Download citation
Download citation
link to html
The title compound {systematic name: 4-amino-1-(2-de­oxy-[beta]-D-erythro-pentofuranosyl)-5-[6-(1-benzyl-1H-1,2,3-triaz­ol-4-yl)hex-1-yn­yl]pyrimidin-2(1H)-one}, C24H28N6O4, shows two conformations in the crystalline state, viz. (I-1) and (I-2). The pyrimidine groups and side chains of the two conformers are almost superimposable, while the greatest differences between them are observed for the sugar groups. The N-glycosylic bonds of both conformers adopt similar anti conformations, with [chi] = -168.02 (12)° for conformer (I-1) and [chi] = -159.08 (12)° for conformer (I-2). The sugar residue of (I-1) shows an N-type (C3'-endo) conformation, with P = 33.1 (2)° and [tau]m = 29.5 (1)°, while the conformation of the 2'-de­­oxy­ribofuranosyl group of (I-2) is S-type (C3'-exo), with P = 204.5 (2)° and [tau]m = 33.8 (1)°. Both conformers participate in hydrogen-bond formation and exhibit identical patterns resulting in three-dimensional networks. Inter­molecular hydrogen bonds are formed with neighbouring mol­ecules of different and identical conformations (N-H...N, N-H... O, O-H...N and O-H...O).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112010682/sf3166sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112010682/sf3166Isup2.hkl
Contains datablock I

CCDC reference: 879445

Comment top

The CuI-catalysed Huisgen–Meldal–Sharpless alkyne-azide `click' reaction has emerged as a convenient and effective approach to conjugate two molecules irreversibly under simple reaction conditions (Kolb et al., 2001; Meldal & Tornøe, 2008). This strategy has become particularly attractive for applications in synthetic chemistry (Meldal & Tornøe, 2008), bioconjugation (Wang et al., 2003), drug discovery (Kolb & Sharpless, 2003), molecular diagnostics (Kolb & Sharpless, 2003) and materials science (Moses & Moorhouse, 2007). The ease of click chemistry has inspired researchers to construct a variety of chemically modified nucleosides and oligonucleotide conjugates for medicinal, biological and nanotechnological applications (El-Sagheer & Brown, 2010). Our laboratory and others have reported on the click functionalization of alkynylated 7-deazapurine, 8-aza-7-deazapurine and pyrimidine 2'-deoxyribonucleosides with various reporter groups on the nucleoside and oligonucleotide levels (Gramlich et al., 2008; Seela et al., 2008, 2010). The click chemistry approach has also been extended to the cross-linking of nucleosides and oligonucleotides (Kočalka et al., 2008; Pujari et al., 2010; Xiong & Seela, 2011).

Recently, 5-ethynyl-2'-deoxycytidine and phenylazide have been employed as substrates in the click reaction, yielding the click conjugate (II) (see Scheme 1) (Dodd et al., 2010; Andersen et al., 2011), and its solid-state structure was elucidated (Dodd et al., 2010). We used 5-octadiynyl-2'-deoxycytidine, (IV) (Seela et al., 2008), and benzylazide, (V), as starting materials for the copper(I)-mediated click reaction to afford the title click product 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-5-[(1-methylbenzyl-1H-1,2,3-triazol-4-yl)hex-1-ynyl]pyrimidin-2(1H)-one, (I) (see Scheme 2). The synthetic procedure for (I) is given in the Experimental section. Slow crystallization from hot distilled water gave the click conjugate (I) as colourless crystals. Consequently, we became interested in performing a single-crystal X-ray analysis of (I), which is reported herein. The crystal structure of (I) is compared with the two conformers of the click conjugate 5-(1-phenyl-1H-1,2,3-triazol-4-yl)-2'-deoxycytidine, (II) (Dodd et al., 2010), and the two conformers of 5-propynyl-2'-deoxycytidine, (III) (Seela et al., 2007).

There are two molecules in the asymmetric unit of (I), denoted (I-1) and (I-2). The three-dimensional structures of conformers (I-1) and (I-2) are shown in Fig. 1, and selected geometric parameters are summarized in Table 1. For the related crystal structures of (II) (Dodd et al., 2010) and (III) (Seela et al., 2007), two conformers were also found in the unit cells. Both nucleoside click conjugates (I) and (II) crystallize in the same space group (monoclinic, P21) (Dodd et al., 2010), while the space group of (III) is triclinic (P1) (Seela et al., 2007).

Fig. 2 shows an overlay of conformers (I-1) and (I-2), indicating that the pyrimidine groups and side chains of the two conformers are almost superimposable, while the greatest differences between the two conformers are observed for the sugar groups. Some interesting structural features of the side chains are: (i) the angle between the triazole group and the benzyl ring; (ii) the angle formed by the triple-bonded atoms C7 and C8 with adjacent atom C9; (iii) the angle of inclination of the side chain with respect to the pyrimidine ring plane; and (iv) planarity of the nucleobase.

The N16—C18—C19 angle connecting the methylene group (C118 or C218), the triazole group (N116 or N216) and the phenyl C atom (C119 or C219) is almost identical in both conformers [112.59 13)° for (I-1) and 112.87 (13)° for (I-2)].

In conformer (I-2), the triple-bonded atoms C27 and C28, together with adjacent atom C29, form an almost linear entity, with C27—C28—C29 = 179.29 (18)°. For the propynyl groups of conformers (III-1) and (III-2), comparable angles were observed [179.3 (3) and 178.7 (3)°; Seela et al., 2007]. However, for conformer (I-1), this entity is slightly bent, with C17—C18—C19 = 173.49 (16)°. The lengths of the C7—C8 triple bond in the two conformers [1.194 (2) Å for (I-1) and 1.190 (2) Å for (I-2)] are comparable.

The heterocyclic skeletons of (I-1) and (I-2) are nearly planar; the r.m.s. deviations of the ring atoms (N1/C2/N3/C4/C5/C6) from their calculated least-squares planes are 0.0205 and 0.0272 Å, respectively. In both conformers, the exocyclic groups lie above and below the plane of the pyrimidine ring system.

The side chain of conformer (I-1) is almost coplanar with the pyrimidine ring plane (0.4°), while the side chain of conformer (I-2) is slightly inclined by 2.7°. The angles of inclination were calculated as the deviation of the side chain (atoms C17 and C27) from the normal to the pyrimidine plane (atoms C15 and C25).

The orientation of the pyrimidine group relative to the sugar residue (syn/anti) is defined by the torsion angle χ (O4'—C1'—N1—C2) (IUPAC–IUB Joint Commission on Biochemical Nomenclature, 1983), and usually adopts a conformation in the anti range. Indeed, the two conformers of (I) show glycosylic bond torsion angles of χ = -168.02 (12)° for (I-1) and -159.08 (12)° for (I-2), corresponding to anti conformations. The conformers of the closely related click compound (II) adopt anti conformations within the same range [χ = -165.6 (3)° for (II-1) and -165.2 (4)° for (II-2); Dodd et al., 2010]. A similar torsion angle was also found for conformer (III-2) of 5-propynyl-2'-deoxycytidine, with χ = -156.4 (2)°, while conformer (III-1) shows a torsion angle of χ = -135.0 (2)° around the glycosylic bond (Seela et al., 2007).

The length of the glycosylic N1—C1' bond is 1.494 (2) Å for (I-1) and 1.495 (2) Å for (I-2), which are in the same range as the bond lengths observed for the two conformers of (II) [1.495 (5) Å for (II-1) and 1.484 (5) Å for (II-2); Dodd et al., 2010] and for (III-2) [1.490 (2) Å; Seela et al., 2007], while a shorter glycosylic bond was found for conformer (III-1) [1.475 (2) Å; Seela et al., 2007].

The most pronounced difference between conformers (I-1) and (I-2) is the conformation of the sugar group (Fig. 3). The 2'-deoxyribofuranosyl group of conformer (I-1) shows an N-type conformation, with a pseudorotational phase angle P = 33.1 (2)° and a maximum amplitude τm = 29.5 (1)°, referring to a major C3'-endo sugar pucker (C3'-endo-C4'-exo, 3T4). Surprisingly, conformer (I-2) exhibits an S-type sugar pucker instead of the N-type conformation found for (I-1). The pseudorotational phase angle for (I-2) is P = 204.5 (2)° and the maximum amplitude is τm = 33.8 (1)°, which corresponds to a major C3'-exo sugar pucker (C3'-exo-C4'-endo, 3T4). It is interesting to note that this phenomenon was also observed for the two conformers of the closely related click compound (II). Conformer (II-1) adopts an S-type sugar pucker with a major C3'-exo conformation [P = 205.6 (4)°, τm = 37.6 (3)°, C3'-exo-C4'-endo, 3T4; Dodd et al., 2010], while conformer (II-2) shows an N-type sugar pucker with a major C3'-endo envelope conformation [P = 18.6 (4)°, τm = 34.7 (3)°, 3E; Dodd et al., 2010]. In contrast, this kind of observation was not made in the case of the two conformers of 5-propynyl-2'-deoxycytidine, (III). For (III-1) and (III-2), similar S-type sugar puckers were found (Seela et al., 2007).

The γ torsion angle (O5'—C5'—C4'—C3') characterizes the orientation of the exocyclic 5'-hydroxy group relative to the 2'-deoxyribose ring. Conformers (I-1) and (I-2) display different conformations about the C4'—C5' bond. For (I-1), the torsion angle γ is 60.40 (17)°, corresponding to a synclinal (+sc; gauche,gauche) conformation, while in (I-2) the C4'—C5' bond adopts an antiperiplanar (+ap; gauche,trans) orientation with γ = 174.40 (12)°. In the case of click compound (II), conformer (II-2) shows a similar torsion angle with γ = 169.9 (3)° (+ap; gauche,trans), while in conformer (II-1) the C5'-hydroxy group was disordered (Dodd et al., 2010).

In the crystal structure of nucleoside click conjugate (I), conformers (I-1) and (I-2) are linked into an infinite three-dimensional network by several intermolecular hydrogen bonds (Table 2 and Fig. 4). The two conformers exhibit identical hydrogen-bond patterns, and hydrogen bonds are formed with neighbouring molecules of different and identical conformation. The two amino groups of the two conformers act as hydrogen-bond donors. The amino group N4—H4A of one conformer acts as donor and atom N3 of the pyrimidine group of the other conformer acts as hydrogen-bond acceptor (N14—H14A···N23i and N24—H24A···N13v; see Table 2 for symmetry codes and geometry). The other amino group, N4—H4B, functions as a hydrogen-bond donor for atom O5' of the exocyclic sugar hydroxy group of a neighbouring molecule of identical conformation (N14—H14B···O15'ii and N24—H24B···O25'i). The 5'-hydroxy group is also an H-atom donor, and atom O2 attached to the nucleobase of the other conformer acts as the acceptor site (O15'—H15C···O22iv and O25'—H25C···O12vi). Apart from the nucleobase and the sugar group, the side chains of the two conformers participitate in hydrogen bonding as well. Atom N14 of the triazole ring functions as a hydrogen-bond acceptor and hydroxy group O3'—H3C of the same conformer acts as donor (O13'—H13C···N114iii and O23'—H23C···N214v).

Related literature top

For related literature, see: Andersen et al. (2011); Dodd et al. (2010); El-Sagheer & Brown (2010); Flack (1983); Gramlich et al. (2008); Hooft et al. (2008); IUPAC–IUB (1983); Kočalka et al. (2008); Kolb & Sharpless (2003); Kolb et al. (2001); Meldal & Tornøe (2008); Moses & Moorhouse (2007); Pujari et al. (2010); Seela et al. (2007, 2008, 2010); Spek (2009); Wang et al. (2003); Xiong & Seela (2011).

Experimental top

For the synthesis of (I), copper(II) sulfate pentahydrate 7.5% in water (12.5 mg, 0.05 mmol) and copper powder (32.0 mg, 0.5 mmol) were added to a solution of (IV) (166.5 mg, 0.5 mmol) and benzylazide (V) (133 mg, 1.0 mmol) in a mixture of acetonitrile and a 2 N solution of aqueous Na2CO3 (1:1 v/v, 10 ml). The reaction mixture was stirred vigorously in the dark at room temperature for 16 h. After completion of the reaction [monitored by thin-layer chromatography (TLC)], the solvent was evaporated [under reduced pressure? in vacuo? by heating?] and the residue was applied to a flash chromatography (FC) column (silica gel, column 8 × 3 cm, eluted with CH2Cl2/MeOH, 90:10 v/v). The solvent was evaporated [under reduced pressure? in vacuo? by heating?] and the residue was washed with MeOH/H2O (10:90 v/v) to afford (I) as a colourless foam (yield 130 mg, 56%). TLC (silica gel, CH2Cl2/MeOH, 90:10 v/v) RF 0.4; UV (MeOH, λmax, nm): 260 (ε, dm-3 mol-1 cm-1 160 200), 297.5 (7 400). 1H NMR (300 MHz, DMSO-d6, δ, p.p.m.): 1.53–1.60 (m, 2H, CH2), 1.64–1.71 (m, 2H, CH2), 1.95–2.01 (m, 1H, Hα—C2'), 2.10–2.14 (m, 1H, Hβ—C2'), 2.42 (t, J = 7.2 Hz, 2H, CH2), 2.63 (t, J = 7.2 Hz, 2H, CH2), 3.55–3.60 (m, 2H, 2 × H—C5'); 3.76–3.78 (m, 1H, H—C4'), 4.17–4.21 (m, 1H, H—C3'), 5.10 (t, J = 5.1 Hz, 1H, HO—C5'), 5.22 (d, J = 4.2 Hz, 1H, HO—C3'), 5.53 (s, 2H, NCH2), 6.11 (t, J = 6.6 Hz, 1H, H—C1'), 6.73 (br s, 1H, NH), 7.26–7.37 (m, 5H, arom. H), 7.67 (br s, 1H, NH), 7.90 (s, 1H, H5-triazole), 8.08 (s, 1H, H—C6). 13C NMR (75.48 MHz, DMSO-d6, δ, p.p.m.): 18.8 (CH2), 24.5 (CH2), 27.6 (CH2), 28.3 (CH2), 40.7 (C2'), 52.7 (CH2), 61.0 (C5'), 70.1 (C3'), 72.1 (CC), 85.2 (C1'), 87.4 (C4'), 90.4 (CC), 95.4 (C5), 122.0 (triazole-CH), 127.8 (arom. C), 128.0 (arom. C), 128.7 (arom. C), 136.3 (triazole-C), 143.6 (C6), 147.0 (arom. C), 153.5 (C2), 164.4 (C4). Analysis, calculated for C24H28N6O4: C 62.06, H 6.08, N 18.09%; found: C 61.45, H 5.89, N 17.89%.

Slow crystallization from hot water afforded (I) as colourless crystals (m.p. 446 K). For the diffraction experiment, a single crystal was mounted on a MiTeGen Micro-Mountsfibre in a thin smear of oil.

Refinement top

The known configuration of the parent molecule was used to define the enantiomer employed in the refined model. In the absence of suitable anomalous scattering, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack (1983) parameter led to an inconclusive value for this parameter [-0.3 (5)]. Further confirmation of the configuration was sought using the Hooft analysis. The absolute structure parameter y (Hooft et al., 2008) was calculated using PLATON (Spek, 2009). The resulting value was y = 0.04 (16) calculated for 5342 Bijvoet pairs (95% coverage), indicating that the known absolute configuration used for the analysis is correct.

All H atoms were found in a difference Fourier synthesis. In order to maximize the data:parameter ratio, H atoms were placed in geometrically idealized positions, with C—H = 0.95–1.00 Å and N—H = 0.88 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The hydroxy groups were refined as groups allowed to rotate but not tip, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective views of (a) conformer (I-1) and (b) conformer (I-2), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Overlay of conformers (I-1) (darker labelled atoms) and (I-2) (lighter labelled atoms). (Black and red, respectively, in the electronic version of the paper.)
[Figure 3] Fig. 3. A comparison of the sugar groups of conformers (I-1) and (I-2). Shading is as for Fig. 2.
[Figure 4] Fig. 4. The crystal packing of (I), showing the intermolecular hydrogen-bonding network (parallel to the bc plane).
4-amino-1-(2-deoxy-β-D-erythro- pentofuranosyl)-5-[6-(1-benzyl-1H-1,2,3-triazol-4-yl)hex-1- ynyl]pyrimidin-2(1H)-one top
Crystal data top
C24H28N6O4F(000) = 984
Mr = 464.52Dx = 1.340 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9838 reflections
a = 12.525 (6) Åθ = 3.0–27.0°
b = 15.051 (7) ŵ = 0.09 mm1
c = 12.719 (6) ÅT = 130 K
β = 106.241 (10)°Block, colourless
V = 2302 (2) Å30.17 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
11402 independent reflections
Radiation source: fine-focus sealed tube10254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.701, Tmax = 0.746k = 2018
131640 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.4036P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
11402 reflectionsΔρmax = 0.57 e Å3
617 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: established by known chemical absolute configuration
Primary atom site location: structure-invariant direct methods
Crystal data top
C24H28N6O4V = 2302 (2) Å3
Mr = 464.52Z = 4
Monoclinic, P21Mo Kα radiation
a = 12.525 (6) ŵ = 0.09 mm1
b = 15.051 (7) ÅT = 130 K
c = 12.719 (6) Å0.17 × 0.15 × 0.14 mm
β = 106.241 (10)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
11402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
10254 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.746Rint = 0.037
131640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.02Δρmax = 0.57 e Å3
11402 reflectionsΔρmin = 0.21 e Å3
617 parametersAbsolute structure: established by known chemical absolute configuration
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N111.19723 (10)0.02052 (8)0.73958 (9)0.0192 (2)
C121.16252 (13)0.08492 (10)0.80209 (11)0.0208 (3)
O121.22008 (9)0.09527 (8)0.89846 (8)0.0273 (2)
N131.07127 (10)0.13429 (9)0.75600 (10)0.0216 (3)
C141.01605 (11)0.12271 (10)0.65053 (11)0.0194 (3)
N140.93230 (10)0.17812 (9)0.60623 (10)0.0229 (3)
H14A0.91510.22050.64620.027*
H14B0.89440.17220.53700.027*
C151.04534 (12)0.05313 (10)0.58620 (11)0.0196 (3)
C161.13899 (12)0.00555 (10)0.63403 (11)0.0193 (3)
H16A1.16370.03860.59290.023*
C170.98271 (12)0.04093 (10)0.47435 (12)0.0214 (3)
C180.92644 (12)0.03687 (10)0.38166 (12)0.0225 (3)
C190.86530 (13)0.03996 (11)0.26513 (12)0.0254 (3)
H19A0.78450.04250.25740.030*
H19B0.88040.01490.22880.030*
C1100.89909 (12)0.12079 (11)0.20904 (11)0.0224 (3)
H11A0.88260.17580.24430.027*
H11B0.98010.11890.21770.027*
C1110.83665 (13)0.12228 (12)0.08773 (12)0.0253 (3)
H11C0.75630.13000.07980.030*
H11D0.84660.06430.05500.030*
C1120.87527 (13)0.19611 (12)0.02446 (12)0.0298 (4)
H11E0.88360.25210.06680.036*
H11F0.94870.18040.01480.036*
C1130.79327 (13)0.20951 (12)0.08570 (12)0.0267 (3)
N1140.69668 (13)0.25342 (12)0.09505 (11)0.0376 (4)
N1150.63685 (12)0.25435 (12)0.19830 (11)0.0368 (4)
N1160.69484 (11)0.21017 (10)0.25471 (10)0.0253 (3)
C1170.79240 (12)0.18058 (11)0.18774 (12)0.0253 (3)
H11I0.84810.14700.20740.030*
C1180.65018 (14)0.19993 (12)0.37363 (12)0.0279 (3)
H11J0.70210.22770.41000.033*
H11K0.57830.23170.39830.033*
C1190.63291 (12)0.10393 (11)0.40827 (12)0.0242 (3)
C1200.66719 (12)0.07418 (11)0.49726 (12)0.0251 (3)
H12A0.70620.11350.53190.030*
C1210.64535 (13)0.01177 (12)0.53606 (15)0.0312 (4)
H12B0.66770.03080.59790.037*
C1220.59076 (14)0.06999 (12)0.48435 (17)0.0371 (4)
H12C0.57580.12910.51030.045*
C1230.55833 (15)0.04153 (13)0.39496 (17)0.0393 (4)
H12D0.52190.08180.35890.047*
C1240.57800 (14)0.04476 (13)0.35705 (14)0.0331 (4)
H12E0.55410.06370.29610.040*
C11'1.30738 (12)0.02174 (10)0.79117 (11)0.0204 (3)
H11L1.36400.02550.82050.025*
C12'1.30546 (13)0.08702 (11)0.88286 (11)0.0236 (3)
H12F1.36910.07640.94820.028*
H12G1.23550.08140.90400.028*
C13'1.31391 (12)0.17846 (10)0.83401 (11)0.0216 (3)
H13B1.23810.20380.80140.026*
O13'1.38126 (11)0.23978 (8)0.90800 (10)0.0345 (3)
H13C1.36330.23970.96690.052*
C14'1.36991 (11)0.15873 (9)0.74467 (11)0.0188 (3)
H14C1.45230.15970.77820.023*
O14'1.33761 (9)0.06994 (7)0.70830 (8)0.0217 (2)
C15'1.34184 (12)0.22150 (11)0.64767 (12)0.0242 (3)
H15A1.38450.20370.59630.029*
H15B1.36570.28230.67380.029*
O15'1.22664 (9)0.22320 (8)0.59030 (9)0.0253 (2)
H15C1.21300.18390.54140.038*
N211.15939 (10)0.98960 (8)1.27399 (9)0.0192 (2)
C221.14665 (12)0.91193 (10)1.33046 (11)0.0193 (3)
O221.19943 (9)0.90592 (7)1.42849 (8)0.0238 (2)
N231.07767 (10)0.84732 (8)1.27555 (10)0.0207 (2)
C241.02777 (11)0.85573 (10)1.16816 (11)0.0187 (3)
N240.95577 (11)0.79325 (9)1.11906 (10)0.0234 (3)
H24A0.94210.74801.15710.028*
H24B0.92190.79721.04860.028*
C251.04833 (12)0.93082 (10)1.10604 (11)0.0197 (3)
C261.11298 (12)0.99686 (10)1.16438 (11)0.0201 (3)
H26A1.12581.04901.12760.024*
C270.99763 (13)0.93556 (10)0.99007 (12)0.0222 (3)
C280.95145 (13)0.93315 (11)0.89467 (12)0.0252 (3)
C290.89363 (14)0.92914 (11)0.77695 (12)0.0278 (3)
H29A0.90310.98680.74310.033*
H29B0.81310.92060.76760.033*
C2100.93524 (12)0.85453 (11)0.71602 (12)0.0229 (3)
H21A1.01260.86700.71530.028*
H21B0.93460.79730.75420.028*
C2110.86056 (12)0.84814 (11)0.59896 (12)0.0227 (3)
H21C0.85610.90750.56440.027*
H21D0.78470.83170.60120.027*
C2120.89938 (13)0.78100 (12)0.52732 (12)0.0279 (3)
H21E0.96600.80440.50930.033*
H21F0.92050.72490.56850.033*
C2130.80968 (13)0.76259 (11)0.42318 (12)0.0240 (3)
N2140.72444 (12)0.70628 (11)0.42188 (11)0.0337 (3)
N2150.65498 (13)0.70303 (11)0.32241 (12)0.0349 (3)
N2160.69496 (12)0.75791 (9)0.26042 (10)0.0284 (3)
C2170.79071 (14)0.79621 (11)0.31940 (13)0.0285 (3)
H21I0.83530.83760.29430.034*
C2180.63533 (16)0.76621 (12)0.14307 (13)0.0342 (4)
H21J0.56350.73440.12840.041*
H21K0.67970.73730.09940.041*
C2190.61358 (13)0.86145 (11)0.10654 (13)0.0269 (3)
C2200.64184 (15)0.89096 (14)0.01480 (14)0.0367 (4)
H22A0.67940.85270.02250.044*
C2210.61445 (18)0.97797 (17)0.02258 (19)0.0551 (7)
H22B0.63220.99840.08630.066*
C2220.56172 (19)1.03401 (15)0.0332 (2)0.0620 (8)
H22C0.54341.09290.00770.074*
C2230.53583 (17)1.00482 (15)0.1251 (2)0.0534 (6)
H22D0.50111.04410.16390.064*
C2240.55993 (14)0.91844 (13)0.16177 (16)0.0361 (4)
H22E0.53990.89810.22440.043*
C21'1.22335 (12)1.06459 (10)1.33939 (11)0.0206 (3)
H21L1.20321.06971.40990.025*
C22'1.34956 (13)1.05382 (11)1.36430 (13)0.0261 (3)
H22F1.36871.00991.31450.031*
H22G1.38271.03461.44100.031*
C23'1.38992 (12)1.14726 (11)1.34498 (12)0.0228 (3)
H23B1.45561.14231.31530.027*
O23'1.41749 (9)1.20147 (8)1.43948 (9)0.0286 (2)
H23C1.37131.19311.47530.043*
C24'1.29041 (11)1.18405 (10)1.25610 (11)0.0196 (3)
H24C1.28731.25001.26480.023*
O24'1.19385 (8)1.14436 (7)1.27905 (8)0.0196 (2)
C25'1.29629 (12)1.16318 (11)1.14141 (12)0.0241 (3)
H25A1.36081.19391.12730.029*
H25B1.30601.09841.13370.029*
O25'1.19608 (9)1.19192 (8)1.06436 (8)0.0286 (2)
H25C1.18981.16701.00380.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0228 (6)0.0176 (6)0.0162 (5)0.0019 (5)0.0036 (4)0.0007 (4)
C120.0275 (7)0.0163 (7)0.0179 (6)0.0003 (6)0.0055 (5)0.0020 (5)
O120.0330 (6)0.0261 (6)0.0183 (5)0.0047 (5)0.0003 (4)0.0059 (4)
N130.0269 (6)0.0188 (6)0.0184 (6)0.0024 (5)0.0052 (5)0.0010 (5)
C140.0199 (6)0.0195 (7)0.0193 (6)0.0014 (5)0.0061 (5)0.0016 (5)
N140.0241 (6)0.0241 (7)0.0191 (6)0.0043 (5)0.0039 (5)0.0009 (5)
C150.0238 (7)0.0194 (7)0.0153 (6)0.0011 (5)0.0049 (5)0.0008 (5)
C160.0255 (7)0.0169 (7)0.0149 (6)0.0014 (5)0.0047 (5)0.0021 (5)
C170.0238 (7)0.0200 (7)0.0202 (7)0.0006 (6)0.0059 (5)0.0003 (6)
C180.0252 (7)0.0220 (8)0.0189 (7)0.0002 (6)0.0040 (5)0.0020 (6)
C190.0271 (7)0.0281 (8)0.0170 (6)0.0032 (6)0.0004 (5)0.0028 (6)
C1100.0217 (7)0.0263 (8)0.0163 (6)0.0002 (6)0.0007 (5)0.0006 (5)
C1110.0235 (7)0.0324 (9)0.0165 (6)0.0023 (6)0.0003 (5)0.0033 (6)
C1120.0275 (7)0.0402 (10)0.0182 (7)0.0069 (7)0.0005 (6)0.0055 (7)
C1130.0271 (7)0.0327 (9)0.0184 (7)0.0048 (7)0.0031 (6)0.0029 (6)
N1140.0373 (8)0.0523 (10)0.0200 (6)0.0081 (7)0.0027 (6)0.0041 (6)
N1150.0339 (7)0.0500 (10)0.0228 (7)0.0118 (7)0.0020 (6)0.0065 (6)
N1160.0283 (6)0.0286 (7)0.0170 (6)0.0024 (5)0.0029 (5)0.0009 (5)
C1170.0244 (7)0.0317 (9)0.0179 (7)0.0010 (6)0.0029 (5)0.0037 (6)
C1180.0334 (8)0.0299 (9)0.0154 (6)0.0027 (7)0.0011 (6)0.0024 (6)
C1190.0221 (7)0.0282 (8)0.0188 (7)0.0001 (6)0.0003 (5)0.0045 (6)
C1200.0231 (7)0.0277 (8)0.0222 (7)0.0014 (6)0.0026 (6)0.0034 (6)
C1210.0269 (8)0.0296 (9)0.0343 (8)0.0059 (7)0.0038 (7)0.0027 (7)
C1220.0271 (8)0.0242 (9)0.0518 (11)0.0004 (7)0.0027 (7)0.0029 (8)
C1230.0275 (8)0.0362 (10)0.0508 (11)0.0056 (7)0.0052 (8)0.0176 (9)
C1240.0295 (8)0.0429 (11)0.0266 (8)0.0020 (7)0.0077 (6)0.0084 (7)
C11'0.0215 (6)0.0205 (7)0.0176 (6)0.0019 (5)0.0028 (5)0.0018 (5)
C12'0.0301 (7)0.0243 (8)0.0153 (6)0.0030 (6)0.0047 (5)0.0003 (6)
C13'0.0255 (7)0.0209 (7)0.0177 (6)0.0006 (6)0.0049 (5)0.0027 (5)
O13'0.0516 (7)0.0269 (6)0.0276 (6)0.0125 (6)0.0154 (5)0.0130 (5)
C14'0.0188 (6)0.0174 (7)0.0184 (6)0.0006 (5)0.0022 (5)0.0004 (5)
O14'0.0283 (5)0.0179 (5)0.0203 (5)0.0041 (4)0.0089 (4)0.0023 (4)
C15'0.0264 (7)0.0231 (8)0.0224 (7)0.0028 (6)0.0057 (6)0.0037 (6)
O15'0.0274 (5)0.0248 (6)0.0203 (5)0.0036 (4)0.0009 (4)0.0007 (4)
N210.0229 (6)0.0171 (6)0.0150 (5)0.0019 (5)0.0011 (4)0.0018 (4)
C220.0234 (7)0.0177 (7)0.0162 (6)0.0018 (5)0.0045 (5)0.0000 (5)
O220.0315 (5)0.0204 (5)0.0160 (5)0.0001 (4)0.0010 (4)0.0006 (4)
N230.0271 (6)0.0177 (6)0.0161 (5)0.0008 (5)0.0042 (5)0.0002 (5)
C240.0213 (6)0.0158 (7)0.0186 (6)0.0009 (5)0.0047 (5)0.0020 (5)
N240.0296 (6)0.0195 (6)0.0183 (6)0.0067 (5)0.0021 (5)0.0010 (5)
C250.0234 (7)0.0185 (7)0.0161 (6)0.0011 (5)0.0036 (5)0.0014 (5)
C260.0232 (6)0.0195 (7)0.0164 (6)0.0011 (5)0.0036 (5)0.0003 (5)
C270.0271 (7)0.0174 (7)0.0202 (7)0.0046 (6)0.0035 (5)0.0013 (5)
C280.0304 (8)0.0226 (8)0.0206 (7)0.0044 (6)0.0039 (6)0.0017 (6)
C290.0349 (8)0.0267 (8)0.0167 (7)0.0005 (7)0.0014 (6)0.0007 (6)
C2100.0229 (7)0.0247 (8)0.0179 (6)0.0004 (6)0.0003 (5)0.0001 (6)
C2110.0248 (7)0.0244 (8)0.0166 (6)0.0026 (6)0.0021 (5)0.0001 (6)
C2120.0259 (7)0.0337 (9)0.0214 (7)0.0050 (6)0.0022 (6)0.0045 (6)
C2130.0276 (7)0.0226 (8)0.0210 (7)0.0058 (6)0.0053 (6)0.0031 (6)
N2140.0368 (7)0.0370 (8)0.0232 (6)0.0024 (7)0.0015 (5)0.0039 (6)
N2150.0396 (8)0.0334 (8)0.0255 (7)0.0044 (7)0.0011 (6)0.0045 (6)
N2160.0379 (7)0.0246 (7)0.0190 (6)0.0036 (6)0.0021 (5)0.0013 (5)
C2170.0346 (8)0.0272 (8)0.0229 (7)0.0011 (7)0.0068 (6)0.0036 (6)
C2180.0515 (10)0.0253 (9)0.0187 (7)0.0057 (8)0.0020 (7)0.0032 (6)
C2190.0268 (7)0.0261 (8)0.0219 (7)0.0008 (6)0.0027 (6)0.0020 (6)
C2200.0326 (8)0.0438 (11)0.0287 (8)0.0056 (8)0.0002 (7)0.0023 (8)
C2210.0465 (12)0.0545 (15)0.0483 (12)0.0243 (11)0.0129 (10)0.0228 (11)
C2220.0403 (11)0.0269 (10)0.0904 (19)0.0060 (9)0.0288 (12)0.0112 (12)
C2230.0314 (9)0.0343 (11)0.0795 (16)0.0094 (8)0.0093 (10)0.0150 (11)
C2240.0287 (8)0.0336 (10)0.0416 (10)0.0020 (7)0.0026 (7)0.0100 (8)
C21'0.0246 (7)0.0185 (7)0.0155 (6)0.0016 (5)0.0002 (5)0.0008 (5)
C22'0.0239 (7)0.0216 (8)0.0263 (7)0.0008 (6)0.0036 (6)0.0021 (6)
C23'0.0206 (6)0.0233 (8)0.0210 (7)0.0001 (6)0.0000 (5)0.0018 (6)
O23'0.0293 (6)0.0290 (6)0.0215 (5)0.0052 (5)0.0025 (4)0.0068 (5)
C24'0.0217 (6)0.0179 (7)0.0173 (6)0.0010 (5)0.0024 (5)0.0024 (5)
O24'0.0195 (4)0.0170 (5)0.0198 (5)0.0000 (4)0.0014 (4)0.0003 (4)
C25'0.0239 (7)0.0285 (8)0.0189 (6)0.0041 (6)0.0047 (5)0.0007 (6)
O25'0.0327 (6)0.0352 (7)0.0146 (5)0.0130 (5)0.0011 (4)0.0013 (4)
Geometric parameters (Å, º) top
N11—C161.3554 (18)N21—C261.3564 (18)
N11—C121.3979 (19)N21—C221.4043 (19)
N11—C11'1.4939 (19)N21—C21'1.4948 (19)
C12—O121.2459 (18)C22—O221.2405 (18)
C12—N131.352 (2)C22—N231.3573 (19)
N13—C141.3376 (19)N23—C241.3397 (19)
C14—N141.3351 (19)C24—N241.331 (2)
C14—C151.438 (2)C24—C251.443 (2)
N14—H14A0.8800N24—H24A0.8800
N14—H14B0.8800N24—H24B0.8800
C15—C161.364 (2)C25—C261.363 (2)
C15—C171.431 (2)C25—C271.435 (2)
C16—H16A0.9500C26—H26A0.9500
C17—C181.194 (2)C27—C281.190 (2)
C18—C191.466 (2)C28—C291.471 (2)
C19—C1101.529 (2)C29—C2101.536 (2)
C19—H19A0.9900C29—H29A0.9900
C19—H19B0.9900C29—H29B0.9900
C110—C1111.522 (2)C210—C2111.524 (2)
C110—H11A0.9900C210—H21A0.9900
C110—H11B0.9900C210—H21B0.9900
C111—C1121.528 (2)C211—C2121.528 (2)
C111—H11C0.9900C211—H21C0.9900
C111—H11D0.9900C211—H21D0.9900
C112—C1131.501 (2)C212—C2131.504 (2)
C112—H11E0.9900C212—H21E0.9900
C112—H11F0.9900C212—H21F0.9900
C113—N1141.354 (2)C213—N2141.360 (2)
C113—C1171.366 (2)C213—C2171.371 (2)
N114—N1151.318 (2)N214—N2151.321 (2)
N115—N1161.333 (2)N215—N2161.333 (2)
N116—C1171.354 (2)N216—C2171.353 (2)
N116—C1181.467 (2)N216—C2181.476 (2)
C117—H11I0.9500C217—H21I0.9500
C118—C1191.508 (2)C218—C2191.508 (3)
C118—H11J0.9900C218—H21J0.9900
C118—H11K0.9900C218—H21K0.9900
C119—C1201.392 (2)C219—C2201.384 (2)
C119—C1241.393 (2)C219—C2241.395 (2)
C120—C1211.384 (3)C220—C2211.403 (3)
C120—H12A0.9500C220—H22A0.9500
C121—C1221.385 (3)C221—C2221.383 (4)
C121—H12B0.9500C221—H22B0.9500
C122—C1231.378 (3)C222—C2231.370 (4)
C122—H12C0.9500C222—H22C0.9500
C123—C1241.383 (3)C223—C2241.386 (3)
C123—H12D0.9500C223—H22D0.9500
C124—H12E0.9500C224—H22E0.9500
C11'—O14'1.4154 (18)C21'—O24'1.4172 (18)
C11'—C12'1.530 (2)C21'—C22'1.531 (2)
C11'—H11L1.0000C21'—H21L1.0000
C12'—C13'1.526 (2)C22'—C23'1.537 (2)
C12'—H12F0.9900C22'—H22F0.9900
C12'—H12G0.9900C22'—H22G0.9900
C13'—O13'1.4159 (19)C23'—O23'1.4133 (19)
C13'—C14'1.522 (2)C23'—C24'1.533 (2)
C13'—H13B1.0000C23'—H23B1.0000
O13'—H13C0.8400O23'—H23C0.8400
C14'—O14'1.4349 (18)C24'—O24'1.4499 (18)
C14'—C15'1.515 (2)C24'—C25'1.514 (2)
C14'—H14C1.0000C24'—H24C1.0000
C15'—O15'1.4234 (19)C25'—O25'1.4265 (18)
C15'—H15A0.9900C25'—H25A0.9900
C15'—H15B0.9900C25'—H25B0.9900
O15'—H15C0.8400O25'—H25C0.8400
C16—N11—C12120.78 (12)C26—N21—C22121.02 (12)
C16—N11—C11'122.64 (12)C26—N21—C21'121.33 (12)
C12—N11—C11'116.19 (11)C22—N21—C21'117.63 (11)
O12—C12—N13122.98 (13)O22—C22—N23123.26 (13)
O12—C12—N11117.38 (13)O22—C22—N21118.03 (13)
N13—C12—N11119.62 (13)N23—C22—N21118.70 (12)
C14—N13—C12120.03 (12)C24—N23—C22120.34 (13)
N14—C14—N13117.82 (13)N24—C24—N23118.24 (13)
N14—C14—C15120.66 (13)N24—C24—C25119.85 (13)
N13—C14—C15121.52 (13)N23—C24—C25121.90 (13)
C14—N14—H14A120.0C24—N24—H24A120.0
C14—N14—H14B120.0C24—N24—H24B120.0
H14A—N14—H14B120.0H24A—N24—H24B120.0
C16—C15—C17122.68 (13)C26—C25—C27123.22 (14)
C16—C15—C14116.94 (13)C26—C25—C24116.29 (13)
C17—C15—C14120.19 (13)C27—C25—C24120.42 (13)
N11—C16—C15120.80 (13)N21—C26—C25121.29 (14)
N11—C16—H16A119.6N21—C26—H26A119.4
C15—C16—H16A119.6C25—C26—H26A119.4
C18—C17—C15174.89 (16)C28—C27—C25174.68 (16)
C17—C18—C19173.49 (16)C27—C28—C29179.29 (18)
C18—C19—C110111.24 (13)C28—C29—C210113.81 (14)
C18—C19—H19A109.4C28—C29—H29A108.8
C110—C19—H19A109.4C210—C29—H29A108.8
C18—C19—H19B109.4C28—C29—H29B108.8
C110—C19—H19B109.4C210—C29—H29B108.8
H19A—C19—H19B108.0H29A—C29—H29B107.7
C111—C110—C19110.72 (12)C211—C210—C29109.69 (12)
C111—C110—H11A109.5C211—C210—H21A109.7
C19—C110—H11A109.5C29—C210—H21A109.7
C111—C110—H11B109.5C211—C210—H21B109.7
C19—C110—H11B109.5C29—C210—H21B109.7
H11A—C110—H11B108.1H21A—C210—H21B108.2
C110—C111—C112113.32 (13)C210—C211—C212114.43 (13)
C110—C111—H11C108.9C210—C211—H21C108.7
C112—C111—H11C108.9C212—C211—H21C108.7
C110—C111—H11D108.9C210—C211—H21D108.7
C112—C111—H11D108.9C212—C211—H21D108.7
H11C—C111—H11D107.7H21C—C211—H21D107.6
C113—C112—C111110.77 (13)C213—C212—C211111.29 (13)
C113—C112—H11E109.5C213—C212—H21E109.4
C111—C112—H11E109.5C211—C212—H21E109.4
C113—C112—H11F109.5C213—C212—H21F109.4
C111—C112—H11F109.5C211—C212—H21F109.4
H11E—C112—H11F108.1H21E—C212—H21F108.0
N114—C113—C117107.61 (14)N214—C213—C217107.12 (14)
N114—C113—C112120.58 (14)N214—C213—C212121.08 (14)
C117—C113—C112131.72 (16)C217—C213—C212131.74 (16)
N115—N114—C113109.75 (13)N215—N214—C213109.84 (14)
N114—N115—N116106.71 (14)N214—N215—N216106.73 (14)
N115—N116—C117110.93 (13)N215—N216—C217110.95 (13)
N115—N116—C118119.97 (13)N215—N216—C218118.89 (14)
C117—N116—C118129.10 (14)C217—N216—C218130.11 (15)
N116—C117—C113105.00 (14)N216—C217—C213105.35 (15)
N116—C117—H11I127.5N216—C217—H21I127.3
C113—C117—H11I127.5C213—C217—H21I127.3
N116—C118—C119112.59 (13)N216—C218—C219112.87 (13)
N116—C118—H11J109.1N216—C218—H21J109.0
C119—C118—H11J109.1C219—C218—H21J109.0
N116—C118—H11K109.1N216—C218—H21K109.0
C119—C118—H11K109.1C219—C218—H21K109.0
H11J—C118—H11K107.8H21J—C218—H21K107.8
C120—C119—C124118.64 (16)C220—C219—C224120.02 (18)
C120—C119—C118119.61 (14)C220—C219—C218119.87 (16)
C124—C119—C118121.66 (15)C224—C219—C218120.03 (16)
C121—C120—C119121.02 (15)C219—C220—C221119.3 (2)
C121—C120—H12A119.5C219—C220—H22A120.3
C119—C120—H12A119.5C221—C220—H22A120.3
C120—C121—C122119.76 (17)C222—C221—C220120.1 (2)
C120—C121—H12B120.1C222—C221—H22B119.9
C122—C121—H12B120.1C220—C221—H22B119.9
C123—C122—C121119.58 (18)C223—C222—C221120.2 (2)
C123—C122—H12C120.2C223—C222—H22C119.9
C121—C122—H12C120.2C221—C222—H22C119.9
C122—C123—C124120.96 (17)C222—C223—C224120.5 (2)
C122—C123—H12D119.5C222—C223—H22D119.8
C124—C123—H12D119.5C224—C223—H22D119.8
C123—C124—C119120.02 (17)C223—C224—C219119.8 (2)
C123—C124—H12E120.0C223—C224—H22E120.1
C119—C124—H12E120.0C219—C224—H22E120.1
O14'—C11'—N11107.32 (11)O24'—C21'—N21108.68 (11)
O14'—C11'—C12'107.63 (12)O24'—C21'—C22'107.42 (12)
N11—C11'—C12'113.50 (12)N21—C21'—C22'113.38 (12)
O14'—C11'—H11L109.4O24'—C21'—H21L109.1
N11—C11'—H11L109.4N21—C21'—H21L109.1
C12'—C11'—H11L109.4C22'—C21'—H21L109.1
C13'—C12'—C11'104.55 (12)C21'—C22'—C23'103.69 (12)
C13'—C12'—H12F110.8C21'—C22'—H22F111.0
C11'—C12'—H12F110.8C23'—C22'—H22F111.0
C13'—C12'—H12G110.8C21'—C22'—H22G111.0
C11'—C12'—H12G110.8C23'—C22'—H22G111.0
H12F—C12'—H12G108.9H22F—C22'—H22G109.0
O13'—C13'—C14'108.06 (12)O23'—C23'—C24'111.93 (13)
O13'—C13'—C12'114.43 (13)O23'—C23'—C22'113.90 (13)
C14'—C13'—C12'103.11 (12)C24'—C23'—C22'102.26 (12)
O13'—C13'—H13B110.3O23'—C23'—H23B109.5
C14'—C13'—H13B110.3C24'—C23'—H23B109.5
C12'—C13'—H13B110.3C22'—C23'—H23B109.5
C13'—O13'—H13C109.5C23'—O23'—H23C109.5
O14'—C14'—C15'109.76 (12)O24'—C24'—C25'112.12 (11)
O14'—C14'—C13'105.97 (11)O24'—C24'—C23'104.76 (12)
C15'—C14'—C13'115.83 (13)C25'—C24'—C23'112.77 (12)
O14'—C14'—H14C108.4O24'—C24'—H24C109.0
C15'—C14'—H14C108.4C25'—C24'—H24C109.0
C13'—C14'—H14C108.4C23'—C24'—H24C109.0
C11'—O14'—C14'110.32 (11)C21'—O24'—C24'110.62 (11)
O15'—C15'—C14'113.56 (12)O25'—C25'—C24'109.18 (12)
O15'—C15'—H15A108.9O25'—C25'—H25A109.8
C14'—C15'—H15A108.9C24'—C25'—H25A109.8
O15'—C15'—H15B108.9O25'—C25'—H25B109.8
C14'—C15'—H15B108.9C24'—C25'—H25B109.8
H15A—C15'—H15B107.7H25A—C25'—H25B108.3
C15'—O15'—H15C109.5C25'—O25'—H25C109.5
C16—N11—C12—O12179.89 (13)C26—N21—C22—O22173.38 (13)
C11'—N11—C12—O126.95 (19)C21'—N21—C22—O228.12 (19)
C16—N11—C12—N131.6 (2)C26—N21—C22—N236.6 (2)
C11'—N11—C12—N13171.38 (13)C21'—N21—C22—N23171.94 (12)
O12—C12—N13—C14176.84 (14)O22—C22—N23—C24176.29 (13)
N11—C12—N13—C141.4 (2)N21—C22—N23—C243.7 (2)
C12—N13—C14—N14174.35 (14)C22—N23—C24—N24176.10 (13)
C12—N13—C14—C155.6 (2)C22—N23—C24—C252.6 (2)
N14—C14—C15—C16173.20 (14)N24—C24—C25—C26172.65 (14)
N13—C14—C15—C166.7 (2)N23—C24—C25—C266.0 (2)
N14—C14—C15—C171.8 (2)N24—C24—C25—C274.4 (2)
N13—C14—C15—C17178.29 (13)N23—C24—C25—C27176.95 (13)
C12—N11—C16—C150.2 (2)C22—N21—C26—C253.0 (2)
C11'—N11—C16—C15172.27 (13)C21'—N21—C26—C25175.46 (13)
C17—C15—C16—N11178.57 (13)C27—C25—C26—N21179.96 (14)
C14—C15—C16—N113.7 (2)C24—C25—C26—N213.1 (2)
C18—C19—C110—C111178.95 (13)C28—C29—C210—C211172.54 (13)
C19—C110—C111—C112174.08 (14)C29—C210—C211—C212175.28 (14)
C110—C111—C112—C113165.41 (14)C210—C211—C212—C213166.65 (14)
C111—C112—C113—N11476.6 (2)C211—C212—C213—N21479.34 (19)
C111—C112—C113—C11799.3 (2)C211—C212—C213—C21797.4 (2)
C117—C113—N114—N1151.1 (2)C217—C213—N214—N2150.66 (19)
C112—C113—N114—N115177.90 (16)C212—C213—N214—N215178.13 (14)
C113—N114—N115—N1160.6 (2)C213—N214—N215—N2160.69 (19)
N114—N115—N116—C1170.0 (2)N214—N215—N216—C2170.47 (19)
N114—N115—N116—C118179.63 (15)N214—N215—N216—C218178.43 (15)
N115—N116—C117—C1130.64 (19)N215—N216—C217—C2130.07 (18)
C118—N116—C117—C113178.96 (15)C218—N216—C217—C213177.73 (15)
N114—C113—C117—N1161.01 (19)N214—C213—C217—N2160.35 (17)
C112—C113—C117—N116177.36 (17)C212—C213—C217—N216177.45 (16)
N115—N116—C118—C119119.04 (17)N215—N216—C218—C219129.99 (17)
C117—N116—C118—C11961.4 (2)C217—N216—C218—C21952.5 (2)
N116—C118—C119—C120134.96 (15)N216—C218—C219—C220129.66 (17)
N116—C118—C119—C12448.5 (2)N216—C218—C219—C22453.6 (2)
C124—C119—C120—C1211.4 (2)C224—C219—C220—C2211.0 (2)
C118—C119—C120—C121175.27 (14)C218—C219—C220—C221175.76 (16)
C119—C120—C121—C1221.5 (2)C219—C220—C221—C2221.3 (3)
C120—C121—C122—C1230.3 (2)C220—C221—C222—C2230.1 (3)
C121—C122—C123—C1241.0 (3)C221—C222—C223—C2241.4 (3)
C122—C123—C124—C1191.0 (3)C222—C223—C224—C2191.7 (3)
C120—C119—C124—C1230.1 (2)C220—C219—C224—C2230.5 (3)
C118—C119—C124—C123176.44 (15)C218—C219—C224—C223177.23 (16)
C16—N11—C11'—O14'4.77 (18)C26—N21—C21'—O24'19.41 (18)
C12—N11—C11'—O14'168.02 (12)C22—N21—C21'—O24'159.08 (12)
C16—N11—C11'—C12'114.01 (15)C26—N21—C21'—C22'99.96 (16)
C12—N11—C11'—C12'73.20 (16)C22—N21—C21'—C22'81.54 (15)
O14'—C11'—C12'—C13'11.18 (15)O24'—C21'—C22'—C23'17.34 (15)
N11—C11'—C12'—C13'107.42 (13)N21—C21'—C22'—C23'137.43 (12)
C11'—C12'—C13'—O13'141.30 (13)C21'—C22'—C23'—O23'90.74 (14)
C11'—C12'—C13'—C14'24.20 (15)C21'—C22'—C23'—C24'30.22 (15)
O13'—C13'—C14'—O14'150.80 (12)O23'—C23'—C24'—O24'89.40 (14)
C12'—C13'—C14'—O14'29.29 (14)C22'—C23'—C24'—O24'32.91 (14)
O13'—C13'—C14'—C15'87.26 (15)O23'—C23'—C24'—C25'148.40 (13)
C12'—C13'—C14'—C15'151.23 (13)C22'—C23'—C24'—C25'89.29 (15)
N11—C11'—O14'—C14'130.15 (11)N21—C21'—O24'—C24'119.28 (12)
C12'—C11'—O14'—C14'7.65 (15)C22'—C21'—O24'—C24'3.75 (14)
C15'—C14'—O14'—C11'149.31 (12)C25'—C24'—O24'—C21'99.14 (13)
C13'—C14'—O14'—C11'23.56 (14)C23'—C24'—O24'—C21'23.48 (14)
O14'—C14'—C15'—O15'59.51 (16)O24'—C24'—C25'—O25'56.44 (17)
C13'—C14'—C15'—O15'60.40 (17)C23'—C24'—C25'—O25'174.40 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N23i0.882.142.978 (2)158
N14—H14B···O15ii0.882.453.1038 (19)131
O13—H13C···N114iii0.841.982.815 (2)173
O15—H15C···O22iv0.841.952.7813 (18)173
N24—H24A···N13v0.882.072.944 (2)173
N24—H24B···O25i0.882.362.9839 (19)128
O23—H23C···N214v0.842.022.833 (2)164
O25—H25C···O12vi0.841.842.6483 (17)161
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+2, y+1/2, z+1; (iii) x+2, y1/2, z+1; (iv) x, y1, z1; (v) x+2, y+1/2, z+2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H28N6O4
Mr464.52
Crystal system, space groupMonoclinic, P21
Temperature (K)130
a, b, c (Å)12.525 (6), 15.051 (7), 12.719 (6)
β (°) 106.241 (10)
V3)2302 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.701, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
131640, 11402, 10254
Rint0.037
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.02
No. of reflections11402
No. of parameters617
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.21
Absolute structureEstablished by known chemical absolute configuration

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
N11—C11'1.4939 (19)N21—C21'1.4948 (19)
C15—C171.431 (2)C25—C271.435 (2)
C17—C181.194 (2)C27—C281.190 (2)
C112—C1131.501 (2)C212—C2131.504 (2)
N116—C1181.467 (2)N216—C2181.476 (2)
C18—C17—C15174.89 (16)C28—C27—C25174.68 (16)
C17—C18—C19173.49 (16)C27—C28—C29179.29 (18)
N114—N115—N116106.71 (14)N214—N215—N216106.73 (14)
N116—C118—C119112.59 (13)N216—C218—C219112.87 (13)
C111—C112—C113—N11476.6 (2)C211—C212—C213—N21479.34 (19)
N115—N116—C118—C119119.04 (17)N215—N216—C218—C219129.99 (17)
C12—N11—C11'—O14'168.02 (12)C22—N21—C21'—O24'159.08 (12)
C13'—C14'—C15'—O15'60.40 (17)C23'—C24'—C25'—O25'174.40 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···N23i0.882.142.978 (2)158.3
N14—H14B···O15'ii0.882.453.1038 (19)131.0
O13'—H13C···N114iii0.841.982.815 (2)172.8
O15'—H15C···O22iv0.841.952.7813 (18)173.4
N24—H24A···N13v0.882.072.944 (2)172.5
N24—H24B···O25'i0.882.362.9839 (19)128.0
O23'—H23C···N214v0.842.022.833 (2)164.1
O25'—H25C···O12vi0.841.842.6483 (17)160.6
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+2, y+1/2, z+1; (iii) x+2, y1/2, z+1; (iv) x, y1, z1; (v) x+2, y+1/2, z+2; (vi) x, y+1, z.
Selected geometric parameters for conformers (I-1) (X = 1) and (I-2) (X = 2) (Å, °) top
NX1—CX1'1.4939 (19)1.4948 (19)
CX5—CX71.431 (2)1.435 (2)
CX7—CX81.194 (2)1.190 (2)
CX12—CX131.501 (2)1.504 (2)
NX16—CX181.467 (2)1.476 (2)
CX8—CX7—CX5174.89 (16)174.68 (16)
CX7—CX8—CX9173.49 (16)179.29 (18)
NX14—NX15—NX16106.71 (14)106.73 (14)
NX16—CX18—CX19112.59 (13)112.87 (13)
CX11—CX12—CX13—NX1476.6 (2)-79.34 (19)
NX15—NX16—CX18—CX19-119.04 (17)129.99 (17)
CX2—NX1—CX1'—OX4'-168.02 (12)-159.08 (12)
CX3'—CX4'—CX5'—OX5'60.40 (17)174.40 (12)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds