Download citation
Download citation
link to html
The title compound, [Zn2(C25H15N5O2)2]·2CH2Cl2, is a dinuclear double-helical complex which lies on a crystallographic twofold axis. In the complex, both ligands are partitioned into two tridentate domains which allow each ligand to bridge both metal centres. Each ZnII atom is six-coordinated in a distorted octa­hedral environment formed by two amide N atoms, two quinoline N atoms and two pyridine N atoms from two different ligand mol­ecules, with the central pyridine ring, unusually, bridging two ZnII atoms. The deprotonated ligand is not planar, the amide side chains being considerably twisted out from the plane of the central pyridine ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111006974/sf3146sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111006974/sf3146Isup2.hkl
Contains datablock I

CCDC reference: 769556

Comment top

The design and construction of double- and triple-helical complexes has attracted intense interest, not only for their fascinating structural and superstructural diversity (Piguet et al., 1997; Elsevier et al., 2003), but also for their potential applications in medicinal chemistry (Richards & Rodger, 2007), nonlinear optics (Serrano & Sierra, 2003), asymmetric catalysis (Yeung et al., 2008) and luminescence (Riis-Johannessen et al., 2009). Since the early pioneering work of Lehn and co-workers on double-helical CuI complexes (Sleiman et al., 1995), a wide range of multidentate ligands have been developed for the formation of helicates. Notable examples include the O,O-donor biscatecholates (Albrecht & Schneider, 2002), the all-N-donor mixed pyridyl–thiazole ligands (Rice et al., 2001), the N,O-donor pyrazole–phenol ligands (Ronson et al., 2006) and the mixed N,N/N,O-donor pyridyl–benzimidazole/amide ligands (Piguet et al., 1997). Depending on the carefully designed ligands and the versatile coordination geometries of the chosen metal, a large number of polynuclear metal clusters with magnetic, optical or electronic properties have been synthesized. The synthesis of ligands based on 2,6-disubstituted pyridine has attracted a great deal of attention. In particular, diamides incorporating an –NH—CO–pyridine–CO—NH– core are versatile ligands, and a number of novel architectures such as helicates, cages, pockets and rotaxanes have recently been prepared (Lincheneau et al., 2010; Pan et al., 2010; Miyagawa et al., 2010). However, no dinuclear double-helical complex based on N,N'-bis(quinolin-8-yl)pyridine-2,6-dicarboxamide (H2L) has been reported to date. In this paper, we describe the synthesis of the title novel dinuclear ZnII double helicate, [Zn2L2].2CH2Cl2, (I), by the reaction of H2L with Zn(OAc)2.2H2O. The compound has been characterized by elemental analysis, 1H and 13C{H} NMR and IR spectroscopies, and X-ray single-crystal analysis.

The molecular structure of (I) is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1. Complex (I) is a dinuclear double helicate and there is only half a [Zn2L2] unit in the asymmetric unit, with the other half related to it by a crystallographic twofold axis. The ZnII atom in the dimeric complex is coordinated to two amide N atoms [N2 and N4i; symmetry code: (i) -x + 1, y, -z + 1/2], two quinoline N atoms (N1 and N5i) and two pyridine N atoms (N3 and N3i) from two different ligand molecules. Each ZnII atom has a distorted octahedral configuration, the r.m.s. deviation from the mean N1/N2/N3/N4i basal plane being 0.0383 (6) Å. The apical positions at Zn1 are occupied by atoms N3i and N5i, and atom Zn1 deviates from the basal plane by a distance of 0.1485 (13) Å towards apical atom N5 [N5i?]. Thus, the dimer is made up of two octahedra which are joined at a common edge, with the two bridging pyridine N atoms shared equally between the two ZnII atoms. Most of the bond angles at Zn deviate considerably from the ideal values of 90 and 180°, as can be seen from Table 1. The Zn—N bond lengths [1.987 (3)–2.560 (3) Å] are close to those reported for a dinuclear zinc(II) complex of 2,6-diacetylpyridine bis(2-pyridylhydrazone) (Wester & Palenik, 1976). Due to the bridging nature of the pyridine (py) N atoms, the Zn—Npy distances are relatively long, with Zn1—N3 = 2.449 (3) and Zn1—N3i = 2.560 (3) Å, while the remaining four Zn—N distances average 2.05 Å. As a consequence of the central bridging Npy atoms in the [Zn(µ-N2)Zn]4+ core, the Zn1···Zn1i separation within the binuclear unit is 3.445 (2) Å, which is short compared with other ZnII-containing helicates (Horn et al., 2003; Ronson et al., 2005), and the Zn—Npy—Zn bridging angle is 86.91 (12)°.

Interestingly, in contrast with the previously reported free ligand H2L (Meghdadi et al., 2008), striking changes have taken place in the conformation of the anion L. In H2L, the central pyridine ring is oriented at dihedral angles of 8.90 (4) and 28.67 (4)° with respect to the two planar quinolyl ring systems, and the quinolyl rings themselves are oriented at a dihedral angle of 24.68 (3)° (Meghdadi et al., 2008), while in complex (I), the amide side chains are definitely twisted out of the plane of the central pyridine ring by considerable amounts. The dihedal angles between the central pyridine ring and the two quinolyl rings of (I) are 38.61 (16) and 41.72 (16)°, and the quinolyl rings are inclined at 69.63 (11)° with respect to each other. The lack of planarity of the amide is obviously related to its cocoordinating behaviour.

Related literature top

For related literature, see: Albrecht & Schneider (2002); Elsevier et al. (2003); Horn et al. (2003); Lincheneau et al. (2010); Meghdadi et al. (2008); Miyagawa et al. (2010); Pan et al. (2010); Piguet et al. (1997); Rice et al. (2001); Richards & Rodger (2007); Riis-Johannessen, Bernardinelle, Filincuk, Clifford, Favera & Piguet (2009); Ronson et al. (2005, 2006); Serrano & Sierra (2003); Sleiman et al. (1995); Wester & Palenik (1976); Yeung et al. (2008).

Experimental top

To a solution of pyridine-2,6-dicarboxylic acid (1.67 g, 0.01 mmol) in pyridine (5 ml) was added 8-aminoquinoline (2.88 g, 0.02 mmol) and the resulting solution warmed with stirring for 30 min. Triphenylphosphite (6.2 g, 0.02 mmol) was added slowly and the mixture was stirred at 393 K for 10 h. On cooling to room temperature, the white precipitate which had formed was filtered off and recrystallized from chloroform to afford H2L (yield 7.02 g, 16.75 mmol, 84%). Spectroscopic analysis: 1H NMR (300 MHz, DMSO-d6, δ, p.p.m.): 12.18 (s, 2 H), 8.92 (dd, 2H), 8.57–8.54 (m, 2H), 8.50–8.42 (m, 3H), 8.26 (dd, 2H), 7.84–7.81 (m, 2H), 7.76–7.71 (m, 2H), 7.55 (q, 2H); IR (KBr, ν, cm-1): 3322, 3298, 1684, 1544, 1490, 1428, 1328, 1149, 1068, 1000, 890, 826, 794, 751, 709, 679, 604. Elemental analysis, calculated for C25H17N5O2: C 71.59, H 4.09, N 16.70%; found: C 71.33, H 4.06, N 16.53%.

A mixture of H2L (0.3355 g, 0.80 mmol) and Zn(OAc)2.2H2O (0.1758 g, 0.80 mmol) in ethanol (Volume?) was refluxed for 6 h. The resulting precipitate was filtered off, washed with chloroform and then ethanol, and finally dried in air. Recrystallization from CH2Cl2 yielded yellow crystals of (I) suitable for X-ray diffraction upon slow evaporation. Spectroscopic analysis: 1H NMR (500 MHz, DMSO-d6, δ, p.p.m.): 8.87 (d, 4H), 8.35 (d, 4H), 7.71 (d, 4H), 7.62 (t, 4H), 7.52 (d, 4H), 7.36–7.33 (m, 2H), 7.28–7.23 (m, 8H); 13C{H}NMR (500 MHz, DMSO-d6, δ, p.p.m.): 202.1, 165.9, 155.4, 145.7, 142.1, 139.6, 139.4, 129.0, 128.4, 123.1, 121.5, 120.9, 119.4; IR (KBr, ν, cm-1): 3425, 1612, 1581, 1500, 1463, 1413, 1390, 1350, 1317, 1271, 1238, 1158, 1082, 965, 829, 758, 609. Elemental analysis, calculated for C50H30N10O4Zn2: C 62.19, H 3.13, N 14.50%; found: C 61.94, H 3.09, N 14.32%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). The two CH2Cl2 solvent molecules are disordered and were refined with split occupancies of 0.41 (2)/0.59 (2) (C26/C26'), 0.43 (3)/0.57 (3) (Cl1/Cl1') and 0.43 (3)/0.57 (3) (Cl2/Cl2').

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ZnII coordination environments in (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms and the solvent have been omitted for clarity. Atoms labelled with the suffix A and unlabelled atoms are at the symmetry position (-x + 1, y, -z + 1/2).
Bis[µ-N,N'-bis(quinolin-8-yl)pyridine-2,6- dicarboxamido]dizinc(II) dichloromethane disolvate top
Crystal data top
[Zn2(C25H15N5O2)2]·2CH2Cl2F(000) = 2304
Mr = 1135.43Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 24.458 (5) Åθ = 9–13°
b = 13.672 (3) ŵ = 1.26 mm1
c = 16.588 (3) ÅT = 293 K
β = 118.07 (3)°Block, yellow
V = 4894 (2) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2882 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 029
Absorption correction: ψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
k = 016
Tmin = 0.642, Tmax = 0.778l = 1917
4554 measured reflections3 standard reflections every 200 reflections
4445 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0627P)2 + 2.753P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4445 reflectionsΔρmax = 0.26 e Å3
354 parametersΔρmin = 0.72 e Å3
36 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (2)
Crystal data top
[Zn2(C25H15N5O2)2]·2CH2Cl2V = 4894 (2) Å3
Mr = 1135.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.458 (5) ŵ = 1.26 mm1
b = 13.672 (3) ÅT = 293 K
c = 16.588 (3) Å0.40 × 0.30 × 0.20 mm
β = 118.07 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2882 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
Rint = 0.023
Tmin = 0.642, Tmax = 0.7783 standard reflections every 200 reflections
4554 measured reflections intensity decay: 1%
4445 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05336 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
4445 reflectionsΔρmin = 0.72 e Å3
354 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.56600 (2)0.31851 (3)0.35422 (3)0.0404 (2)
O10.48505 (16)0.5766 (2)0.3733 (2)0.0651 (10)
O20.40496 (16)0.0851 (2)0.2802 (2)0.0589 (9)
N10.65441 (17)0.3768 (3)0.3838 (2)0.0447 (9)
N20.55081 (16)0.4600 (2)0.3626 (2)0.0406 (9)
N30.45588 (15)0.3287 (3)0.3124 (2)0.0388 (8)
N40.42696 (15)0.1824 (2)0.1846 (2)0.0370 (8)
N50.42606 (16)0.2418 (2)0.0313 (2)0.0391 (8)
C10.7051 (2)0.3303 (4)0.3951 (3)0.0608 (14)
H10.70550.26230.39620.073*
C20.7574 (3)0.3794 (5)0.4052 (4)0.0843 (19)
H20.79210.34470.41220.101*
C30.7575 (3)0.4785 (5)0.4048 (5)0.089 (2)
H30.79280.51190.41280.107*
C40.7050 (3)0.5314 (4)0.3924 (4)0.0668 (15)
C50.7009 (3)0.6345 (5)0.3898 (5)0.091 (2)
H50.73440.67200.39630.109*
C60.6486 (3)0.6781 (4)0.3781 (4)0.0870 (19)
H60.64630.74600.37560.104*
C70.5972 (3)0.6246 (4)0.3696 (4)0.0654 (15)
H70.56200.65770.36250.078*
C80.5981 (2)0.5233 (3)0.3715 (3)0.0452 (11)
C90.6535 (2)0.4763 (3)0.3834 (3)0.0479 (11)
C100.4991 (2)0.4925 (3)0.3632 (3)0.0471 (11)
C110.4556 (2)0.4104 (3)0.3568 (3)0.0421 (11)
C120.4184 (2)0.4206 (4)0.3984 (3)0.0604 (14)
H120.41790.47890.42690.072*
C130.3825 (3)0.3433 (4)0.3971 (4)0.0675 (15)
H130.35780.34840.42580.081*
C140.3830 (2)0.2579 (4)0.3532 (3)0.0563 (13)
H140.35940.20420.35260.068*
C150.41951 (19)0.2542 (3)0.3100 (3)0.0378 (10)
C160.41766 (19)0.1636 (3)0.2563 (3)0.0404 (10)
C170.42596 (18)0.1085 (3)0.1253 (3)0.0372 (10)
C180.4263 (2)0.0090 (3)0.1375 (3)0.0503 (12)
H180.42620.01570.18960.060*
C190.4268 (2)0.0558 (3)0.0722 (3)0.0555 (13)
H190.42780.12270.08290.067*
C200.4259 (2)0.0242 (3)0.0057 (3)0.0543 (13)
H200.42590.06910.04780.065*
C210.4250 (2)0.0771 (3)0.0229 (3)0.0431 (11)
C220.4247 (2)0.1169 (4)0.1011 (3)0.0550 (13)
H220.42390.07560.14630.066*
C230.4257 (3)0.2157 (4)0.1111 (3)0.0601 (14)
H230.42600.24240.16250.072*
C240.4263 (2)0.2758 (3)0.0431 (3)0.0496 (12)
H240.42690.34320.05030.060*
C250.42546 (18)0.1430 (3)0.0431 (3)0.0354 (10)
C260.7690 (9)0.5005 (14)0.2014 (18)0.101 (8)0.416 (19)
H26A0.80960.53000.23680.122*0.416 (19)
H26B0.75450.47570.24280.122*0.416 (19)
C26'0.7687 (7)0.5169 (12)0.1361 (13)0.105 (5)0.584 (19)
H26C0.80870.54620.15270.126*0.584 (19)
H26D0.74650.51110.07000.126*0.584 (19)
Cl10.7713 (6)0.4105 (11)0.1325 (13)0.145 (5)0.416 (19)
Cl20.7167 (6)0.5842 (10)0.1245 (9)0.119 (3)0.416 (19)
Cl1'0.7798 (4)0.3965 (7)0.1868 (8)0.149 (3)0.584 (19)
Cl2'0.7266 (5)0.5934 (8)0.1732 (11)0.158 (3)0.584 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0482 (3)0.0322 (3)0.0456 (3)0.0022 (3)0.0260 (2)0.0005 (2)
O10.074 (2)0.0413 (19)0.088 (3)0.0068 (17)0.045 (2)0.0130 (18)
O20.087 (3)0.0471 (19)0.059 (2)0.0122 (18)0.047 (2)0.0032 (16)
N10.044 (2)0.042 (2)0.046 (2)0.0010 (18)0.0202 (19)0.0054 (17)
N20.045 (2)0.0335 (19)0.044 (2)0.0007 (17)0.0205 (18)0.0054 (16)
N30.041 (2)0.044 (2)0.0282 (18)0.0068 (17)0.0139 (16)0.0050 (16)
N40.045 (2)0.0346 (18)0.0380 (19)0.0046 (17)0.0245 (17)0.0014 (16)
N50.045 (2)0.037 (2)0.039 (2)0.0032 (17)0.0219 (18)0.0007 (16)
C10.044 (3)0.063 (3)0.063 (3)0.002 (3)0.015 (2)0.007 (3)
C20.050 (4)0.099 (5)0.103 (5)0.000 (3)0.035 (3)0.012 (4)
C30.059 (4)0.097 (5)0.112 (5)0.030 (4)0.040 (4)0.018 (4)
C40.062 (4)0.068 (4)0.072 (4)0.023 (3)0.033 (3)0.008 (3)
C50.093 (5)0.071 (4)0.122 (6)0.042 (4)0.061 (5)0.016 (4)
C60.112 (5)0.046 (3)0.118 (5)0.022 (4)0.066 (5)0.005 (3)
C70.089 (4)0.042 (3)0.075 (4)0.011 (3)0.047 (3)0.007 (3)
C80.061 (3)0.036 (2)0.040 (3)0.005 (2)0.026 (2)0.004 (2)
C90.054 (3)0.050 (3)0.041 (3)0.012 (2)0.023 (2)0.008 (2)
C100.064 (3)0.035 (2)0.041 (3)0.007 (2)0.023 (2)0.004 (2)
C110.040 (3)0.044 (3)0.038 (2)0.008 (2)0.016 (2)0.004 (2)
C120.065 (3)0.068 (3)0.061 (3)0.007 (3)0.040 (3)0.012 (3)
C130.072 (4)0.080 (4)0.074 (4)0.005 (3)0.053 (3)0.003 (3)
C140.059 (3)0.062 (3)0.057 (3)0.003 (3)0.034 (3)0.001 (3)
C150.039 (2)0.045 (2)0.029 (2)0.001 (2)0.016 (2)0.0057 (19)
C160.040 (2)0.039 (3)0.042 (2)0.001 (2)0.020 (2)0.005 (2)
C170.034 (2)0.035 (2)0.042 (3)0.0049 (19)0.018 (2)0.0017 (18)
C180.058 (3)0.044 (3)0.056 (3)0.002 (2)0.033 (3)0.003 (2)
C190.068 (3)0.035 (3)0.070 (4)0.005 (2)0.038 (3)0.006 (2)
C200.054 (3)0.045 (3)0.068 (3)0.008 (2)0.033 (3)0.025 (3)
C210.038 (2)0.045 (3)0.047 (3)0.006 (2)0.020 (2)0.009 (2)
C220.057 (3)0.065 (3)0.048 (3)0.005 (3)0.029 (3)0.013 (3)
C230.082 (4)0.062 (3)0.050 (3)0.007 (3)0.042 (3)0.002 (3)
C240.064 (3)0.045 (3)0.048 (3)0.005 (2)0.033 (3)0.000 (2)
C250.030 (2)0.036 (2)0.038 (2)0.0024 (18)0.0152 (19)0.0052 (18)
C260.096 (13)0.095 (15)0.092 (17)0.009 (11)0.027 (11)0.006 (11)
C26'0.105 (11)0.136 (14)0.096 (12)0.012 (9)0.065 (9)0.023 (10)
Cl10.111 (6)0.152 (8)0.177 (10)0.016 (5)0.070 (8)0.041 (8)
Cl20.103 (5)0.115 (5)0.119 (7)0.006 (4)0.035 (6)0.022 (5)
Cl1'0.107 (3)0.142 (5)0.157 (7)0.013 (3)0.030 (5)0.002 (5)
Cl2'0.123 (5)0.165 (5)0.182 (9)0.017 (4)0.068 (7)0.021 (7)
Geometric parameters (Å, º) top
Zn1—N21.987 (3)C8—C91.426 (6)
Zn1—N4i2.003 (3)C10—C111.515 (6)
Zn1—N5i2.097 (3)C11—C121.384 (6)
Zn1—N12.134 (4)C12—C131.368 (7)
Zn1—N32.449 (3)C12—H120.9300
Zn1—N3i2.560 (3)C13—C141.380 (7)
O1—C101.235 (5)C13—H130.9300
O2—C161.233 (5)C14—C151.385 (6)
N1—C11.325 (6)C14—H140.9300
N1—C91.361 (6)C15—C161.513 (6)
N2—C101.344 (5)C17—C181.375 (6)
N2—C81.396 (5)C17—C251.437 (5)
N3—C111.340 (5)C18—C191.403 (6)
N3—C151.340 (5)C18—H180.9300
N4—C161.338 (5)C19—C201.353 (6)
N4—C171.403 (5)C19—H190.9300
N4—Zn1i2.003 (3)C20—C211.412 (6)
N5—C241.321 (5)C20—H200.9300
N5—C251.366 (5)C21—C221.403 (6)
N5—Zn1i2.097 (3)C21—C251.415 (6)
C1—C21.384 (7)C22—C231.362 (7)
C1—H10.9300C22—H220.9300
C2—C31.355 (8)C23—C241.391 (6)
C2—H20.9300C23—H230.9300
C3—C41.402 (8)C24—H240.9300
C3—H30.9300C26—Cl11.70 (3)
C4—C51.413 (8)C26—Cl21.74 (3)
C4—C91.414 (6)C26—H26A0.9700
C5—C61.339 (8)C26—H26B0.9700
C5—H50.9300C26'—Cl2'1.77 (2)
C6—C71.402 (7)C26'—Cl1'1.81 (2)
C6—H60.9300C26'—H26C0.9700
C7—C81.386 (6)C26'—H26D0.9700
C7—H70.9300
N2—Zn1—N4i166.94 (13)N2—C10—C11112.8 (4)
N2—Zn1—N5i111.37 (14)N3—C11—C12122.1 (4)
N4i—Zn1—N5i80.88 (13)N3—C11—C10118.1 (4)
N2—Zn1—N179.79 (14)C12—C11—C10119.7 (4)
N4i—Zn1—N1100.94 (13)C13—C12—C11118.9 (5)
N5i—Zn1—N1109.06 (14)C13—C12—H12120.5
N2—Zn1—N375.39 (13)C11—C12—H12120.5
N4i—Zn1—N3102.19 (13)C12—C13—C14119.8 (5)
N5i—Zn1—N384.59 (12)C12—C13—H13120.1
N1—Zn1—N3154.75 (13)C14—C13—H13120.1
N2—Zn1—N3i94.10 (13)C13—C14—C15118.2 (5)
N4i—Zn1—N3i73.09 (12)C13—C14—H14120.9
N5i—Zn1—N3i152.66 (12)C15—C14—H14120.9
N1—Zn1—N3i84.39 (12)N3—C15—C14122.5 (4)
N3—Zn1—N3i92.74 (11)N3—C15—C16118.4 (4)
C1—N1—C9119.5 (4)C14—C15—C16119.1 (4)
C1—N1—Zn1129.2 (3)O2—C16—N4128.9 (4)
C9—N1—Zn1111.1 (3)O2—C16—C15117.8 (4)
C10—N2—C8122.0 (4)N4—C16—C15113.2 (3)
C10—N2—Zn1122.0 (3)C18—C17—N4127.8 (4)
C8—N2—Zn1116.0 (3)C18—C17—C25117.5 (4)
C11—N3—C15118.4 (4)N4—C17—C25114.7 (3)
C11—N3—Zn1100.4 (3)C17—C18—C19120.9 (4)
C15—N3—Zn1126.3 (3)C17—C18—H18119.6
C16—N4—C17122.1 (3)C19—C18—H18119.6
C16—N4—Zn1i122.8 (3)C20—C19—C18122.2 (4)
C17—N4—Zn1i114.8 (2)C20—C19—H19118.9
C24—N5—C25119.2 (4)C18—C19—H19118.9
C24—N5—Zn1i129.1 (3)C19—C20—C21119.9 (4)
C25—N5—Zn1i111.5 (3)C19—C20—H20120.1
N1—C1—C2122.4 (5)C21—C20—H20120.1
N1—C1—H1118.8C22—C21—C20124.0 (4)
C2—C1—H1118.8C22—C21—C25117.6 (4)
C3—C2—C1119.1 (6)C20—C21—C25118.3 (4)
C3—C2—H2120.4C23—C22—C21120.3 (4)
C1—C2—H2120.4C23—C22—H22119.9
C2—C3—C4120.9 (6)C21—C22—H22119.9
C2—C3—H3119.6C22—C23—C24118.8 (5)
C4—C3—H3119.6C22—C23—H23120.6
C3—C4—C5124.5 (5)C24—C23—H23120.6
C3—C4—C9116.8 (5)N5—C24—C23123.1 (4)
C5—C4—C9118.7 (6)N5—C24—H24118.5
C6—C5—C4119.9 (6)C23—C24—H24118.5
C6—C5—H5120.1N5—C25—C21121.0 (4)
C4—C5—H5120.1N5—C25—C17117.7 (4)
C5—C6—C7122.2 (6)C21—C25—C17121.2 (4)
C5—C6—H6118.9Cl1—C26—Cl2103 (2)
C7—C6—H6118.9Cl1—C26—H26A111.1
C8—C7—C6120.9 (6)Cl2—C26—H26A111.1
C8—C7—H7119.5Cl1—C26—H26B111.1
C6—C7—H7119.5Cl2—C26—H26B111.1
C7—C8—N2127.9 (5)H26A—C26—H26B109.1
C7—C8—C9117.3 (5)Cl2'—C26'—Cl1'111.1 (14)
N2—C8—C9114.9 (4)Cl2'—C26'—H26C109.4
N1—C9—C4121.3 (5)Cl1'—C26'—H26C109.4
N1—C9—C8117.7 (4)Cl2'—C26'—H26D109.4
C4—C9—C8121.0 (5)Cl1'—C26'—H26D109.4
O1—C10—N2129.2 (4)H26C—C26'—H26D108.0
O1—C10—C11117.9 (4)
N2—Zn1—N1—C1178.8 (4)C8—N2—C10—O11.9 (7)
N4i—Zn1—N1—C114.5 (4)Zn1—N2—C10—O1175.4 (4)
N5i—Zn1—N1—C169.5 (4)C8—N2—C10—C11177.5 (4)
N3—Zn1—N1—C1170.6 (3)Zn1—N2—C10—C110.2 (5)
N3i—Zn1—N1—C186.0 (4)C15—N3—C11—C121.1 (6)
N2—Zn1—N1—C96.4 (3)Zn1—N3—C11—C12142.6 (4)
N4i—Zn1—N1—C9160.4 (3)C15—N3—C11—C10177.1 (4)
N5i—Zn1—N1—C9115.6 (3)Zn1—N3—C11—C1035.5 (4)
N3—Zn1—N1—C94.3 (5)O1—C10—C11—N3154.7 (4)
N3i—Zn1—N1—C988.8 (3)N2—C10—C11—N329.2 (5)
N4i—Zn1—N2—C1095.1 (7)O1—C10—C11—C1227.1 (7)
N5i—Zn1—N2—C1063.8 (3)N2—C10—C11—C12149.0 (4)
N1—Zn1—N2—C10170.4 (3)N3—C11—C12—C132.5 (7)
N3—Zn1—N2—C1014.2 (3)C10—C11—C12—C13175.7 (4)
N3i—Zn1—N2—C10106.0 (3)C11—C12—C13—C141.2 (8)
N4i—Zn1—N2—C887.4 (7)C12—C13—C14—C151.2 (8)
N5i—Zn1—N2—C8113.6 (3)C11—N3—C15—C141.5 (6)
N1—Zn1—N2—C87.0 (3)Zn1—N3—C15—C14129.1 (4)
N3—Zn1—N2—C8168.3 (3)C11—N3—C15—C16177.4 (3)
N3i—Zn1—N2—C876.5 (3)Zn1—N3—C15—C1652.0 (5)
N2—Zn1—N3—C1126.2 (3)C13—C14—C15—N32.6 (7)
N4i—Zn1—N3—C11167.0 (3)C13—C14—C15—C16176.2 (4)
N5i—Zn1—N3—C1187.6 (3)C17—N4—C16—O23.1 (7)
N1—Zn1—N3—C1137.0 (4)Zn1i—N4—C16—O2170.0 (4)
N3i—Zn1—N3—C11119.7 (2)C17—N4—C16—C15178.9 (3)
N2—Zn1—N3—C15163.4 (3)Zn1i—N4—C16—C155.8 (5)
N4i—Zn1—N3—C1529.8 (3)N3—C15—C16—O2153.1 (4)
N5i—Zn1—N3—C1549.7 (3)C14—C15—C16—O228.1 (6)
N1—Zn1—N3—C15174.3 (3)N3—C15—C16—N430.6 (5)
N3i—Zn1—N3—C15103.0 (3)C14—C15—C16—N4148.3 (4)
C9—N1—C1—C21.0 (7)C16—N4—C17—C1811.8 (7)
Zn1—N1—C1—C2173.5 (4)Zn1i—N4—C17—C18174.5 (4)
N1—C1—C2—C30.9 (9)C16—N4—C17—C25169.2 (4)
C1—C2—C3—C41.3 (10)Zn1i—N4—C17—C254.5 (4)
C2—C3—C4—C5179.1 (6)N4—C17—C18—C19178.3 (4)
C2—C3—C4—C91.8 (9)C25—C17—C18—C190.7 (7)
C3—C4—C5—C6179.7 (6)C17—C18—C19—C201.2 (8)
C9—C4—C5—C60.6 (9)C18—C19—C20—C210.6 (8)
C4—C5—C6—C71.0 (11)C19—C20—C21—C22179.3 (5)
C5—C6—C7—C81.0 (10)C19—C20—C21—C250.3 (7)
C6—C7—C8—N2179.0 (5)C20—C21—C22—C23178.1 (5)
C6—C7—C8—C90.6 (7)C25—C21—C22—C230.9 (7)
C10—N2—C8—C79.5 (7)C21—C22—C23—C240.7 (8)
Zn1—N2—C8—C7173.0 (4)C25—N5—C24—C230.3 (7)
C10—N2—C8—C9170.9 (4)Zn1i—N5—C24—C23174.6 (4)
Zn1—N2—C8—C96.6 (5)C22—C23—C24—N50.1 (8)
C1—N1—C9—C41.6 (7)C24—N5—C25—C210.0 (6)
Zn1—N1—C9—C4173.8 (4)Zn1i—N5—C25—C21175.3 (3)
C1—N1—C9—C8179.7 (4)C24—N5—C25—C17179.3 (4)
Zn1—N1—C9—C84.8 (5)Zn1i—N5—C25—C174.0 (5)
C3—C4—C9—N12.0 (7)C22—C21—C25—N50.5 (6)
C5—C4—C9—N1178.8 (5)C20—C21—C25—N5178.5 (4)
C3—C4—C9—C8179.4 (5)C22—C21—C25—C17179.8 (4)
C5—C4—C9—C80.2 (8)C20—C21—C25—C170.8 (6)
C7—C8—C9—N1178.9 (4)C18—C17—C25—N5179.0 (4)
N2—C8—C9—N10.7 (6)N4—C17—C25—N50.1 (5)
C7—C8—C9—C40.3 (7)C18—C17—C25—C210.3 (6)
N2—C8—C9—C4179.4 (4)N4—C17—C25—C21179.4 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C25H15N5O2)2]·2CH2Cl2
Mr1135.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.458 (5), 13.672 (3), 16.588 (3)
β (°) 118.07 (3)
V3)4894 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
Tmin, Tmax0.642, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
4554, 4445, 2882
Rint0.023
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.133, 1.02
No. of reflections4445
No. of parameters354
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.72

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N21.987 (3)Zn1—N12.134 (4)
Zn1—N4i2.003 (3)Zn1—N32.449 (3)
Zn1—N5i2.097 (3)Zn1—N3i2.560 (3)
N2—Zn1—N4i166.94 (13)N5i—Zn1—N384.59 (12)
N2—Zn1—N5i111.37 (14)N1—Zn1—N3154.75 (13)
N4i—Zn1—N5i80.88 (13)N2—Zn1—N3i94.10 (13)
N2—Zn1—N179.79 (14)N4i—Zn1—N3i73.09 (12)
N4i—Zn1—N1100.94 (13)N5i—Zn1—N3i152.66 (12)
N5i—Zn1—N1109.06 (14)N1—Zn1—N3i84.39 (12)
N2—Zn1—N375.39 (13)N3—Zn1—N3i92.74 (11)
N4i—Zn1—N3102.19 (13)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds