Download citation
Download citation
link to html
Two polymorphs of (2-carb­oxy­eth­yl)(phen­yl)­phosphinic acid, C9H11O4P, crystallize in the chiral P212121 space group with similar unit-cell parameters. They feature an essentially similar hydrogen-bonding motif but differ slightly in their detailed geometric parameters. For both polymorphs, the unequivocal location of the hydroxy H atoms together with the expected differences in the P-O bond lengths establish unequivocally that both forms contain the S isomer; the protonated phosphinic acid and carboxy O atoms serve as hydrogen-bond donors, while the second phosphinic acid O atom acts as a double hydrogen-bond acceptor and the remaining carboxy O atom is not involved in hydrogen bonding. Thus, an undulating two-dimensional supra­molecular layer aggregate is formed based on an R43(20) ring unit. Such polymorphism derives from the rotation of the C-C single bonds between the two hydrogen-bond-involved carboxy and phosphi­nic acid moieties.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111013163/sf3148sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111013163/sf3148Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111013163/sf3148IIsup3.hkl
Contains datablock II

CCDC references: 833413; 833414

Computing details top

For both compounds, data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Bruker, 2008).

(I) top
Crystal data top
C9H11O4PF(000) = 448
Mr = 214.15Dx = 1.395 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1796 reflections
a = 5.4948 (1) Åθ = 3.8–25.9°
b = 8.6830 (1) ŵ = 0.26 mm1
c = 21.3724 (4) ÅT = 296 K
V = 1019.71 (3) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
CCD area detector
diffractometer
2326 independent reflections
Radiation source: fine-focus sealed tube2089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 57
Tmin = 0.673, Tmax = 0.746k = 1111
5497 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.0664P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2326 reflectionsΔρmax = 0.24 e Å3
133 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 893 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.32891 (10)0.68214 (5)0.41950 (2)0.02644 (14)
C10.2968 (4)0.6999 (2)0.33649 (9)0.0316 (5)
C20.4618 (5)0.6304 (3)0.29583 (9)0.0429 (6)
H2A0.59720.57930.31170.051*
C30.4240 (6)0.6374 (3)0.23175 (11)0.0586 (8)
H3A0.53090.58840.20450.070*
C40.2270 (6)0.7173 (4)0.20876 (12)0.0694 (10)
H4A0.20270.72270.16570.083*
C50.0661 (6)0.7893 (4)0.24807 (12)0.0717 (9)
H5A0.06420.84470.23180.086*
C60.0988 (5)0.7790 (3)0.31248 (11)0.0507 (7)
H6A0.01230.82520.33940.061*
C70.2012 (4)0.5020 (2)0.44335 (10)0.0330 (5)
H7A0.21250.49360.48850.040*
H7B0.03010.50020.43220.040*
C80.3268 (5)0.3637 (2)0.41376 (10)0.0361 (5)
H8A0.32630.37590.36860.043*
H8B0.49510.36110.42740.043*
C90.2073 (5)0.2134 (2)0.43020 (9)0.0342 (5)
O10.6099 (3)0.67442 (18)0.42966 (6)0.0382 (4)
H1A0.644 (5)0.679 (3)0.4666 (5)0.046*
O20.2054 (3)0.81281 (14)0.45275 (6)0.0345 (4)
O30.0050 (3)0.20158 (19)0.45074 (8)0.0536 (5)
O40.3510 (4)0.09573 (15)0.41730 (8)0.0520 (5)
H4B0.285 (5)0.020 (2)0.4328 (12)0.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0347 (3)0.0224 (2)0.0222 (2)0.0002 (2)0.0013 (2)0.00030 (19)
C10.0395 (13)0.0297 (9)0.0257 (9)0.0067 (10)0.0002 (9)0.0024 (8)
C20.0515 (16)0.0456 (12)0.0314 (11)0.0014 (12)0.0055 (11)0.0012 (9)
C30.071 (2)0.0767 (18)0.0277 (11)0.0137 (16)0.0124 (13)0.0038 (12)
C40.074 (2)0.106 (2)0.0278 (12)0.031 (2)0.0075 (14)0.0136 (14)
C50.0596 (19)0.111 (3)0.0448 (15)0.005 (2)0.0156 (15)0.0257 (17)
C60.0435 (15)0.0698 (17)0.0388 (13)0.0056 (14)0.0030 (11)0.0086 (12)
C70.0428 (14)0.0245 (8)0.0319 (10)0.0001 (10)0.0068 (10)0.0015 (7)
C80.0511 (14)0.0241 (8)0.0332 (10)0.0007 (10)0.0078 (12)0.0005 (7)
C90.0524 (15)0.0248 (9)0.0256 (9)0.0024 (10)0.0023 (10)0.0008 (7)
O10.0380 (9)0.0475 (8)0.0291 (7)0.0019 (7)0.0034 (7)0.0042 (7)
O20.0486 (10)0.0242 (6)0.0306 (7)0.0031 (8)0.0066 (7)0.0017 (6)
O30.0547 (12)0.0374 (9)0.0685 (12)0.0094 (9)0.0153 (10)0.0013 (8)
O40.0725 (13)0.0230 (7)0.0605 (11)0.0012 (9)0.0217 (11)0.0025 (7)
Geometric parameters (Å, º) top
P1—O21.5010 (14)C5—H5A0.9300
P1—O11.5605 (16)C6—H6A0.9300
P1—C71.788 (2)C7—C81.523 (3)
P1—C11.7896 (19)C7—H7A0.9700
C1—C61.385 (3)C7—H7B0.9700
C1—C21.393 (3)C8—C91.502 (3)
C2—C31.387 (3)C8—H8A0.9700
C2—H2A0.9300C8—H8B0.9700
C3—C41.377 (4)C9—O31.200 (3)
C3—H3A0.9300C9—O41.321 (3)
C4—C51.370 (4)O1—H1A0.814 (10)
C4—H4A0.9300O4—H4B0.818 (10)
C5—C61.391 (3)
O2—P1—O1114.47 (9)C1—C6—C5120.0 (3)
O2—P1—C7110.40 (9)C1—C6—H6A120.0
O1—P1—C7108.12 (10)C5—C6—H6A120.0
O2—P1—C1111.08 (9)C8—C7—P1113.17 (15)
O1—P1—C1103.83 (10)C8—C7—H7A108.9
C7—P1—C1108.61 (10)P1—C7—H7A108.9
C6—C1—C2119.7 (2)C8—C7—H7B108.9
C6—C1—P1119.16 (17)P1—C7—H7B108.9
C2—C1—P1121.12 (17)H7A—C7—H7B107.8
C3—C2—C1120.0 (2)C9—C8—C7112.94 (18)
C3—C2—H2A120.0C9—C8—H8A109.0
C1—C2—H2A120.0C7—C8—H8A109.0
C4—C3—C2119.5 (3)C9—C8—H8B109.0
C4—C3—H3A120.2C7—C8—H8B109.0
C2—C3—H3A120.2H8A—C8—H8B107.8
C5—C4—C3121.2 (2)O3—C9—O4124.3 (2)
C5—C4—H4A119.4O3—C9—C8124.4 (2)
C3—C4—H4A119.4O4—C9—C8111.22 (19)
C4—C5—C6119.6 (3)P1—O1—H1A111.3 (18)
C4—C5—H5A120.2C9—O4—H4B106 (2)
C6—C5—H5A120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.81 (1)1.76 (1)2.5699 (18)177 (3)
O4—H4B···O2ii0.82 (1)1.90 (1)2.6925 (19)162 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y1, z.
(II) top
Crystal data top
C9H11O4PF(000) = 448
Mr = 214.15Dx = 1.330 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1679 reflections
a = 6.1741 (15) Åθ = 2.6–25.7°
b = 8.7308 (19) ŵ = 0.24 mm1
c = 19.844 (4) ÅT = 296 K
V = 1069.7 (4) Å3Block, colorless
Z = 40.34 × 0.16 × 0.14 mm
Data collection top
CCD area detector
diffractometer
2422 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.679, Tmax = 0.746k = 1111
5593 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.0144P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2422 reflectionsΔρmax = 0.18 e Å3
133 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 989 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.37137 (10)0.30994 (5)0.07762 (2)0.03642 (15)
C10.2943 (4)0.3038 (3)0.16448 (10)0.0424 (5)
C20.4255 (5)0.3675 (3)0.21432 (11)0.0573 (7)
H2A0.55680.41240.20260.069*
C30.3614 (6)0.3644 (4)0.28125 (12)0.0756 (9)
H3A0.44950.40710.31430.091*
C40.1681 (7)0.2984 (5)0.29860 (14)0.0897 (11)
H4A0.12550.29620.34350.108*
C50.0382 (6)0.2362 (5)0.25059 (16)0.1031 (13)
H5A0.09310.19240.26300.124*
C60.0992 (5)0.2372 (4)0.18286 (13)0.0735 (9)
H6A0.00990.19360.15040.088*
C70.2817 (4)0.4866 (2)0.03997 (11)0.0433 (5)
H7A0.34590.49590.00450.052*
H7B0.12570.48270.03430.052*
C80.3389 (4)0.6269 (2)0.08058 (10)0.0439 (5)
H8A0.48840.61850.09520.053*
H8B0.24880.62940.12060.053*
C90.3113 (4)0.7760 (2)0.04301 (11)0.0387 (5)
O10.6226 (3)0.31246 (18)0.08088 (7)0.0472 (4)
H1A0.685 (4)0.323 (3)0.0452 (7)0.057*
O20.2784 (3)0.17650 (16)0.03892 (7)0.0491 (4)
O30.3148 (3)0.79083 (17)0.01724 (7)0.0476 (4)
O40.2882 (4)0.89173 (16)0.08613 (8)0.0615 (5)
H4B0.288 (5)0.9748 (18)0.0667 (13)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0497 (3)0.0264 (2)0.0331 (2)0.0026 (3)0.0043 (3)0.0007 (2)
C10.0509 (13)0.0382 (10)0.0381 (10)0.0024 (13)0.0009 (10)0.0032 (9)
C20.0620 (19)0.0698 (16)0.0400 (12)0.0073 (14)0.0060 (11)0.0006 (11)
C30.092 (2)0.097 (2)0.0383 (12)0.004 (2)0.0095 (15)0.0004 (13)
C40.103 (3)0.122 (3)0.0436 (13)0.012 (3)0.0166 (17)0.0046 (17)
C50.081 (3)0.167 (4)0.0619 (18)0.029 (3)0.0227 (18)0.017 (2)
C60.066 (2)0.101 (2)0.0538 (14)0.0212 (19)0.0009 (14)0.0004 (15)
C70.0581 (15)0.0287 (9)0.0431 (11)0.0016 (11)0.0090 (11)0.0033 (9)
C80.0669 (16)0.0269 (8)0.0379 (10)0.0007 (11)0.0022 (12)0.0042 (9)
C90.0426 (13)0.0285 (10)0.0449 (11)0.0003 (10)0.0017 (10)0.0036 (8)
O10.0486 (9)0.0542 (8)0.0388 (7)0.0079 (10)0.0014 (8)0.0004 (8)
O20.0762 (12)0.0268 (7)0.0443 (8)0.0009 (8)0.0132 (8)0.0011 (6)
O30.0595 (11)0.0418 (8)0.0414 (7)0.0004 (8)0.0027 (7)0.0068 (6)
O40.1068 (16)0.0264 (7)0.0514 (9)0.0032 (9)0.0090 (10)0.0003 (7)
Geometric parameters (Å, º) top
P1—O21.5087 (15)C5—H5A0.9300
P1—O11.5527 (17)C6—H6A0.9300
P1—C11.789 (2)C7—C81.508 (3)
P1—C71.801 (2)C7—H7A0.9700
C1—C61.386 (4)C7—H7B0.9700
C1—C21.394 (3)C8—C91.510 (3)
C2—C31.386 (3)C8—H8A0.9700
C2—H2A0.9300C8—H8B0.9700
C3—C41.369 (5)C9—O31.203 (2)
C3—H3A0.9300C9—O41.331 (3)
C4—C51.358 (5)O1—H1A0.810 (10)
C4—H4A0.9300O4—H4B0.821 (10)
C5—C61.396 (4)
O2—P1—O1114.33 (10)C1—C6—C5119.4 (3)
O2—P1—C1111.47 (10)C1—C6—H6A120.3
O1—P1—C1103.07 (10)C5—C6—H6A120.3
O2—P1—C7109.47 (9)C8—C7—P1113.70 (15)
O1—P1—C7108.19 (12)C8—C7—H7A108.8
C1—P1—C7110.09 (11)P1—C7—H7A108.8
C6—C1—C2119.0 (2)C8—C7—H7B108.8
C6—C1—P1119.83 (18)P1—C7—H7B108.8
C2—C1—P1121.12 (19)H7A—C7—H7B107.7
C3—C2—C1120.4 (3)C7—C8—C9114.20 (17)
C3—C2—H2A119.8C7—C8—H8A108.7
C1—C2—H2A119.8C9—C8—H8A108.7
C4—C3—C2119.9 (3)C7—C8—H8B108.7
C4—C3—H3A120.1C9—C8—H8B108.7
C2—C3—H3A120.1H8A—C8—H8B107.6
C5—C4—C3120.4 (3)O3—C9—O4124.01 (19)
C5—C4—H4A119.8O3—C9—C8125.54 (19)
C3—C4—H4A119.8O4—C9—C8110.42 (17)
C4—C5—C6120.9 (3)P1—O1—H1A116.0 (19)
C4—C5—H5A119.6C9—O4—H4B112 (2)
C6—C5—H5A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.81 (1)1.77 (1)2.566 (2)169 (3)
O4—H4B···O2ii0.82 (1)1.85 (1)2.658 (2)169 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds