6—C4689.7 (4)C32—C33—C34—C350.2 (9)
O1—C1—C5—C1019.5 (9)C31—N3—C35—C340.1 (8)
O2—C1—C5—C10160.1 (5)Fe1—N3—C35—C34179.1 (4)
O1—C1—C5—C6161.3 (6)C31—N3—C35—C36179.2 (4)
O2—C1—C5—C619.1 (9)Fe1—N3—C35—C360.2 (6)
C10—C5—C6—C73.9 (8)C33—C34—C35—N30.4 (9)
C1—C5—C6—C7175.3 (5)C33—C34—C35—C36178.8 (5)
C10—C5—C6—C2176.9 (5)C40—N4—C36—C370.8 (7)
C1—C5—C6—C24.0 (9)Fe1—N4—C36—C37179.3 (4)
O4—C2—C6—C720.6 (7)C40—N4—C36—C35179.1 (4)
O3—C2—C6—C7158.9 (5)Fe1—N4—C36—C350.7 (6)
O4—C2—C6—C5160.1 (5)N3—C35—C36—N40.6 (7)
O3—C2—C6—C520.4 (9)C34—C35—C36—N4178.7 (5)
C5—C6—C7—C80.9 (8)N3—C35—C36—C37179.5 (5)
C2—C6—C7—C8179.8 (5)C34—C35—C36—C371.2 (9)
C6—C7—C8—C94.0 (8)N4—C36—C37—C380.2 (8)
C6—C7—C8—C3175.5 (5)C35—C36—C37—C38179.9 (5)
O5—C3—C8—C779.2 (7)C36—C37—C38—C391.0 (9)
O6—C3—C8—C792.9 (5)C37—C38—C39—C400.7 (8)
O5—C3—C8—C9101.3 (7)C36—N4—C40—C391.1 (7)
O6—C3—C8—C986.6 (6)Fe1—N4—C40—C39179.1 (4)
C7—C8—C9—C105.6 (7)C38—C39—C40—N40.3 (8)
C3—C8—C9—C10173.9 (5)C45—N5—C41—C422.3 (8)
C7—C8—C9—C4175.8 (5)Fe1—N5—C41—C42176.1 (4)
C3—C8—C9—C44.7 (8)N5—C41—C42—C430.0 (10)
O7—C4—C9—C10173.7 (5)C41—C42—C43—C442.1 (10)
O8—C4—C9—C103.8 (7)C42—C43—C44—C451.9 (9)
O7—C4—C9—C87.7 (7)C41—N5—C45—C442.5 (8)
O8—C4—C9—C8174.8 (5)Fe1—N5—C45—C44176.1 (4)
C6—C5—C10—C92.2 (8)C41—N5—C45—C46178.2 (5)
C1—C5—C10—C9177.0 (5)Fe1—N5—C45—C463.2 (5)
C8—C9—C10—C52.6 (8)C43—C44—C45—N50.5 (8)
C4—C9—C10—C5178.8 (5)C43—C44—C45—C46179.7 (5)
O10—C11—C15—C1678.8 (7)C50—N6—C46—C470.2 (7)
O9—C11—C15—C16104.8 (6)Fe1—N6—C46—C47177.3 (4)
O10—C11—C15—C2096.7 (6)C50—N6—C46—C45179.1 (4)
O9—C11—C15—C2079.6 (6)Fe1—N6—C46—C452.0 (5)
C20—C15—C16—C172.9 (7)N5—C45—C46—N63.4 (6)
C11—C15—C16—C17172.5 (5)C44—C45—C46—N6175.9 (5)
C20—C15—C16—C12174.4 (5)N5—C45—C46—C47175.9 (5)
C11—C15—C16—C1210.2 (8)C44—C45—C46—C474.8 (8)
O12—C12—C16—C172.1 (7)N6—C46—C47—C480.8 (8)
O11—C12—C16—C17178.8 (4)C45—C46—C47—C48178.4 (5)
O12—C12—C16—C15175.3 (5)C46—C47—C48—C490.3 (8)
O11—C12—C16—C153.8 (7)C47—C48—C49—C500.8 (8)
C15—C16—C17—C181.4 (7)C46—N6—C50—C490.9 (7)
C12—C16—C17—C18176.1 (5)Fe1—N6—C50—C49175.8 (4)
C16—C17—C18—C191.2 (8)C48—C49—C50—N61.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.831.662.431 (6)153
O6—H6···O4i0.831.772.555 (5)158
O9—H9···O1W0.831.882.643 (5)153
O11—H11···O70.831.682.495 (5)166
O13—H13···O8ii0.831.842.567 (5)145
O15—H15···O14iii0.831.902.732 (5)175
O1W—H1WA···O8iv0.891.982.861 (5)169
O1W—H1WB···O10iv0.812.042.844 (5)172
O2W—H2WA···O5v0.822.323.101 (7)159
O2W—H2WB···O30.822.032.803 (6)157
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z; (iii) x+1, y+3, z; (iv) x, y+2, z; (v) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C12H8N2)3](C10H5O8)2·H2O[Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O
Mr1120.761066.71
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)223223
a, b, c (Å)24.151 (5), 14.088 (3), 15.651 (3)13.767 (3), 13.911 (3), 24.202 (5)
β (°) 116.54 (3) 102.68 (3)
V3)4764 (2)4521.7 (16)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.410.42
Crystal size (mm)0.46 × 0.22 × 0.200.40 × 0.35 × 0.10
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Rigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Multi-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.836, 0.9230.849, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
11666, 4190, 3613 22163, 7925, 6272
Rint0.0410.074
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.111, 1.11 0.093, 0.160, 1.23
No. of reflections41907925
No. of parameters366676
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.370.43, 0.33

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Fe1—N11.972 (2)Fe1—N31.984 (2)
Fe1—N21.968 (2)
N2—Fe1—N2i175.22 (12)N2—Fe1—N3i90.51 (9)
N2—Fe1—N1i93.83 (9)N3i—Fe1—N382.24 (12)
N2—Fe1—N182.91 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O8ii0.821.822.628 (3)169.5
O6—H6···O7iii0.821.852.667 (3)174.4
O1—H1···O80.821.622.443 (3)176.3
O1W—H1W···O3iv0.84 (3)2.05 (3)2.882 (3)171 (5)
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Fe1—N11.961 (4)Fe1—N41.971 (4)
Fe1—N21.966 (4)Fe1—N51.964 (4)
Fe1—N31.967 (4)Fe1—N61.961 (4)
N1—Fe1—N281.71 (18)N5—Fe1—N682.06 (17)
N3—Fe1—N481.64 (17)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.831.662.431 (6)152.7
O6—H6···O4i0.831.772.555 (5)157.8
O9—H9···O1W0.831.882.643 (5)153.0
O11—H11···O70.831.682.495 (5)166.0
O13—H13···O8ii0.831.842.567 (5)144.7
O15—H15···O14iii0.831.902.732 (5)174.8
O1W—H1WA···O8iv0.891.982.861 (5)169.2
O1W—H1WB···O10iv0.812.042.844 (5)172.1
O2W—H2WA···O5v0.822.323.101 (7)158.6
O2W—H2WB···O30.822.032.803 (6)156.6
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z; (iii) x+1, y+3, z; (iv) x, y+2, z; (v) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds