Download citation
Download citation
link to html
The title compound, C16H14FNOS, crystallizes with Z' = 2 in the space group P21/c. In one of the two independent mol­ecules, the heterocyclic ring is effectively planar, but in the other mol­ecule this ring adopts an envelope conformation. The mol­ecules are weakly linked by two C-H...O hydrogen bonds to form C22(14) chains. Comparisons are made with some symmetrically substituted 2-aryl-3-benzyl-1,3-thia­zoli­din-4-ones.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110044550/sf3141sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110044550/sf3141Isup2.hkl
Contains datablock I

CCDC reference: 813490

Comment top

In our synthetic search for new bioactive compounds, we have recently focused on the preparation of thiazol-4-one derivatives, which have shown a wide range of pharmacological activities (Insuasty et al., 2010, and references therein), i.e. antibacterial, antifungal, antimicrobial, antiviral and anticonvulsant activity. We report here the structure of the title compound, (I) (Fig. 1), an asymmetrically substituted 2-aryl-3-benzyl-1,3-thiazolidin-4-one derivative, which we compare with the series of symmetrically substituted analogues (Cunico et al., 2007), compounds (II)–(VI) (see scheme). Compound (I) was prepared in excellent yield using a three-component cyclocondensation reaction between benzylamine, 4-fluorobenzaldehyde and mercaptoacetic acid. By contrast, compounds (II)–(VI) were all prepared using the reactions of aryl aldehydes with L-valine [(S)-2-amino-3-methylpropionic acid] and mercaptoacetic acid (Cunico et al., 2006). In all of (I)–(VI), atom C2 in the heterocyclic ring is a stereogenic centre, but all of the compounds are formed as racemic mixtures, despite the presence of an enantiomerically pure amino acid in the synthesis of (II)–(VI).

Compound (I) crystallizes with Z' = 2 in space group P21/c, and in the selected asymmetric unit molecule 1, containing atom S11 (Fig. 1), has the R-configuration at atom C12, while molecule 2, containing atom S21, has the S-configuration at atom C22. Compounds (II)–(VI) all crystallize with Z' = 1, either in space group C2/c [(V)], or in space groups P21/c or P21/n [(II)–(IV) and (VI)], but the cell dimensions of (I) bear no close resemblance to those in any of (II)–(VI).

In molecule 1 of (I), the heterocyclic ring is effectively planar, with a maximum deviation from the mean plane through the ring atoms of only 0.021 (3) Å for atom C15. However, the corresponding ring in molecule 2 adopts an envelope conformation, folded across the line C22···C25, with ring-puckering parameters (Cremer & Pople, 1975) for the atom sequence S21/C22/N23/C24/C25 of Q2 = 0.220 (3) Å and ϕ2 = 184.4 (8)°. Similar envelope conformations were observed in each of (III)–(VI), but in (II) the heterocyclic ring adopts a half-chair conformation, twisted about the S1—C5 bond (Cunico et al., 2007). It seems likely that the saturated heterocyclic rings in (I)–(VI) are all fairly flexible and that their detailed conformations may, to some extent, be a reflection of direction-specific intermolecular forces.

The molecules of (I) are weakly linked into chains by two C—H···O hydrogen bonds (Table 1), but C—H···π(arene) hydrogen bonds and aromatic ππ stacking interactions are absent, despite the presence of four independent and relatively unencumbered aryl rings in the asymmetric unit. Within the selected asymmetric unit, the two molecules are linked by a hydrogen bond having atom O14 as the acceptor, and dimeric units of this type, related to one another by translation, are linked by a second hydrogen bond having atom O24 as the acceptor, so giving rise to a C22(14) (Bernstein et al., 1995) chain running parallel to the [100] direction (Fig. 2).

There is a reasonably short C—H···F contact in (I) involving atom F124, but no corresponding contact occurs involving atom F224. However, this contact should not be regarded either as a hydrogen bond or indeed as structurally significant, as it has been established that halogen atoms bonded to C atoms are extremely poor acceptors, even from O—H or N—H, and worse from C—H (Howard et al., 1996; Aakeröy et al., 1999; Brammer et al., 2001; Thallapally & Nangia, 2001).

It is of interest briefly to compare the structure of asymmetrically substituted (I) with those of symmetrically disubstituted (II)–(VI) (Cunico et al., 2007), all of which, as noted earlier, crystallize with Z' = 1. In the difluoro compound, (II), where the 2-aryl ring, but not the benzyl ring, exhibits orientational disorder over two sets of sites, a combination of C—H···O and C—H···π(arene) hydrogen bonds links the molecules into sheets, which are themselves linked in pairs by an aromatic ππ stacking interaction. Thus, the direction-specific intermolecular forces which are manifest in the structure of the difluoro compound, (II), differ significantly from those in the monofluoro compound, (I). The two isomeric dimethoxy compounds, (III) and (IV), present very different patterns of behaviour. There are no direction-specific intermolecular interactions of any type in the crystal structure of (III), but in (IV), a combination of C—H···O and C—H···π(arene) hydrogen bonds links the molecules into sheets. In a somewhat similar way, the isomeric dinitro compounds, (V) and (VI), again show different modes of molecular aggregation. In (V), a C—H···π(arene) hydrogen bond combines with three independent C—H···O hydrogen bonds to link the molecules into sheets, while in (VI), the molecules are linked into chains of fused rings by the action of four independent C—H···O hydrogen bonds. Thus, the supramolecular aggregation is significantly different in each member of this series of rather similar compounds, (I)–(VI).

Related literature top

For related literature, see: Aakeröy et al. (1999); Bernstein et al. (1995); Brammer et al. (2001); Cremer & Pople (1975); Cunico et al. (2006, 2007); Howard et al. (1996); Insuasty et al. (2010); Thallapally & Nangia (2001).

Experimental top

A solution of equimolar amounts (9.4 mmol of each component) of benzylamine, 4-fluorobenzaldehyde and mercaptoacetic acid in anhydrous benzene (10 ml) was heated under reflux for 8 h. The reaction mixture was then allowed to cool to ambient temperature, after which it was washed with aqueous sodium hydrogencarbonate solution (10 ml of a 2% solution). The organic phase was dried over anhydrous magnesium sulfate and the solvent removed under reduced pressure. The solid residue was purified by crystallization from ethanol to give colourless crystals of (I) which were suitable for single-crystal X-ray diffraction (yield 96%, m.p. 367–368 K). MS (EI, 70 eV) m/z (% abundance): 287 (4, M+), 212 (23), 196 (32), 147 (52), 104 (38), 91 (100), 28 (28).

Refinement top

The merging R index is fairly high (0.1238), indicative of rather modest crystal quality. This is also reflected in the final R indices and the overall precision of the molecular geometry. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The independent molecules of (I), showing the atom-labelling scheme. (a) A type 1 molecule having the R-configuration at atom C12. (b) A type 2 molecule having the S-configuration at atom C22. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded C22(14) chain parallel to [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
3-Benzyl-2-(4-fluorophenyl)-1,3-thiazolidin-4-one top
Crystal data top
C16H14FNOSF(000) = 1200
Mr = 287.34Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4986 reflections
a = 9.6931 (9) Åθ = 3.1–25.5°
b = 16.8888 (16) ŵ = 0.25 mm1
c = 16.4202 (18) ÅT = 120 K
β = 94.706 (12)°Plate, colourless
V = 2679.0 (5) Å30.45 × 0.40 × 0.14 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4986 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 3.1°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2020
Tmin = 0.868, Tmax = 0.966l = 1919
58245 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0436P)2 + 2.3474P]
where P = (Fo2 + 2Fc2)/3
4986 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H14FNOSV = 2679.0 (5) Å3
Mr = 287.34Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.6931 (9) ŵ = 0.25 mm1
b = 16.8888 (16) ÅT = 120 K
c = 16.4202 (18) Å0.45 × 0.40 × 0.14 mm
β = 94.706 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
4986 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2857 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.966Rint = 0.124
58245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
4986 reflectionsΔρmin = 0.37 e Å3
361 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.79958 (9)0.63084 (5)0.52984 (5)0.0225 (2)
C120.7586 (3)0.61105 (18)0.63504 (19)0.0195 (7)
H120.84610.61470.67160.023*
N130.6675 (3)0.67494 (15)0.65566 (15)0.0190 (6)
C140.6320 (3)0.73163 (19)0.59987 (19)0.0201 (7)
C150.6914 (3)0.71789 (19)0.51968 (19)0.0244 (8)
H15A0.74680.76430.50520.029*
H15B0.61600.70990.47600.029*
O140.5591 (2)0.78937 (13)0.61217 (14)0.0274 (6)
C1210.6970 (3)0.53010 (18)0.64497 (18)0.0179 (7)
C1220.5642 (3)0.5130 (2)0.61141 (19)0.0224 (8)
H1220.51040.55330.58370.027*
C1230.5098 (3)0.4382 (2)0.6178 (2)0.0255 (8)
H1230.41880.42630.59520.031*
C1240.5906 (4)0.38163 (19)0.6579 (2)0.0260 (8)
C1250.7225 (4)0.3957 (2)0.6918 (2)0.0267 (8)
H1250.77590.35480.71870.032*
C1260.7750 (3)0.47128 (19)0.68535 (19)0.0225 (8)
H1260.86550.48300.70890.027*
F1240.5379 (2)0.30715 (11)0.66378 (12)0.0379 (5)
C1370.6281 (3)0.6807 (2)0.73977 (19)0.0234 (8)
H13A0.59420.62860.75720.028*
H13B0.55150.71930.74190.028*
C1310.7480 (3)0.70644 (19)0.79791 (19)0.0198 (7)
C1320.8243 (3)0.6516 (2)0.84623 (19)0.0237 (8)
H1320.79740.59750.84550.028*
C1330.9400 (3)0.6760 (2)0.8955 (2)0.0260 (8)
H1330.99200.63840.92840.031*
C1340.9796 (4)0.7546 (2)0.8970 (2)0.0294 (9)
H1341.05910.77090.93050.035*
C1350.9033 (3)0.8096 (2)0.8498 (2)0.0264 (8)
H1350.92940.86380.85110.032*
C1360.7890 (3)0.7849 (2)0.8006 (2)0.0246 (8)
H1360.73730.82270.76800.029*
S210.30057 (9)0.66988 (5)0.52727 (5)0.0229 (2)
C220.2483 (3)0.70331 (19)0.62657 (19)0.0220 (8)
H220.33380.71390.66330.026*
N230.1771 (3)0.63621 (15)0.65876 (15)0.0198 (6)
C240.1359 (3)0.5761 (2)0.6078 (2)0.0221 (8)
C250.1800 (3)0.58839 (19)0.52250 (19)0.0242 (8)
H25A0.09870.60070.48420.029*
H25B0.22470.53990.50330.029*
O240.0707 (2)0.51840 (13)0.62763 (13)0.0291 (6)
C2210.1633 (3)0.77903 (19)0.61890 (19)0.0197 (7)
C2220.0255 (3)0.78243 (19)0.6341 (2)0.0239 (8)
H2220.01960.73590.65060.029*
C2230.0483 (3)0.8531 (2)0.6258 (2)0.0265 (8)
H2230.14300.85550.63660.032*
C2240.0198 (4)0.91894 (19)0.6017 (2)0.0266 (8)
C2250.1550 (3)0.9181 (2)0.5851 (2)0.0285 (9)
H2250.19870.96460.56720.034*
C2260.2271 (3)0.84754 (19)0.5948 (2)0.0254 (8)
H2260.32220.84610.58480.030*
F2240.0522 (2)0.98835 (11)0.59266 (13)0.0421 (6)
C2370.1556 (3)0.63268 (19)0.74639 (19)0.0236 (8)
H23A0.07300.59970.75370.028*
H23B0.13610.68680.76570.028*
C2310.2768 (3)0.59943 (19)0.79866 (19)0.0209 (7)
C2320.3327 (3)0.6402 (2)0.8667 (2)0.0278 (8)
H2320.29650.69060.87930.033*
C2330.4412 (4)0.6081 (2)0.9167 (2)0.0356 (9)
H2330.47880.63670.96320.043*
C2340.4940 (4)0.5355 (2)0.8990 (2)0.0359 (10)
H2340.56810.51360.93320.043*
C2350.4394 (4)0.4940 (2)0.8313 (2)0.0378 (10)
H2350.47580.44350.81910.045*
C2360.3317 (4)0.5258 (2)0.7813 (2)0.0293 (9)
H2360.29480.49720.73470.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0242 (5)0.0216 (5)0.0224 (5)0.0005 (4)0.0059 (4)0.0006 (4)
C120.0175 (17)0.0207 (18)0.0205 (18)0.0003 (14)0.0028 (14)0.0031 (15)
N130.0207 (15)0.0200 (15)0.0165 (14)0.0013 (12)0.0032 (12)0.0014 (12)
C140.0160 (17)0.0194 (19)0.0249 (19)0.0008 (15)0.0011 (14)0.0029 (16)
C150.0252 (19)0.0248 (19)0.0233 (19)0.0011 (15)0.0029 (15)0.0012 (16)
O140.0232 (13)0.0235 (14)0.0357 (14)0.0037 (11)0.0031 (11)0.0005 (11)
C1210.0224 (19)0.0184 (18)0.0140 (17)0.0001 (14)0.0078 (14)0.0010 (14)
C1220.0227 (19)0.0244 (19)0.0197 (18)0.0011 (15)0.0001 (15)0.0003 (15)
C1230.0237 (19)0.024 (2)0.029 (2)0.0018 (16)0.0063 (16)0.0025 (16)
C1240.035 (2)0.0145 (18)0.030 (2)0.0066 (16)0.0115 (17)0.0023 (16)
C1250.034 (2)0.024 (2)0.0231 (19)0.0046 (16)0.0068 (16)0.0044 (16)
C1260.0231 (18)0.026 (2)0.0187 (18)0.0015 (15)0.0021 (14)0.0033 (15)
F1240.0464 (13)0.0242 (12)0.0449 (13)0.0083 (10)0.0146 (10)0.0027 (10)
C1370.0261 (19)0.0227 (19)0.0220 (18)0.0029 (15)0.0060 (15)0.0028 (15)
C1310.0229 (18)0.0213 (19)0.0157 (17)0.0027 (15)0.0042 (14)0.0043 (15)
C1320.027 (2)0.0221 (19)0.0222 (18)0.0000 (15)0.0072 (16)0.0004 (16)
C1330.025 (2)0.032 (2)0.0208 (19)0.0095 (17)0.0008 (15)0.0015 (16)
C1340.0228 (19)0.041 (2)0.025 (2)0.0011 (17)0.0028 (16)0.0115 (18)
C1350.028 (2)0.029 (2)0.0229 (19)0.0073 (17)0.0060 (16)0.0074 (17)
C1360.028 (2)0.026 (2)0.0201 (18)0.0034 (16)0.0043 (15)0.0004 (16)
S210.0226 (5)0.0244 (5)0.0222 (5)0.0013 (4)0.0053 (4)0.0005 (4)
C220.0213 (18)0.0231 (19)0.0216 (18)0.0010 (15)0.0028 (15)0.0001 (15)
N230.0245 (15)0.0181 (15)0.0171 (14)0.0012 (12)0.0032 (12)0.0009 (12)
C240.0204 (18)0.0214 (19)0.0249 (19)0.0038 (16)0.0037 (15)0.0003 (16)
C250.028 (2)0.0206 (19)0.0242 (19)0.0006 (15)0.0011 (15)0.0018 (15)
O240.0296 (14)0.0257 (14)0.0326 (14)0.0026 (11)0.0067 (11)0.0039 (11)
C2210.0234 (19)0.0168 (18)0.0193 (17)0.0020 (14)0.0038 (14)0.0030 (14)
C2220.025 (2)0.0182 (18)0.029 (2)0.0048 (15)0.0007 (15)0.0005 (15)
C2230.0206 (19)0.029 (2)0.030 (2)0.0051 (16)0.0052 (15)0.0011 (16)
C2240.032 (2)0.0190 (19)0.029 (2)0.0081 (16)0.0077 (16)0.0018 (16)
C2250.033 (2)0.0210 (19)0.033 (2)0.0058 (16)0.0092 (17)0.0003 (16)
C2260.0231 (19)0.026 (2)0.028 (2)0.0010 (15)0.0043 (15)0.0017 (16)
F2240.0442 (13)0.0227 (11)0.0610 (15)0.0103 (10)0.0139 (11)0.0047 (11)
C2370.0284 (19)0.0215 (19)0.0215 (18)0.0055 (15)0.0061 (15)0.0013 (15)
C2310.0210 (18)0.0247 (19)0.0176 (18)0.0016 (15)0.0060 (14)0.0029 (15)
C2320.026 (2)0.032 (2)0.026 (2)0.0016 (16)0.0077 (16)0.0028 (17)
C2330.029 (2)0.054 (3)0.024 (2)0.005 (2)0.0029 (17)0.0010 (19)
C2340.029 (2)0.057 (3)0.022 (2)0.007 (2)0.0063 (17)0.011 (2)
C2350.043 (2)0.038 (2)0.034 (2)0.0163 (19)0.0091 (19)0.0093 (19)
C2360.037 (2)0.027 (2)0.023 (2)0.0042 (17)0.0030 (17)0.0010 (16)
Geometric parameters (Å, º) top
S11—C151.806 (3)S21—C251.803 (3)
S11—C121.835 (3)S21—C221.836 (3)
C12—N131.452 (4)C22—N231.449 (4)
C12—C1211.506 (4)C22—C2211.521 (4)
C12—H121.0000C22—H221.0000
N13—C141.350 (4)N23—C241.355 (4)
N13—C1371.466 (4)N23—C2371.472 (4)
C14—O141.230 (4)C24—O241.220 (4)
C14—C151.498 (4)C24—C251.511 (4)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C121—C1261.384 (4)C221—C2221.380 (4)
C121—C1221.388 (4)C221—C2261.385 (4)
C122—C1231.375 (4)C222—C2231.392 (4)
C122—H1220.9500C222—H2220.9500
C123—C1241.370 (5)C223—C2241.368 (5)
C123—H1230.9500C223—H2230.9500
C124—F1241.364 (4)C224—C2251.361 (5)
C124—C1251.372 (5)C224—F2241.366 (4)
C125—C1261.382 (4)C225—C2261.384 (4)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
C137—C1311.507 (4)C237—C2311.506 (4)
C137—H13A0.9900C237—H23A0.9900
C137—H13B0.9900C237—H23B0.9900
C131—C1361.383 (4)C231—C2321.384 (4)
C131—C1321.392 (4)C231—C2361.391 (4)
C132—C1331.391 (5)C232—C2331.390 (5)
C132—H1320.9500C232—H2320.9500
C133—C1341.381 (5)C233—C2341.370 (5)
C133—H1330.9500C233—H2330.9500
C134—C1351.385 (5)C234—C2351.382 (5)
C134—H1340.9500C234—H2340.9500
C135—C1361.380 (5)C235—C2361.383 (5)
C135—H1350.9500C235—H2350.9500
C136—H1360.9500C236—H2360.9500
C15—S11—C1293.80 (14)C25—S21—C2292.78 (15)
N13—C12—C121113.3 (3)N23—C22—C221114.6 (3)
N13—C12—S11105.5 (2)N23—C22—S21104.9 (2)
C121—C12—S11112.7 (2)C221—C22—S21111.9 (2)
N13—C12—H12108.4N23—C22—H22108.4
C121—C12—H12108.4C221—C22—H22108.4
S11—C12—H12108.4S21—C22—H22108.4
C14—N13—C12119.7 (3)C24—N23—C22119.0 (3)
C14—N13—C137121.4 (3)C24—N23—C237121.0 (3)
C12—N13—C137118.7 (3)C22—N23—C237119.9 (3)
O14—C14—N13124.6 (3)O24—C24—N23124.5 (3)
O14—C14—C15122.3 (3)O24—C24—C25123.3 (3)
N13—C14—C15113.1 (3)N23—C24—C25112.2 (3)
C14—C15—S11107.9 (2)C24—C25—S21107.2 (2)
C14—C15—H15A110.1C24—C25—H25A110.3
S11—C15—H15A110.1S21—C25—H25A110.3
C14—C15—H15B110.1C24—C25—H25B110.3
S11—C15—H15B110.1S21—C25—H25B110.3
H15A—C15—H15B108.4H25A—C25—H25B108.5
C126—C121—C122119.5 (3)C222—C221—C226118.6 (3)
C126—C121—C12119.8 (3)C222—C221—C22123.1 (3)
C122—C121—C12120.6 (3)C226—C221—C22118.3 (3)
C123—C122—C121120.7 (3)C221—C222—C223121.0 (3)
C123—C122—H122119.7C221—C222—H222119.5
C121—C122—H122119.7C223—C222—H222119.5
C124—C123—C122118.0 (3)C224—C223—C222117.9 (3)
C124—C123—H123121.0C224—C223—H223121.0
C122—C123—H123121.0C222—C223—H223121.0
F124—C124—C123118.3 (3)C225—C224—F224118.6 (3)
F124—C124—C125118.2 (3)C225—C224—C223123.0 (3)
C123—C124—C125123.5 (3)F224—C224—C223118.3 (3)
C124—C125—C126117.7 (3)C224—C225—C226118.2 (3)
C124—C125—H125121.1C224—C225—H225120.9
C126—C125—H125121.1C226—C225—H225120.9
C125—C126—C121120.7 (3)C225—C226—C221121.2 (3)
C125—C126—H126119.7C225—C226—H226119.4
C121—C126—H126119.7C221—C226—H226119.4
N13—C137—C131111.6 (3)N23—C237—C231113.9 (3)
N13—C137—H13A109.3N23—C237—H23A108.8
C131—C137—H13A109.3C231—C237—H23A108.8
N13—C137—H13B109.3N23—C237—H23B108.8
C131—C137—H13B109.3C231—C237—H23B108.8
H13A—C137—H13B108.0H23A—C237—H23B107.7
C136—C131—C132118.8 (3)C232—C231—C236118.6 (3)
C136—C131—C137120.1 (3)C232—C231—C237120.6 (3)
C132—C131—C137121.0 (3)C236—C231—C237120.7 (3)
C133—C132—C131120.0 (3)C231—C232—C233120.7 (3)
C133—C132—H132120.0C231—C232—H232119.7
C131—C132—H132120.0C233—C232—H232119.7
C134—C133—C132120.3 (3)C234—C233—C232120.1 (4)
C134—C133—H133119.8C234—C233—H233120.0
C132—C133—H133119.8C232—C233—H233120.0
C133—C134—C135120.0 (3)C233—C234—C235120.0 (4)
C133—C134—H134120.0C233—C234—H234120.0
C135—C134—H134120.0C235—C234—H234120.0
C136—C135—C134119.4 (3)C234—C235—C236120.1 (4)
C136—C135—H135120.3C234—C235—H235120.0
C134—C135—H135120.3C236—C235—H235120.0
C135—C136—C131121.5 (3)C235—C236—C231120.6 (3)
C135—C136—H136119.2C235—C236—H236119.7
C131—C136—H136119.2C231—C236—H236119.7
C15—S11—C12—N131.8 (2)C25—S21—C22—N2317.6 (2)
C15—S11—C12—C121122.2 (2)C25—S21—C22—C221107.3 (2)
C121—C12—N13—C14123.5 (3)C221—C22—N23—C24108.0 (3)
S11—C12—N13—C140.2 (3)S21—C22—N23—C2415.1 (3)
C121—C12—N13—C13762.9 (3)C221—C22—N23—C23774.4 (4)
S11—C12—N13—C137173.4 (2)S21—C22—N23—C237162.5 (2)
C12—N13—C14—O14177.6 (3)C22—N23—C24—O24177.1 (3)
C137—N13—C14—O144.2 (5)C237—N23—C24—O245.4 (5)
C12—N13—C14—C152.0 (4)C22—N23—C24—C253.0 (4)
C137—N13—C14—C15175.5 (3)C237—N23—C24—C25174.6 (3)
O14—C14—C15—S11176.4 (3)O24—C24—C25—S21168.9 (3)
N13—C14—C15—S113.2 (3)N23—C24—C25—S2111.1 (3)
C12—S11—C15—C142.9 (2)C22—S21—C25—C2416.5 (2)
N13—C12—C121—C126133.1 (3)N23—C22—C221—C2225.6 (4)
S11—C12—C121—C126107.3 (3)S21—C22—C221—C222113.7 (3)
N13—C12—C121—C12249.3 (4)N23—C22—C221—C226174.9 (3)
S11—C12—C121—C12270.4 (3)S21—C22—C221—C22665.8 (3)
C126—C121—C122—C1230.1 (5)C226—C221—C222—C2230.2 (5)
C12—C121—C122—C123177.6 (3)C22—C221—C222—C223179.6 (3)
C121—C122—C123—C1240.2 (5)C221—C222—C223—C2240.3 (5)
C122—C123—C124—F124179.3 (3)C222—C223—C224—C2250.6 (5)
C122—C123—C124—C1250.0 (5)C222—C223—C224—F224179.4 (3)
F124—C124—C125—C126179.9 (3)F224—C224—C225—C226179.7 (3)
C123—C124—C125—C1260.6 (5)C223—C224—C225—C2261.5 (5)
C124—C125—C126—C1210.9 (5)C224—C225—C226—C2211.6 (5)
C122—C121—C126—C1250.7 (5)C222—C221—C226—C2250.8 (5)
C12—C121—C126—C125177.0 (3)C22—C221—C226—C225178.7 (3)
C14—N13—C137—C131102.7 (3)C24—N23—C237—C23193.0 (3)
C12—N13—C137—C13170.8 (4)C22—N23—C237—C23184.5 (3)
N13—C137—C131—C13676.6 (4)N23—C237—C231—C232128.0 (3)
N13—C137—C131—C13299.8 (3)N23—C237—C231—C23654.4 (4)
C136—C131—C132—C1330.5 (5)C236—C231—C232—C2330.1 (5)
C137—C131—C132—C133175.9 (3)C237—C231—C232—C233177.5 (3)
C131—C132—C133—C1340.1 (5)C231—C232—C233—C2340.0 (5)
C132—C133—C134—C1350.5 (5)C232—C233—C234—C2350.0 (5)
C133—C134—C135—C1360.8 (5)C233—C234—C235—C2360.2 (5)
C134—C135—C136—C1310.5 (5)C234—C235—C236—C2310.3 (5)
C132—C131—C136—C1350.2 (5)C232—C231—C236—C2350.3 (5)
C137—C131—C136—C135176.2 (3)C237—C231—C236—C235177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C126—H126···O24i0.952.563.193 (4)125
C226—H226···O140.952.493.354 (4)151
C137—H13B···F124ii0.992.363.175 (4)139
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H14FNOS
Mr287.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.6931 (9), 16.8888 (16), 16.4202 (18)
β (°) 94.706 (12)
V3)2679.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.45 × 0.40 × 0.14
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.868, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
58245, 4986, 2857
Rint0.124
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.124, 1.06
No. of reflections4986
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.37

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C126—H126···O24i0.952.563.193 (4)125
C226—H226···O140.952.493.354 (4)151
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds