Download citation
Download citation
link to html
The structures of tricarbon­yl(formyl­cyclo­penta­dien­yl)man­gan­ese(I), [Mn(C6H5O)(CO)3], (I), and tricarbon­yl(formyl­cyclo­penta­dien­yl)rhenium(I), [Re(C6H5O)(CO)3], (II), were determined at 100 K. Compounds (I) and (II) both possess a carbonyl group in a trans position relative to the substituted C atom of the cyclo­penta­dienyl ring, while the other two carbonyl groups are in almost eclipsed positions relative to their attached C atoms. Analysis of the inter­molecular contacts reveals that the mol­ecules in both com­pounds form stacks due to short attractive [pi](CO)...[pi](CO) and [pi](CO)...[pi] inter­actions, along the crystallographic c axis for (I) and along the [201] direction for (II). Symmetry-related stacks are bound to each other by weak inter­molecular C-H...O hydrogen bonds, leading to the formation of the three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112005562/sf3162sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112005562/sf3162Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112005562/sf3162IIsup3.hkl
Contains datablock II

CCDC references: 873878; 873879

Comment top

The field of organometallic chemistry dealing wih derivatives of cymantrene and cyrhetrene is of considerable interest for materials chemistry. One of the eye-catching areas of organometallic chemistry is the introduction of organometallic labels for the immunoassay of proteins [Please check rephrasing - original not clear], for instance, bovin serum albumin, enkephalin and others (Hromadová et al., 2003, 2006; Peindy N'Dongo et al., 2008; Jaouen, 2008) due to electron-withdrawing and IR-active nature of the carbonyl groups. Other examples include the synthesis of cymantrene-containing organometallic polymers (Setayesh & Bunz, 1996), incorporation into biological molecules to modify or provide new biological activities (for example, 17α-ethynylestradiol derivatives; Ferber et al., 2006), synthesis of planar chiral derivatives for further use in the asymmetric synthesis (Loim et al., 1994; Lyubimov et al., 2006), and chemistry of fuels (Geivanidis et al., 2003; Marsh et al., 2005). Because of the significant interest in this area, we have focused our studies on structural investigations of the title compounds, (I) and (II) (Fig. 1), which are usually used as starting reagents for the above-mentioned applications. In spite of the great variety of monosubstituted (η5-C5H4X)M(CO)3 (where M is Mn or Re and X is any atom) complexes reported in the literature, the structures of such fundamental compounds like formylcymantrene and formylcyrhetrene have not yet been described. In this work, we report the first structural study of formyl derivatives of (η5-C5H4CHO)M(CO)3 [with M = Mn, (I), and M = Re, (II)] compounds.

The mean values of the geometric parameters for (I) and (II) are in accordance with those previously reported (Table 1) for 89 monosubstituted cymantrenes and 30 (η5-C5H4X)Re(CO)3 compounds, which were retrieved from examination of the Cambridge Structural Database using ConQuest (CSD, Version 1.12; Allen, 2002), as well as the unsubstituted compounds (η5-C5H5)M(CO)3 (M = Mn or Re; Cowie et al., 1990). Monosubstituted complexes (η5-C5H4X)M(CO)3 (where X is any atom and M = Mn or Re) were considered, with the following search criteria: (a) three-dimensional coordinates and R < 0.10; (b) no errors; (c) no crystallographic disorder; and (d) no polymer structures.

The formyl substituent of (I) and (II) is almost coplanar with the Cp ring (7.5°), thus allowing conjugation of the ππ electron systems of the C O bond and of the aromatic cyclopentadienyl ring. The existence of CO—Cp conjugation is supported by the C1—C6 bond lengths of 1.4631 (19) and 1.466 (5) Å for (I) and (II), respectively, which are between typical values for single- and double-bond distances (1.54 and 1.40 Å, respectively [Reference?]). The CO bond lengths are 1.2142 (17) and 1.208 (4) Å, and the C1—C6—O1 angles are 124.09 (12) and 124.0 (3)°, for (I) and (II), respectively; these angles are significantly smaller than those reported for formylferrocene (142.5°; Lousada et al., 2008). The (O)C—M—C(O) angle is in accord with a tendency for decreasing pyramidality of the M(CO)3 fragment with increasing π-donor capacity of the cyclic polyene (Fitzpatrick, Le Page, Sedman & Butler, 1981 ?): (η6-C6H6)Cr(CO)3 = 88.22 (8)° (Rees & Coppens, 1973), (η5-C5H5)Re(CO)3 = 90.0 (2)° (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page, Sedman & Butler, 1981 ?), (η5-C5H5)Mn(CO)3 = 92.02 (5) (Cowie et al., 1990), (η4-C4H4)Fe(CO)3 = 95.6 (Hall et al., 1975) and (η4-C4Ph4)Fe(CO)3 = 97.03 (3)° (Dodge & Schomaker, 1965). The M—C—O angles do not differ significantly from 180°.

The coordination to the (η5-C5H4X) ring of the M(CO)3 (M = Mn r Re) fragment, which possesses C3v symmetry, lowers the molecular symmetry to C1 (Fig. 3). Compounds (I) and (II) show the same mutual dispositions of the carbonyl groups and (η5-C5H4X) rings: the carbonyl C9O4 group for (I) and (II) is in a transoid position relative to substituted atom C1 of the (η5-C5H4CHO) ring, while the C7O2 and C8O3 carbonyl groups are in an almost eclipsed postion relative to atoms C5 and C2, respectively (Fig. 2).

According to a systematic CSD analysis of interactions between ketonic (C2—CO) carbonyl groups, three types of interaction motifs were identified: a predominant slightly sheared antiparallel motif, a perpendicular motif, and a highly sheared parallel motif (Allen et al., 1998). For transition metal carbonyls, a higher percentage of the perpendicular motif has been reported (Allen et al., 2006).

The molecules of both (I) and (II) form stacks due to the presence of short intermolecular interactions involving CO groups. These stacks are observed along the crystallographic c axis for (I) and the [201] direction for (II), and they involve short perpendicular π(CO)···π(CO) and π(CO)···π interactions (Fig. 3 and Table 2). Comparison of the parameters obtained for (I) and (II) with distances and angles reported for similar interactions in other transition metal carbonyls (2.95–3.60 Å and 80–135°) indicate that the π(CO)···π(CO) interactions are relatively strong in (I) (Allen et al., 2006). Intermolecular π(CO)···π(CO) interactions are not rare: sheared antiparallel and perpendicular motifs were found for 14 of the 89 hits for mono-substituted cymantrenes and for three of the 30 hits for (η5-C5H4X)Re(CO)3 compounds in the above CSD search.

The C7O2 and C8O3 carbonyl groups are involved in π(CO)···π interactions between C atoms of the Cp ring and carbonyl groups of neighbouring molecules (see Table 2). Such weak noncovalent inter- and intramolecular interactions of the type CO···π(aromatic system) have been experimentally deduced in a noticeable number of compounds (Bitterwolf et al., 1997). They are an important factor for crystal packing and hence for molecular physical properties and chemical reactivities (Boldyrev, 1996; Desiraju, 1997; Tanaka & Toda, 2000; Yang et al., 2005). The distances between the carbonyl O atoms and the C atoms of the aromatic systems are in the range 3.10–3.55 Å (Bitterwolf et al., 1997). Also, it is assumed that π(CO)···π interactions are attractive and can probably be described as charge-transfer interactions, with energies between -3.5 and -1.8 kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1) (Bitterwolf et al., 1997).

Symmetry-related stacks of molecules in both (I) and (II) are bound to each other by weak intermolecular C—H···O hydrogen bonds (Table 3). These two supramolecular motifs generate a three-dimensional network (Fig. 4). The sets of C—H···O hydrogen bonds are similar between (I) and (II). The mean van der Waals radii used to identify intermolecular interactions and contacts were taken as C = 1.70 Å and O = 1.52 Å (Bondi, 1964).

Related literature top

For related literature, see: Allen (2002); Allen et al. (1998, 2006); Bitterwolf et al. (1997); Boldyrev (1996); Bondi (1964); Cowie et al. (1990); Desiraju (1997); Dodge & Schomaker (1965); Ferber et al. (2006); Fitzpatrick, Le Page & Butler (1981); Fitzpatrick, Le Page, Sedman & Butler (1981); Geivanidis et al. (2003); Hall et al. (1975); Hromadová et al. (2003, 2006); Jaouen (2008); Kolobova et al. (1981); Loim et al. (1994); Lousada et al. (2008); Lyubimov et al. (2006); Marsh et al. (2005); Peindy N'Dongo, Neundorf, Merz & Schatzschneider (2008); Rees & Coppens (1973); Setayesh & Bunz (1996); Tanaka & Toda (2000); Yang et al. (2005).

Experimental top

Compounds (I) and (II) were prepared according to a standard literature procedure (Kolobova et al., 1981). Crystals of (I) and (II) were obtained by slow evaporation of hexane solutions at room temperature.

Refinement top

All H atoms were positioned geometrically, with C—H = 1.00 Å, and refined in riding mode, with Uiso(H) = 1.2Ueq(C).

Structure description top

The field of organometallic chemistry dealing wih derivatives of cymantrene and cyrhetrene is of considerable interest for materials chemistry. One of the eye-catching areas of organometallic chemistry is the introduction of organometallic labels for the immunoassay of proteins [Please check rephrasing - original not clear], for instance, bovin serum albumin, enkephalin and others (Hromadová et al., 2003, 2006; Peindy N'Dongo et al., 2008; Jaouen, 2008) due to electron-withdrawing and IR-active nature of the carbonyl groups. Other examples include the synthesis of cymantrene-containing organometallic polymers (Setayesh & Bunz, 1996), incorporation into biological molecules to modify or provide new biological activities (for example, 17α-ethynylestradiol derivatives; Ferber et al., 2006), synthesis of planar chiral derivatives for further use in the asymmetric synthesis (Loim et al., 1994; Lyubimov et al., 2006), and chemistry of fuels (Geivanidis et al., 2003; Marsh et al., 2005). Because of the significant interest in this area, we have focused our studies on structural investigations of the title compounds, (I) and (II) (Fig. 1), which are usually used as starting reagents for the above-mentioned applications. In spite of the great variety of monosubstituted (η5-C5H4X)M(CO)3 (where M is Mn or Re and X is any atom) complexes reported in the literature, the structures of such fundamental compounds like formylcymantrene and formylcyrhetrene have not yet been described. In this work, we report the first structural study of formyl derivatives of (η5-C5H4CHO)M(CO)3 [with M = Mn, (I), and M = Re, (II)] compounds.

The mean values of the geometric parameters for (I) and (II) are in accordance with those previously reported (Table 1) for 89 monosubstituted cymantrenes and 30 (η5-C5H4X)Re(CO)3 compounds, which were retrieved from examination of the Cambridge Structural Database using ConQuest (CSD, Version 1.12; Allen, 2002), as well as the unsubstituted compounds (η5-C5H5)M(CO)3 (M = Mn or Re; Cowie et al., 1990). Monosubstituted complexes (η5-C5H4X)M(CO)3 (where X is any atom and M = Mn or Re) were considered, with the following search criteria: (a) three-dimensional coordinates and R < 0.10; (b) no errors; (c) no crystallographic disorder; and (d) no polymer structures.

The formyl substituent of (I) and (II) is almost coplanar with the Cp ring (7.5°), thus allowing conjugation of the ππ electron systems of the C O bond and of the aromatic cyclopentadienyl ring. The existence of CO—Cp conjugation is supported by the C1—C6 bond lengths of 1.4631 (19) and 1.466 (5) Å for (I) and (II), respectively, which are between typical values for single- and double-bond distances (1.54 and 1.40 Å, respectively [Reference?]). The CO bond lengths are 1.2142 (17) and 1.208 (4) Å, and the C1—C6—O1 angles are 124.09 (12) and 124.0 (3)°, for (I) and (II), respectively; these angles are significantly smaller than those reported for formylferrocene (142.5°; Lousada et al., 2008). The (O)C—M—C(O) angle is in accord with a tendency for decreasing pyramidality of the M(CO)3 fragment with increasing π-donor capacity of the cyclic polyene (Fitzpatrick, Le Page, Sedman & Butler, 1981 ?): (η6-C6H6)Cr(CO)3 = 88.22 (8)° (Rees & Coppens, 1973), (η5-C5H5)Re(CO)3 = 90.0 (2)° (Fitzpatrick, Le Page & Butler, 1981 or Fitzpatrick, Le Page, Sedman & Butler, 1981 ?), (η5-C5H5)Mn(CO)3 = 92.02 (5) (Cowie et al., 1990), (η4-C4H4)Fe(CO)3 = 95.6 (Hall et al., 1975) and (η4-C4Ph4)Fe(CO)3 = 97.03 (3)° (Dodge & Schomaker, 1965). The M—C—O angles do not differ significantly from 180°.

The coordination to the (η5-C5H4X) ring of the M(CO)3 (M = Mn r Re) fragment, which possesses C3v symmetry, lowers the molecular symmetry to C1 (Fig. 3). Compounds (I) and (II) show the same mutual dispositions of the carbonyl groups and (η5-C5H4X) rings: the carbonyl C9O4 group for (I) and (II) is in a transoid position relative to substituted atom C1 of the (η5-C5H4CHO) ring, while the C7O2 and C8O3 carbonyl groups are in an almost eclipsed postion relative to atoms C5 and C2, respectively (Fig. 2).

According to a systematic CSD analysis of interactions between ketonic (C2—CO) carbonyl groups, three types of interaction motifs were identified: a predominant slightly sheared antiparallel motif, a perpendicular motif, and a highly sheared parallel motif (Allen et al., 1998). For transition metal carbonyls, a higher percentage of the perpendicular motif has been reported (Allen et al., 2006).

The molecules of both (I) and (II) form stacks due to the presence of short intermolecular interactions involving CO groups. These stacks are observed along the crystallographic c axis for (I) and the [201] direction for (II), and they involve short perpendicular π(CO)···π(CO) and π(CO)···π interactions (Fig. 3 and Table 2). Comparison of the parameters obtained for (I) and (II) with distances and angles reported for similar interactions in other transition metal carbonyls (2.95–3.60 Å and 80–135°) indicate that the π(CO)···π(CO) interactions are relatively strong in (I) (Allen et al., 2006). Intermolecular π(CO)···π(CO) interactions are not rare: sheared antiparallel and perpendicular motifs were found for 14 of the 89 hits for mono-substituted cymantrenes and for three of the 30 hits for (η5-C5H4X)Re(CO)3 compounds in the above CSD search.

The C7O2 and C8O3 carbonyl groups are involved in π(CO)···π interactions between C atoms of the Cp ring and carbonyl groups of neighbouring molecules (see Table 2). Such weak noncovalent inter- and intramolecular interactions of the type CO···π(aromatic system) have been experimentally deduced in a noticeable number of compounds (Bitterwolf et al., 1997). They are an important factor for crystal packing and hence for molecular physical properties and chemical reactivities (Boldyrev, 1996; Desiraju, 1997; Tanaka & Toda, 2000; Yang et al., 2005). The distances between the carbonyl O atoms and the C atoms of the aromatic systems are in the range 3.10–3.55 Å (Bitterwolf et al., 1997). Also, it is assumed that π(CO)···π interactions are attractive and can probably be described as charge-transfer interactions, with energies between -3.5 and -1.8 kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1) (Bitterwolf et al., 1997).

Symmetry-related stacks of molecules in both (I) and (II) are bound to each other by weak intermolecular C—H···O hydrogen bonds (Table 3). These two supramolecular motifs generate a three-dimensional network (Fig. 4). The sets of C—H···O hydrogen bonds are similar between (I) and (II). The mean van der Waals radii used to identify intermolecular interactions and contacts were taken as C = 1.70 Å and O = 1.52 Å (Bondi, 1964).

For related literature, see: Allen (2002); Allen et al. (1998, 2006); Bitterwolf et al. (1997); Boldyrev (1996); Bondi (1964); Cowie et al. (1990); Desiraju (1997); Dodge & Schomaker (1965); Ferber et al. (2006); Fitzpatrick, Le Page & Butler (1981); Fitzpatrick, Le Page, Sedman & Butler (1981); Geivanidis et al. (2003); Hall et al. (1975); Hromadová et al. (2003, 2006); Jaouen (2008); Kolobova et al. (1981); Loim et al. (1994); Lousada et al. (2008); Lyubimov et al. (2006); Marsh et al. (2005); Peindy N'Dongo, Neundorf, Merz & Schatzschneider (2008); Rees & Coppens (1973); Setayesh & Bunz (1996); Tanaka & Toda (2000); Yang et al. (2005).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The molecule of (II) is essentially identical.
[Figure 2] Fig. 2. A view of the conformation of (I).
[Figure 3] Fig. 3. A view of a stack for (I). Dashed lines indicate the π(CO)···π(CO) and π(CO)···π interactions. [Symmetry codes: (A) x, -y + 1/2, z + 1/2; (B) x, y, z + 1.]
[Figure 4] Fig. 4. A view of the crystal packing for (I). Fine lines indicate the π(CO)···π(CO), π(CO)···π and C—H···O interactions.
(I) tricarbonyl(η5-formylcyclopentadienyl)manganese(I) top
Crystal data top
[Mn(C6H2O)(CO)3]F(000) = 464
Mr = 232.07Dx = 1.766 Mg m3
Monoclinic, P21/cMelting point: 364 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.9011 (10) ÅCell parameters from 9065 reflections
b = 11.4482 (15) Åθ = 2.8–30.5°
c = 12.4541 (12) ŵ = 1.49 mm1
β = 129.220 (6)°T = 100 K
V = 872.74 (18) Å3Prism, yellow
Z = 40.51 × 0.50 × 0.40 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2115 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.517, Tmax = 0.587k = 1515
12874 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.029P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn(C6H2O)(CO)3]V = 872.74 (18) Å3
Mr = 232.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9011 (10) ŵ = 1.49 mm1
b = 11.4482 (15) ÅT = 100 K
c = 12.4541 (12) Å0.51 × 0.50 × 0.40 mm
β = 129.220 (6)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2115 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2023 reflections with I > 2σ(I)
Tmin = 0.517, Tmax = 0.587Rint = 0.021
12874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
2115 reflectionsΔρmin = 0.34 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.26506 (3)0.282883 (15)0.379331 (17)0.01198 (7)
O10.62240 (17)0.05288 (10)0.67321 (11)0.0318 (2)
O20.64624 (16)0.20989 (9)0.40357 (11)0.0240 (2)
O30.03238 (15)0.12029 (8)0.14886 (9)0.02052 (19)
O40.13705 (17)0.47396 (8)0.18271 (10)0.0254 (2)
C10.3487 (2)0.19892 (11)0.55911 (12)0.0156 (2)
C20.1229 (2)0.23221 (11)0.47178 (13)0.0157 (2)
H2A0.00370.17790.43020.019*
C30.1099 (2)0.35505 (11)0.45806 (13)0.0172 (2)
H3A0.02690.40280.40450.021*
C40.3283 (2)0.39918 (11)0.53757 (13)0.0185 (2)
H4A0.37010.48340.54840.022*
C50.4747 (2)0.30401 (11)0.59968 (13)0.0174 (2)
H5A0.63780.30920.66340.021*
C60.4302 (2)0.07879 (12)0.59197 (13)0.0199 (2)
H6A0.32640.01720.54700.024*
C70.4966 (2)0.23963 (11)0.39152 (12)0.0168 (2)
C80.08583 (19)0.18265 (11)0.23825 (12)0.0153 (2)
C90.1876 (2)0.39923 (11)0.25940 (13)0.0174 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01235 (10)0.01279 (10)0.01259 (10)0.00029 (6)0.00874 (8)0.00017 (6)
O10.0232 (5)0.0298 (5)0.0277 (5)0.0103 (4)0.0091 (4)0.0047 (4)
O20.0175 (4)0.0324 (5)0.0254 (5)0.0011 (4)0.0151 (4)0.0025 (4)
O30.0210 (4)0.0202 (4)0.0188 (4)0.0038 (4)0.0118 (4)0.0027 (3)
O40.0382 (6)0.0187 (5)0.0273 (5)0.0057 (4)0.0245 (5)0.0062 (4)
C10.0161 (5)0.0191 (6)0.0135 (5)0.0015 (4)0.0103 (5)0.0015 (4)
C20.0164 (5)0.0192 (6)0.0159 (5)0.0007 (4)0.0123 (5)0.0008 (4)
C30.0203 (6)0.0189 (6)0.0184 (6)0.0032 (5)0.0151 (5)0.0008 (4)
C40.0239 (6)0.0177 (6)0.0180 (6)0.0021 (5)0.0151 (5)0.0035 (5)
C50.0169 (5)0.0221 (6)0.0132 (5)0.0018 (5)0.0095 (5)0.0020 (4)
C60.0217 (6)0.0206 (6)0.0179 (6)0.0036 (5)0.0127 (5)0.0029 (5)
C70.0183 (6)0.0176 (6)0.0147 (5)0.0021 (4)0.0106 (5)0.0013 (4)
C80.0162 (5)0.0165 (5)0.0176 (5)0.0026 (4)0.0127 (5)0.0034 (4)
C90.0206 (6)0.0168 (6)0.0194 (6)0.0001 (4)0.0148 (5)0.0026 (5)
Geometric parameters (Å, º) top
Mn1—C91.7955 (13)C1—C51.4345 (17)
Mn1—C81.8063 (13)C1—C21.4347 (17)
Mn1—C71.8068 (13)C1—C61.4630 (17)
Mn1—C12.1219 (12)C2—C31.4125 (18)
Mn1—C22.1355 (12)C2—H2A1.0003
Mn1—C52.1412 (12)C3—C41.4328 (18)
Mn1—C42.1589 (12)C3—H3A0.9997
Mn1—C32.1604 (12)C4—C51.4115 (18)
O1—C61.2143 (17)C4—H4A1.0002
O2—C71.1451 (16)C5—H5A1.0003
O3—C81.1430 (16)C6—H6A0.9500
O4—C91.1494 (16)
C9—Mn1—C890.97 (6)C2—C1—Mn170.82 (7)
C9—Mn1—C793.86 (6)C6—C1—Mn1120.62 (8)
C8—Mn1—C792.12 (5)C3—C2—C1108.45 (11)
C9—Mn1—C1158.25 (5)C3—C2—Mn171.76 (7)
C8—Mn1—C1105.56 (5)C1—C2—Mn169.80 (7)
C7—Mn1—C199.44 (5)C3—C2—H2A125.8
C9—Mn1—C2129.15 (5)C1—C2—H2A125.8
C8—Mn1—C289.76 (5)Mn1—C2—H2A125.8
C7—Mn1—C2136.91 (5)C2—C3—C4107.69 (11)
C1—Mn1—C239.38 (5)C2—C3—Mn169.85 (7)
C9—Mn1—C5124.26 (5)C4—C3—Mn170.57 (7)
C8—Mn1—C5144.47 (5)C2—C3—H3A126.1
C7—Mn1—C590.09 (5)C4—C3—H3A126.1
C1—Mn1—C539.32 (5)Mn1—C3—H3A126.2
C2—Mn1—C565.43 (5)C5—C4—C3108.56 (11)
C9—Mn1—C493.58 (5)C5—C4—Mn170.16 (7)
C8—Mn1—C4150.03 (5)C3—C4—Mn170.68 (7)
C7—Mn1—C4117.05 (5)C5—C4—H4A125.7
C1—Mn1—C465.06 (5)C3—C4—H4A125.7
C2—Mn1—C464.68 (5)Mn1—C4—H4A125.7
C5—Mn1—C438.32 (5)C4—C5—C1107.97 (11)
C9—Mn1—C395.81 (5)C4—C5—Mn171.52 (7)
C8—Mn1—C3111.32 (5)C1—C5—Mn169.61 (7)
C7—Mn1—C3154.40 (5)C4—C5—H5A126.0
C1—Mn1—C365.28 (5)C1—C5—H5A126.0
C2—Mn1—C338.39 (5)Mn1—C5—H5A126.0
C5—Mn1—C364.93 (5)O1—C6—C1124.06 (13)
C4—Mn1—C338.75 (5)O1—C6—H6A118.0
C5—C1—C2107.33 (11)C1—C6—H6A118.0
C5—C1—C6127.24 (11)O2—C7—Mn1177.45 (12)
C2—C1—C6125.33 (11)O3—C8—Mn1178.04 (11)
C5—C1—Mn171.06 (7)O4—C9—Mn1179.53 (11)
C9—Mn1—C1—C548.50 (16)C9—Mn1—C3—C488.47 (8)
C8—Mn1—C1—C5173.33 (7)C8—Mn1—C3—C4178.21 (7)
C7—Mn1—C1—C578.44 (8)C7—Mn1—C3—C423.20 (15)
C2—Mn1—C1—C5116.92 (10)C1—Mn1—C3—C480.32 (8)
C4—Mn1—C1—C537.10 (7)C2—Mn1—C3—C4118.21 (10)
C3—Mn1—C1—C579.97 (8)C5—Mn1—C3—C436.77 (7)
C9—Mn1—C1—C268.42 (16)C2—C3—C4—C50.08 (14)
C8—Mn1—C1—C269.75 (8)Mn1—C3—C4—C560.20 (9)
C7—Mn1—C1—C2164.64 (8)C2—C3—C4—Mn160.27 (8)
C5—Mn1—C1—C2116.92 (10)C9—Mn1—C4—C5146.15 (8)
C4—Mn1—C1—C279.82 (8)C8—Mn1—C4—C5115.67 (11)
C3—Mn1—C1—C236.94 (7)C7—Mn1—C4—C549.97 (9)
C9—Mn1—C1—C6171.21 (12)C1—Mn1—C4—C538.06 (7)
C8—Mn1—C1—C650.62 (11)C2—Mn1—C4—C581.76 (8)
C7—Mn1—C1—C644.27 (11)C3—Mn1—C4—C5119.01 (11)
C2—Mn1—C1—C6120.38 (13)C9—Mn1—C4—C394.84 (8)
C5—Mn1—C1—C6122.71 (13)C8—Mn1—C4—C33.34 (14)
C4—Mn1—C1—C6159.80 (11)C7—Mn1—C4—C3168.98 (7)
C3—Mn1—C1—C6157.32 (12)C1—Mn1—C4—C380.96 (8)
C5—C1—C2—C30.39 (13)C2—Mn1—C4—C337.25 (7)
C6—C1—C2—C3176.16 (11)C5—Mn1—C4—C3119.01 (11)
Mn1—C1—C2—C361.68 (8)C3—C4—C5—C10.16 (14)
C5—C1—C2—Mn162.07 (8)Mn1—C4—C5—C160.36 (8)
C6—C1—C2—Mn1114.48 (12)C3—C4—C5—Mn160.52 (8)
C9—Mn1—C2—C335.17 (10)C2—C1—C5—C40.34 (13)
C8—Mn1—C2—C3126.22 (8)C6—C1—C5—C4176.13 (12)
C7—Mn1—C2—C3140.93 (8)Mn1—C1—C5—C461.57 (8)
C1—Mn1—C2—C3118.45 (10)C2—C1—C5—Mn161.91 (8)
C5—Mn1—C2—C380.04 (8)C6—C1—C5—Mn1114.56 (12)
C4—Mn1—C2—C337.60 (7)C9—Mn1—C5—C442.27 (10)
C9—Mn1—C2—C1153.62 (8)C8—Mn1—C5—C4129.22 (9)
C8—Mn1—C2—C1115.33 (8)C7—Mn1—C5—C4137.00 (8)
C7—Mn1—C2—C122.48 (11)C1—Mn1—C5—C4118.12 (10)
C5—Mn1—C2—C138.41 (7)C2—Mn1—C5—C479.64 (8)
C4—Mn1—C2—C180.85 (8)C3—Mn1—C5—C437.18 (7)
C3—Mn1—C2—C1118.45 (10)C9—Mn1—C5—C1160.38 (7)
C1—C2—C3—C40.29 (13)C8—Mn1—C5—C111.10 (12)
Mn1—C2—C3—C460.73 (8)C7—Mn1—C5—C1104.88 (8)
C1—C2—C3—Mn160.44 (8)C2—Mn1—C5—C138.47 (7)
C9—Mn1—C3—C2153.32 (8)C4—Mn1—C5—C1118.12 (10)
C8—Mn1—C3—C260.00 (8)C3—Mn1—C5—C180.94 (8)
C7—Mn1—C3—C295.01 (13)C5—C1—C6—O19.1 (2)
C1—Mn1—C3—C237.89 (7)C2—C1—C6—O1175.06 (13)
C5—Mn1—C3—C281.43 (8)Mn1—C1—C6—O197.72 (14)
C4—Mn1—C3—C2118.21 (10)
(II) tricarbonyl(η5-formylcyclopentadienyl)rhenium(I) top
Crystal data top
[Re(C6H5O)(CO)3]F(000) = 664
Mr = 363.33Dx = 2.665 Mg m3
Monoclinic, P21/cMelting point: 346 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.0768 (6) ÅCell parameters from 5896 reflections
b = 11.5037 (8) Åθ = 2.7–30.6°
c = 12.3457 (7) ŵ = 13.40 mm1
β = 127.860 (3)°T = 100 K
V = 905.63 (11) Å3Prism, yellow
Z = 40.21 × 0.20 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2189 independent reflections
Radiation source: fine-focus sealed tube2044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 28.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.165, Tmax = 0.414k = 1515
9983 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.020P)2 + 0.980P]
where P = (Fo2 + 2Fc2)/3
2189 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 1.53 e Å3
Crystal data top
[Re(C6H5O)(CO)3]V = 905.63 (11) Å3
Mr = 363.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0768 (6) ŵ = 13.40 mm1
b = 11.5037 (8) ÅT = 100 K
c = 12.3457 (7) Å0.21 × 0.20 × 0.08 mm
β = 127.860 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2044 reflections with I > 2σ(I)
Tmin = 0.165, Tmax = 0.414Rint = 0.034
9983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.01Δρmax = 0.90 e Å3
2189 reflectionsΔρmin = 1.53 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.003404 (17)0.219246 (10)0.120266 (11)0.01170 (5)
O10.2573 (5)0.4497 (2)0.1931 (3)0.0346 (7)
O20.3450 (4)0.2929 (2)0.0967 (3)0.0238 (6)
O30.1709 (4)0.3868 (2)0.3606 (2)0.0209 (5)
O40.2714 (4)0.0232 (2)0.3246 (3)0.0244 (5)
C10.2873 (5)0.3026 (3)0.0721 (3)0.0160 (6)
C20.3391 (5)0.2668 (3)0.0154 (3)0.0160 (6)
H2A0.38980.31910.05420.019*
C30.3253 (5)0.1449 (3)0.0271 (3)0.0181 (7)
H3A0.36240.09620.07650.022*
C40.2654 (5)0.1020 (3)0.0536 (3)0.0194 (7)
H4A0.25270.01840.06970.023*
C50.2411 (5)0.1989 (3)0.1133 (3)0.0177 (7)
H5A0.20990.19510.18000.021*
C60.2800 (5)0.4228 (3)0.1081 (3)0.0199 (7)
H6A0.29400.48340.06190.024*
C70.2230 (5)0.2635 (3)0.1103 (3)0.0173 (6)
C80.1133 (5)0.3240 (3)0.2721 (3)0.0153 (6)
C90.1731 (5)0.0983 (3)0.2491 (3)0.0173 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01034 (7)0.01299 (8)0.01190 (7)0.00018 (4)0.00688 (6)0.00002 (4)
O10.0537 (19)0.0273 (15)0.0334 (15)0.0021 (13)0.0321 (15)0.0064 (12)
O20.0199 (13)0.0317 (15)0.0252 (13)0.0040 (10)0.0166 (12)0.0031 (11)
O30.0215 (12)0.0216 (12)0.0178 (11)0.0012 (10)0.0112 (10)0.0026 (10)
O40.0211 (12)0.0181 (12)0.0267 (13)0.0031 (10)0.0110 (11)0.0059 (11)
C10.0099 (14)0.0210 (16)0.0137 (14)0.0009 (12)0.0055 (13)0.0006 (12)
C20.0095 (14)0.0209 (16)0.0139 (15)0.0011 (12)0.0053 (13)0.0011 (13)
C30.0085 (13)0.0230 (17)0.0180 (15)0.0034 (12)0.0058 (13)0.0012 (13)
C40.0145 (15)0.0192 (16)0.0167 (15)0.0023 (13)0.0055 (13)0.0038 (13)
C50.0136 (15)0.0229 (17)0.0128 (14)0.0016 (12)0.0062 (13)0.0024 (12)
C60.0210 (17)0.0192 (17)0.0166 (15)0.0016 (13)0.0100 (14)0.0032 (13)
C70.0167 (16)0.0179 (16)0.0147 (15)0.0008 (12)0.0083 (14)0.0000 (13)
C80.0134 (14)0.0167 (16)0.0173 (15)0.0002 (12)0.0101 (13)0.0016 (13)
C90.0139 (15)0.0185 (16)0.0190 (15)0.0017 (13)0.0099 (13)0.0020 (13)
Geometric parameters (Å, º) top
Re1—C91.915 (3)C1—C51.433 (5)
Re1—C71.921 (3)C1—C21.438 (4)
Re1—C81.926 (3)C1—C61.465 (5)
Re1—C12.287 (3)C2—C31.406 (5)
Re1—C22.287 (3)C2—H2A0.9999
Re1—C52.298 (3)C3—C41.436 (5)
Re1—C32.314 (3)C3—H3A1.0000
Re1—C42.328 (3)C4—C51.415 (5)
O1—C61.210 (4)C4—H4A0.9999
O2—C71.148 (4)C5—H5A0.9992
O3—C81.144 (4)C6—H6A0.9500
O4—C91.156 (4)
C9—Re1—C791.56 (14)C2—C1—Re171.70 (18)
C9—Re1—C888.81 (14)C6—C1—Re1120.3 (2)
C7—Re1—C890.24 (13)C3—C2—C1108.8 (3)
C9—Re1—C1157.30 (13)C3—C2—Re173.23 (18)
C7—Re1—C1102.84 (13)C1—C2—Re171.65 (18)
C8—Re1—C1108.32 (13)C3—C2—H2A125.5
C9—Re1—C2130.11 (12)C1—C2—H2A125.5
C7—Re1—C2138.09 (13)Re1—C2—H2A125.5
C8—Re1—C294.37 (12)C2—C3—C4108.1 (3)
C1—Re1—C236.64 (11)C2—C3—Re171.18 (18)
C9—Re1—C5126.43 (13)C4—C3—Re172.52 (18)
C7—Re1—C593.61 (13)C2—C3—H3A125.9
C8—Re1—C5144.35 (13)C4—C3—H3A125.8
C1—Re1—C536.43 (12)Re1—C3—H3A125.9
C2—Re1—C560.30 (12)C5—C4—C3107.7 (3)
C9—Re1—C399.35 (13)C5—C4—Re171.02 (19)
C7—Re1—C3152.77 (13)C3—C4—Re171.44 (18)
C8—Re1—C3114.70 (12)C5—C4—H4A126.2
C1—Re1—C360.34 (12)C3—C4—H4A126.0
C2—Re1—C335.59 (12)Re1—C4—H4A126.1
C5—Re1—C359.89 (12)C4—C5—C1108.8 (3)
C9—Re1—C497.57 (13)C4—C5—Re173.36 (19)
C7—Re1—C4118.03 (13)C1—C5—Re171.37 (18)
C8—Re1—C4150.64 (12)C4—C5—H5A125.5
C1—Re1—C460.22 (12)C1—C5—H5A125.5
C2—Re1—C459.80 (12)Re1—C5—H5A125.5
C5—Re1—C435.62 (12)O1—C6—C1124.0 (3)
C3—Re1—C436.04 (12)O1—C6—H6A118.0
C5—C1—C2106.7 (3)C1—C6—H6A118.0
C5—C1—C6127.6 (3)O2—C7—Re1175.8 (3)
C2—C1—C6125.7 (3)O3—C8—Re1177.4 (3)
C5—C1—Re172.20 (18)O4—C9—Re1178.2 (3)
C9—Re1—C1—C549.7 (4)C9—Re1—C3—C490.0 (2)
C7—Re1—C1—C578.5 (2)C7—Re1—C3—C422.3 (4)
C8—Re1—C1—C5173.04 (19)C8—Re1—C3—C4177.0 (2)
C2—Re1—C1—C5115.1 (3)C1—Re1—C3—C479.1 (2)
C3—Re1—C1—C578.4 (2)C2—Re1—C3—C4116.8 (3)
C4—Re1—C1—C536.69 (19)C5—Re1—C3—C436.9 (2)
C9—Re1—C1—C265.4 (4)C2—C3—C4—C50.5 (3)
C7—Re1—C1—C2166.5 (2)Re1—C3—C4—C562.1 (2)
C8—Re1—C1—C271.9 (2)C2—C3—C4—Re162.7 (2)
C5—Re1—C1—C2115.1 (3)C9—Re1—C4—C5147.5 (2)
C3—Re1—C1—C236.64 (19)C7—Re1—C4—C551.6 (2)
C4—Re1—C1—C278.4 (2)C8—Re1—C4—C5111.4 (3)
C9—Re1—C1—C6173.4 (3)C1—Re1—C4—C537.5 (2)
C7—Re1—C1—C645.3 (3)C2—Re1—C4—C580.1 (2)
C8—Re1—C1—C649.3 (3)C3—Re1—C4—C5117.0 (3)
C2—Re1—C1—C6121.2 (4)C9—Re1—C4—C395.5 (2)
C5—Re1—C1—C6123.7 (3)C7—Re1—C4—C3168.7 (2)
C3—Re1—C1—C6157.9 (3)C8—Re1—C4—C35.7 (4)
C4—Re1—C1—C6160.4 (3)C1—Re1—C4—C379.5 (2)
C5—C1—C2—C30.1 (4)C2—Re1—C4—C336.93 (19)
C6—C1—C2—C3178.9 (3)C5—Re1—C4—C3117.0 (3)
Re1—C1—C2—C364.3 (2)C3—C4—C5—C10.6 (4)
C5—C1—C2—Re164.2 (2)Re1—C4—C5—C163.0 (2)
C6—C1—C2—Re1114.6 (3)C3—C4—C5—Re162.4 (2)
C9—Re1—C2—C335.7 (3)C2—C1—C5—C40.4 (4)
C7—Re1—C2—C3136.9 (2)C6—C1—C5—C4179.2 (3)
C8—Re1—C2—C3127.8 (2)Re1—C1—C5—C464.3 (2)
C1—Re1—C2—C3117.0 (3)C2—C1—C5—Re163.9 (2)
C5—Re1—C2—C378.7 (2)C6—C1—C5—Re1114.9 (3)
C4—Re1—C2—C337.40 (19)C9—Re1—C5—C441.5 (3)
C9—Re1—C2—C1152.7 (2)C7—Re1—C5—C4136.1 (2)
C7—Re1—C2—C119.9 (3)C8—Re1—C5—C4128.4 (2)
C8—Re1—C2—C1115.2 (2)C1—Re1—C5—C4117.1 (3)
C5—Re1—C2—C138.27 (19)C2—Re1—C5—C478.6 (2)
C3—Re1—C2—C1117.0 (3)C3—Re1—C5—C437.29 (19)
C4—Re1—C2—C179.6 (2)C9—Re1—C5—C1158.55 (19)
C1—C2—C3—C40.3 (3)C7—Re1—C5—C1106.8 (2)
Re1—C2—C3—C463.6 (2)C8—Re1—C5—C111.4 (3)
C1—C2—C3—Re163.3 (2)C2—Re1—C5—C138.49 (19)
C9—Re1—C3—C2153.12 (19)C3—Re1—C5—C179.8 (2)
C7—Re1—C3—C294.5 (3)C4—Re1—C5—C1117.1 (3)
C8—Re1—C3—C260.1 (2)C5—C1—C6—O19.5 (6)
C1—Re1—C3—C237.73 (18)C2—C1—C6—O1172.0 (3)
C5—Re1—C3—C280.0 (2)Re1—C1—C6—O199.6 (4)
C4—Re1—C3—C2116.8 (3)

Experimental details

(I)(II)
Crystal data
Chemical formula[Mn(C6H2O)(CO)3][Re(C6H5O)(CO)3]
Mr232.07363.33
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)7.9011 (10), 11.4482 (15), 12.4541 (12)8.0768 (6), 11.5037 (8), 12.3457 (7)
β (°) 129.220 (6) 127.860 (3)
V3)872.74 (18)905.63 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.4913.40
Crystal size (mm)0.51 × 0.50 × 0.400.21 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detectorBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.517, 0.5870.165, 0.414
No. of measured, independent and
observed [I > 2σ(I)] reflections
12874, 2115, 2023 9983, 2189, 2044
Rint0.0210.034
(sin θ/λ)max1)0.6600.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.00 0.017, 0.042, 1.01
No. of reflections21152189
No. of parameters127127
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.340.90, 1.53

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Mean values of the geometric parameters (Å, °) for (I), (II) and the CSD top
Distance/angle(I)CSD (M = Mn)(II)CSD (M = Re)
C—C for Cp'1.4255 (18)1.4151.426 (6)1.419
M—C for Cp'2.1436 (12)2.1382.303 (3)2.299
M–C(O)1.8033 (12)1.7901.920 (3)1.902
C—O1.1452 (16)1.1481.159 (4)1.156
M1···Cg11.7678 (6)1.7711.957 (1)1.957
(O)C—M—C(O)92.31 (5)91.9490.1 (1)89.8
M—C—O178.34 (11)178.2177.1 (3)177.1
Cp' is the C5H4X ring. M = Mn or Re. Cg1 is the centroid of the C5H4CHO ring.
Intermolecular π(CO)···π(CO) and π(CO)···π interactions (Å and °) in (I) and (II) top
C···CC—O···C
Compound (I)
π(CO)···π(CO) C9Ai—O4Ai···C63.212 (2)101.71 (7)
π(CO)···π C7Ai—O2Ai···C53.114 (2)103.67 (6)
π(CO)···π C8Ai—O3Ai···C33.221 (3)102.26 (6)
Compound (II)
π(CO)···π(CO) C9Aii—O4Aii···C63.242 (6)99.78 (7)
π(CO)···π C7Aii—O2Aii···C53.052 (4)104.97 (7)
π(CO)···π C8Aii—O3Aii···C33.263 (5)98.63 (7)
Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x - 1, -y + 1/2, z - 1/2.
Intermolecular C—H···O hydrogen bonds (Å, °) in (I) and (II) top
D—H···AD—HH···AD···AD—H···A
Compound (I)
C2—H2···O2Aiii1.002.593.305 (3)128
C2—H2···O4Aiv1.002.583.415 (2)141
C3—H3···O1Av1.002.483.355 (3)146
C3—H3···O3Avi1.002.693.215 (2)113
C4—H4···O3Avi1.002.713.224 (2)113
C6—H6···O2Avii1.002.653.366 (3)133
Compound (II)
C2—H2···O2Aiii1.002.523.279 (6)133
C2—H2···O4Aviii1.002.633.402 (4)134
C3—H3···O1Aix1.002.483.330 (5)143
C3—H3···O3Ax1.002.713.189 (4)110
C4—H4···O3Ax1.002.703.187 (4)110
C6—H6···O2Axi1.002.603.329 (4)134
Symmetry codes: (iii) x - 1, y, z; (iv) -x, y - 1/2, -z + 1/2; (v) x - 1, -y + 1/2, z - 1/2; (vi) -x, y + 1/2, -z + 1/2; (vii) -x + 1, -y, -z + 1; (viii) -x, y + 1/2, -z + 1/2; (ix) x, -y + 1/2, z + 1/2; (x) -x, y - 1/2, -z + 1/2; (xi) -x, -y + 1, -z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds