Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Mn2O2(C14H18N4)2](ClO4)3·6H2O, con­tains a mixed-valent MnIII/MnIV complex. In accordance with a previous report [Collins, Hodgson, Michelsen & Towle (1987). J. Chem. Soc. Chem. Commun. pp. 1659-1660], the structure at 295 K is best described in the space group C2/c, with the complex exhibiting twofold rotational symmetry, and with half site occupancy for one perchlorate anion and several solvent water mol­ecules. At 180 K, the structure is ordered in the subgroup P21/n and is clearly shown to be a hexa­hydrate, rather than the previously reported trihydrate. The origin of the order-disorder phase transition lies in the thermal motion of the perchlorate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109042127/sf3119sup1.cif
Contains datablocks global, I_180K, I_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109042127/sf3119I_180Ksup2.hkl
Contains datablock I_180K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109042127/sf3119I_295Ksup3.hkl
Contains datablock I_295K

CCDC references: 760072; 760073

Comment top

The crystal structure of the title compound, (I), at 295 K has been reported previously (Collins et al., 1987). The compound was described as a trihydrate in space group C2/c, with the MnIII/MnIV complex lying on a twofold rotation axis passing through both of its Mn atoms. In that description, one perchlorate anion and one solvent water molecule have 0.50 site occupancy, which prompted Collins et al. to comment that there must be either `significant thermal motion or some disorder' in the crystal structure. We have synthesized (I) in the course of our research concerning dinuclear Mn complexes (see, for example, Poulsen et al., 2005), and we have observed that the compound undergoes an order–disorder phase transition, adopting an ordered structure in the subgroup P21/n at 180 K.

In the P21/n description (referred to hereinafter as the LT structure), the MnIII/MnIV complexes (Fig. 1) are sited on general positions and each perchlorate anion is fully occupied, although one exhibits rotational disorder typical for this pseudo-spherical anion. Six solvent water molecules are clearly evident per formula unit, so that (I) should be described as a hexahydrate rather than as a trihydrate. In the C2/c description (referred to hereinafter as the HT structure), the additional crystallographic twofold axes (running parallel to b) pass through both Mn atoms of each MnIII/MnIV complex. The primitive lattice of the LT structure is indicated unambiguously by the X-ray data at 180 K, with 2388 out of 4520 unique h+k odd reflections observed at the 3σ(I) level. For the same crystal at 295 K, only 98 such reflections are observed [mean I/σ(I) = 0.6], indicating that the C2/c structure is appropriate at room temperature.

The origin of the disorder in the HT structure is clarified by comparison with the LT structure. The MnIII/MnIV complexes are essentially indistinguishable at the two temperatures (Fig. 2), i.e. the complex maintains twofold rotational symmetry in the LT structure, but the twofold rotation axes are not operators of the P21/n space group. The perchlorate anions containing atoms Cl1 and Cl2 in the LT structure correspond to atoms Cl2i and Cl2 in the HT structure [symmetry code: (i) 1 - x, y, 1/2 - z; Fig. 3]. The anion containing atom Cl3 in the LT structure corresponds to atom Cl3 in the HT structure. However, the symmetry-generated atom Cl3i in the HT structure has no corresponding anion in the LT structure. Hence, the perchlorate anion containing atom Cl3 must have half-occupancy in the C2/c description.

In their work, Collins et al. (1987) located only some of the solvent water molecules. Atoms O1W and O2W in the LT structure correspond to the full-occupancy water molecule in the Collins HT structure, while atom O5W in the LT structure corresponds to the half-occupancy water molecule. The remainder of the solvent water molecules are situated around the site of the `missing' perchlorate anion in the LT structure [close to (0.254, 0.310, 0.399)], which would correspond to the site of atom Cl3i in the HT structure. Thus, these water molecules appear in the HT structure as partial atoms in the vicinity of the perchlorate anion containing atom Cl3. Under these circumstances, it is understandable that they were not included by Collins et al. In our 295 K data, all of the O atoms identified in the LT structure are evident in difference Fourier maps, with the exception of atom O6W, which lies close to the Cl3—O3B bond (ca 0.7 Å from atom Cl3; Fig. 3). We note, however, that our interpretation of the HT Fourier maps to identify these water molecules could only be made with knowledge of the LT structure. The positions of the solvent water molecules in the final refined HT structure closely resemble those in the LT structure, suggesting that the O—H···O hydrogen-bond network (Table 1) remains comparable at 180 and 295 K.

As implied by the statement of Collins et al. (1987), averaging of the LT structure to give the HT structure could in principle originate from static disorder of perchlorate anion Cl3 and several of the water molecules. However, the fact that the same single crystal displays the order–disorder transition, and that it is reversible, shows that the averaging must be a result of thermal motion. Since the geometry of the MnIII/MnIV complex does not change significantly from 180 to 295 K, and the positions of the solvent water molecules also appear to be comparable at the two temperatures, the significant factor must be the thermal motion of the perchlorate anions. For the anions containing atoms Cl1 and Cl2, which are inequivalent in the LT structure but become equivalent in the HT structure, the movement required for this is very slight. The most important group in the system is the perchlorate anion containing atom Cl3. In principle, this continues to break the C2/c symmetry in the HT structure, but its influence is apparently diminished by the scattering contributions of solvent water molecules O3W, O4W, O5W and O6W in the symmetry-related site near to (0.254, 0.310, 0.399). At 180 K, the difference between these two sites is detectable. At 295 K, where the thermal motion of both the perchlorate anions and the solvent water molecules is greater, the sites appear from the X-ray data to be effectively equivalent.

Experimental top

N,N'-Bis-2-picolylethylenediamine (bispicene) was prepared according to literature procedures (Glerup et al., 1994; Goodwin & Lions, 1960). Manganese(II) perchlorate hexahydrate (747 mg, 2 mmol) in water (1 ml) was then added to bispicene (501 mg, 2 mmol) in water (2 ml). The initially pale-yellow solution turned green, and black crystals of (I) were deposited overnight.

Refinement top

For both structures, H atoms bound to C or N atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C,N). At 180 K, C—H = 0.95 Å for Csp2 or 0.99 Å for Csp3 and N—H = 0.93 Å. At 295 K, C—H = 0.93 Å for Csp2 or 0.97 Å for Csp3 and N—H = 0.91 Å. In the LT structure, the H atoms of the water molecules were placed so as to form a reasonable hydrogen-bond network, with O—H = 0.85 Å, and then allowed to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O). In the HT structure, the H atoms of the water molecules were placed by comparison with the LT structure, and then refined in the same way. One water molecule site is omitted from the HT structure (corresponding to O6W in the LT structure), so that the atom count sums to four water molecules per unit cell less than the stated formula. All perchlorate anions were refined with their Cl—O distances restrained to a common refined value and O···O distances restrained to be 1.633 times that value. At 180 K, perchlorate anion Cl2 is modelled as disordered over two orientations with equal site occupancy, with atom O2A common to both orientations. The O atoms of this anion were refined with anisotropic displacement parameters restrained to resemble isotropic behaviour. For some of these atoms (particularly O2C), the anisotropic displacement parameters are nonetheless elongated, but this was considered to be acceptable in the context of the rotational disorder. At 295 K, perchlorate anion Cl2 was modelled as rotationally disordered over two orientations. In this case, all O atoms were given a common refined isotropic displacement parameter. At 180 K, the highest peak in the difference density is located in the vicinity of the solvent water molecules, ca 1.65 Å from atom H4. At 295 K, the highest residual peak is associated with the rotationally disordered perchlorate anion Cl2.

Computing details top

For both compounds, data collection: APEX2 (Bruker Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the LT structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Least-squares overlay of the MnIII/MnIV complexes in the LT (dark; blue in the electronic version of the journal) and HT (light; red in the electronic version of the journal) structures. The r.m.s. deviation is 0.10 Å for overlay of all 40 non-H atoms. Atom labels refer to the LT structure.
[Figure 3] Fig. 3. Unit-cell contents, viewed along the b axis, showing the correspondence between (a) the LT structure and (b) the HT structure. The LT structure is fully ordered. In the HT structure, perchlorate anion Cl3 and water molecules O3W, O4W and O5W have site occupancy 0.5. H atoms have been omitted. [Symmetry code: (i) 1 - x, y, 1/2 - z.]
(I_180K) Di-µ-oxido-bis{bis[N,N'-bis(2-pyridylpyridyl)ethane-1,2- diamine]manganese(III,IV)} tris(perchlorate) hexahydrate top
Crystal data top
[Mn2O2(C14H18N4)2](ClO4)3·6H2OF(000) = 2132
Mr = 1032.97Dx = 1.631 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9164 reflections
a = 15.1204 (9) Åθ = 2.2–26.1°
b = 12.2337 (7) ŵ = 0.88 mm1
c = 23.6514 (16) ÅT = 180 K
β = 105.912 (2)°Plate, brown
V = 4207.4 (5) Å30.25 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
8600 independent reflections
Radiation source: fine-focus sealed tube6203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
thin–slice ω and ϕ scansθmax = 26.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1817
Tmin = 0.874, Tmax = 0.957k = 1514
82186 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0826P)2 + 4.7043P]
where P = (Fo2 + 2Fc2)/3
8600 reflections(Δ/σ)max < 0.001
578 parametersΔρmax = 1.19 e Å3
57 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Mn2O2(C14H18N4)2](ClO4)3·6H2OV = 4207.4 (5) Å3
Mr = 1032.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1204 (9) ŵ = 0.88 mm1
b = 12.2337 (7) ÅT = 180 K
c = 23.6514 (16) Å0.25 × 0.20 × 0.05 mm
β = 105.912 (2)°
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
8600 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6203 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.957Rint = 0.036
82186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05157 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.09Δρmax = 1.19 e Å3
8600 reflectionsΔρmin = 0.83 e Å3
578 parameters
Special details top

Experimental. One perchlorate anion modelled as disordered. ADPs are anisotropic, but with ISOR constraints applied. Atom O2A is common to both orientations. H atoms on water molecules placed so as to form a reasonable H-bond network and allowed to ride during subsequent refinement.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.49969 (3)0.41996 (4)0.253395 (19)0.01791 (14)
Mn20.50311 (3)0.20276 (4)0.254490 (19)0.01730 (14)
O10.41960 (14)0.30623 (16)0.25654 (9)0.0209 (5)
O20.58198 (14)0.30965 (16)0.25184 (9)0.0198 (5)
N10.54010 (18)0.4430 (2)0.35218 (12)0.0250 (6)
N20.59674 (17)0.5454 (2)0.27016 (12)0.0232 (6)
H2B0.62360.55010.23920.028*
N30.40536 (18)0.5509 (2)0.23345 (12)0.0251 (6)
H3B0.37710.55910.26350.030*
N40.46285 (17)0.4401 (2)0.15499 (12)0.0225 (6)
N50.55890 (18)0.1774 (2)0.34143 (12)0.0233 (6)
N60.42180 (19)0.0734 (2)0.26675 (13)0.0263 (6)
H6C0.36220.08590.24350.032*
N70.59111 (18)0.0811 (2)0.24230 (12)0.0231 (6)
H7C0.64920.09560.26710.028*
N80.45115 (18)0.1777 (2)0.16735 (11)0.0222 (6)
C10.4970 (2)0.4069 (3)0.39170 (16)0.0316 (8)
H1A0.43750.37570.37770.038*
C20.5358 (3)0.4135 (3)0.45097 (17)0.0406 (9)
H2A0.50390.38720.47770.049*
C30.6229 (3)0.4594 (3)0.47146 (17)0.0435 (10)
H3A0.65150.46500.51250.052*
C40.6669 (3)0.4965 (3)0.43170 (16)0.0368 (9)
H4A0.72620.52870.44480.044*
C50.6241 (2)0.4867 (3)0.37223 (15)0.0270 (7)
C60.6690 (2)0.5209 (3)0.32554 (14)0.0268 (7)
H6A0.70740.58660.33870.032*
H6B0.70920.46150.31860.032*
C70.5489 (2)0.6501 (3)0.27481 (16)0.0295 (8)
H7A0.58700.71260.26890.035*
H7B0.53920.65660.31440.035*
C80.4578 (2)0.6517 (3)0.22874 (16)0.0307 (8)
H8A0.42220.71690.23430.037*
H8B0.46790.65590.18920.037*
C90.3350 (2)0.5284 (3)0.17747 (15)0.0295 (8)
H9A0.29950.59570.16330.035*
H9B0.29180.47190.18380.035*
C100.3813 (2)0.4891 (3)0.13232 (15)0.0259 (7)
C110.3446 (2)0.5017 (3)0.07254 (16)0.0362 (9)
H11A0.28770.53850.05750.043*
C120.3914 (3)0.4603 (3)0.03498 (17)0.0400 (9)
H12A0.36640.46690.00640.048*
C130.4754 (2)0.4089 (3)0.05795 (16)0.0343 (8)
H13A0.50920.38010.03280.041*
C140.5086 (2)0.4006 (3)0.11826 (15)0.0270 (7)
H14A0.56600.36550.13440.032*
C150.6430 (2)0.2127 (3)0.37120 (15)0.0278 (7)
H15A0.67610.25910.35210.033*
C160.6820 (3)0.1832 (3)0.42869 (16)0.0387 (9)
H16A0.74120.20920.44940.046*
C170.6330 (3)0.1146 (4)0.45585 (18)0.0497 (11)
H17A0.65850.09330.49560.060*
C180.5471 (3)0.0772 (4)0.42502 (17)0.0458 (10)
H18A0.51310.03020.44320.055*
C190.5117 (2)0.1093 (3)0.36742 (15)0.0296 (8)
C200.4199 (2)0.0733 (3)0.32918 (15)0.0316 (8)
H20A0.40580.00110.34070.038*
H20B0.37140.12350.33430.038*
C210.4558 (2)0.0291 (3)0.24596 (16)0.0307 (8)
H21A0.42880.03680.20300.037*
H21B0.43640.09280.26550.037*
C220.5598 (2)0.0264 (3)0.25991 (16)0.0308 (8)
H22A0.58710.03810.30260.037*
H22B0.58110.08610.23860.037*
C230.5968 (2)0.0896 (3)0.18094 (15)0.0280 (7)
H23A0.61700.01880.16840.034*
H23B0.64260.14590.17840.034*
C240.5046 (2)0.1197 (3)0.14122 (15)0.0259 (7)
C250.4753 (3)0.0936 (3)0.08242 (16)0.0396 (9)
H25A0.51410.05400.06420.048*
C260.3884 (3)0.1259 (3)0.05031 (17)0.0440 (10)
H26A0.36670.10830.00970.053*
C270.3337 (3)0.1839 (3)0.07762 (17)0.0376 (9)
H27A0.27370.20610.05610.045*
C280.3665 (2)0.2093 (3)0.13607 (15)0.0276 (7)
H28A0.32900.24990.15480.033*
Cl10.90154 (8)0.29185 (9)0.37978 (5)0.0535 (3)
O1A0.9867 (2)0.3260 (3)0.37174 (16)0.0674 (9)
O1B0.9055 (3)0.1879 (3)0.4052 (2)0.1034 (16)
O1C0.8615 (3)0.3712 (3)0.40745 (17)0.0911 (13)
O1D0.8382 (3)0.2842 (3)0.32045 (15)0.0832 (12)
Cl20.09877 (7)0.27260 (9)0.11002 (5)0.0501 (3)
O2A0.1156 (4)0.1625 (3)0.1005 (2)0.131 (2)
O2B0.0229 (5)0.3020 (6)0.0591 (4)0.103 (3)0.50
O2C0.0719 (8)0.2812 (8)0.1600 (4)0.158 (7)0.50
O2D0.1720 (4)0.3434 (4)0.1079 (3)0.0446 (14)0.50
O2E0.1787 (5)0.3113 (7)0.1557 (5)0.116 (3)0.50
O2F0.0236 (4)0.3027 (8)0.1308 (3)0.074 (3)0.50
O2G0.0951 (9)0.3303 (9)0.0592 (4)0.166 (5)0.50
Cl30.74394 (6)0.30989 (8)0.10183 (4)0.0397 (2)
O3A0.7493 (2)0.3076 (3)0.16349 (13)0.0599 (8)
O3B0.6680 (2)0.2426 (4)0.07414 (17)0.0893 (13)
O3C0.8242 (2)0.2642 (3)0.09321 (17)0.0866 (13)
O3D0.7292 (3)0.4181 (3)0.08285 (19)0.1063 (16)
O1W0.71849 (17)0.5493 (2)0.19164 (12)0.0442 (7)
H10.69300.60040.16850.066*
H20.72010.49510.16950.066*
O2W0.26715 (18)0.5511 (3)0.30134 (13)0.0543 (8)
H30.28770.58930.33220.081*
H40.24960.49150.31330.081*
O3W0.2578 (2)0.3181 (4)0.2926 (2)0.1074 (17)
H50.30580.30340.28190.161*
H60.27120.30070.32870.161*
O4W0.1638 (3)0.3465 (4)0.45987 (17)0.0958 (14)
H70.12900.30980.43200.144*
H80.15170.32350.49080.144*
O5W0.3862 (5)0.1516 (5)0.4923 (3)0.169 (3)
H90.36660.17670.52020.253*
H100.44350.16490.50230.253*
O6W0.2918 (5)0.2699 (8)0.4087 (3)0.212 (4)
H110.33190.23350.43390.319*
H120.25330.29430.42580.319*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0180 (2)0.0148 (2)0.0218 (3)0.00078 (17)0.00694 (19)0.00056 (18)
Mn20.0186 (3)0.0150 (2)0.0188 (3)0.00046 (17)0.00613 (19)0.00054 (18)
O10.0186 (10)0.0197 (11)0.0261 (12)0.0010 (8)0.0090 (9)0.0022 (9)
O20.0194 (10)0.0187 (11)0.0220 (11)0.0002 (8)0.0069 (9)0.0012 (9)
N10.0271 (14)0.0214 (13)0.0278 (15)0.0002 (11)0.0097 (12)0.0040 (11)
N20.0239 (13)0.0212 (13)0.0265 (15)0.0030 (11)0.0100 (11)0.0023 (11)
N30.0254 (13)0.0207 (13)0.0325 (16)0.0017 (11)0.0135 (12)0.0017 (11)
N40.0236 (13)0.0200 (13)0.0246 (15)0.0013 (11)0.0076 (11)0.0030 (11)
N50.0281 (14)0.0196 (13)0.0228 (14)0.0026 (11)0.0080 (11)0.0000 (11)
N60.0277 (14)0.0206 (14)0.0328 (16)0.0037 (11)0.0117 (12)0.0004 (12)
N70.0245 (13)0.0200 (13)0.0245 (15)0.0027 (11)0.0061 (11)0.0008 (11)
N80.0239 (13)0.0208 (13)0.0226 (14)0.0020 (11)0.0074 (11)0.0006 (11)
C10.0352 (19)0.0273 (18)0.038 (2)0.0032 (15)0.0201 (16)0.0016 (15)
C20.058 (3)0.037 (2)0.033 (2)0.0112 (18)0.0229 (19)0.0041 (17)
C30.060 (3)0.045 (2)0.023 (2)0.009 (2)0.0074 (18)0.0023 (17)
C40.038 (2)0.036 (2)0.031 (2)0.0005 (16)0.0005 (16)0.0055 (16)
C50.0278 (17)0.0204 (16)0.0314 (19)0.0014 (13)0.0059 (14)0.0020 (14)
C60.0230 (16)0.0257 (17)0.0312 (19)0.0046 (13)0.0066 (14)0.0048 (14)
C70.0329 (18)0.0171 (16)0.039 (2)0.0010 (14)0.0104 (16)0.0020 (14)
C80.0338 (19)0.0186 (16)0.040 (2)0.0006 (14)0.0110 (16)0.0003 (15)
C90.0216 (16)0.0277 (18)0.038 (2)0.0053 (13)0.0061 (14)0.0036 (15)
C100.0230 (16)0.0198 (16)0.0326 (19)0.0013 (13)0.0035 (14)0.0043 (14)
C110.0334 (19)0.034 (2)0.036 (2)0.0007 (15)0.0009 (16)0.0080 (16)
C120.044 (2)0.044 (2)0.027 (2)0.0046 (18)0.0010 (17)0.0074 (17)
C130.040 (2)0.038 (2)0.028 (2)0.0083 (16)0.0128 (16)0.0002 (16)
C140.0262 (16)0.0261 (17)0.0294 (19)0.0038 (13)0.0091 (14)0.0021 (14)
C150.0301 (18)0.0238 (17)0.0281 (19)0.0029 (13)0.0058 (14)0.0036 (14)
C160.036 (2)0.048 (2)0.028 (2)0.0064 (17)0.0027 (16)0.0023 (17)
C170.057 (3)0.064 (3)0.024 (2)0.012 (2)0.0039 (19)0.0064 (19)
C180.058 (3)0.053 (3)0.031 (2)0.000 (2)0.021 (2)0.0117 (19)
C190.040 (2)0.0243 (17)0.0282 (19)0.0027 (15)0.0160 (16)0.0011 (14)
C200.0365 (19)0.0317 (19)0.031 (2)0.0055 (15)0.0172 (16)0.0033 (15)
C210.041 (2)0.0170 (16)0.036 (2)0.0044 (14)0.0133 (16)0.0016 (14)
C220.042 (2)0.0181 (16)0.034 (2)0.0049 (14)0.0134 (16)0.0008 (14)
C230.0276 (17)0.0285 (18)0.0309 (19)0.0036 (14)0.0132 (15)0.0031 (14)
C240.0299 (17)0.0225 (16)0.0272 (18)0.0026 (13)0.0110 (14)0.0028 (14)
C250.053 (2)0.042 (2)0.026 (2)0.0033 (18)0.0141 (18)0.0062 (17)
C260.054 (2)0.050 (2)0.023 (2)0.008 (2)0.0016 (18)0.0019 (18)
C270.037 (2)0.039 (2)0.032 (2)0.0081 (16)0.0001 (16)0.0062 (17)
C280.0249 (17)0.0253 (17)0.0312 (19)0.0046 (13)0.0055 (14)0.0043 (14)
Cl10.0676 (7)0.0434 (6)0.0613 (7)0.0021 (5)0.0376 (6)0.0074 (5)
O1A0.054 (2)0.078 (2)0.073 (2)0.0048 (17)0.0227 (18)0.0100 (19)
O1B0.121 (4)0.077 (3)0.115 (4)0.019 (2)0.038 (3)0.058 (3)
O1C0.125 (3)0.087 (3)0.085 (3)0.031 (3)0.068 (3)0.013 (2)
O1D0.087 (3)0.094 (3)0.063 (2)0.025 (2)0.011 (2)0.007 (2)
Cl20.0516 (6)0.0412 (6)0.0636 (7)0.0021 (5)0.0258 (5)0.0031 (5)
O2A0.159 (5)0.052 (2)0.135 (4)0.009 (3)0.040 (3)0.029 (3)
O2B0.054 (5)0.107 (7)0.132 (9)0.004 (4)0.002 (5)0.035 (6)
O2C0.275 (16)0.166 (11)0.090 (8)0.176 (12)0.145 (10)0.107 (8)
O2D0.045 (3)0.048 (3)0.045 (3)0.009 (3)0.019 (3)0.005 (3)
O2E0.067 (5)0.097 (6)0.161 (8)0.013 (4)0.008 (5)0.061 (6)
O2F0.063 (4)0.107 (6)0.056 (5)0.033 (4)0.024 (4)0.030 (4)
O2G0.193 (9)0.204 (9)0.133 (8)0.022 (8)0.097 (7)0.068 (7)
Cl30.0304 (5)0.0397 (5)0.0474 (6)0.0056 (4)0.0083 (4)0.0052 (4)
O3A0.064 (2)0.063 (2)0.052 (2)0.0015 (16)0.0144 (16)0.0001 (15)
O3B0.063 (2)0.132 (4)0.076 (3)0.043 (2)0.0247 (19)0.049 (3)
O3C0.062 (2)0.111 (3)0.104 (3)0.037 (2)0.051 (2)0.035 (3)
O3D0.132 (4)0.063 (2)0.110 (3)0.016 (2)0.008 (3)0.055 (2)
O1W0.0329 (14)0.0619 (18)0.0386 (16)0.0032 (13)0.0111 (12)0.0034 (13)
O2W0.0409 (16)0.072 (2)0.0528 (19)0.0079 (15)0.0182 (14)0.0045 (16)
O3W0.047 (2)0.133 (4)0.155 (4)0.013 (2)0.049 (3)0.057 (3)
O4W0.084 (3)0.126 (4)0.067 (3)0.022 (3)0.003 (2)0.028 (2)
O5W0.192 (6)0.166 (6)0.189 (7)0.010 (5)0.120 (6)0.027 (5)
O6W0.187 (7)0.331 (11)0.170 (7)0.102 (7)0.136 (6)0.087 (7)
Geometric parameters (Å, º) top
Mn1—O21.843 (2)C13—C141.380 (5)
Mn1—O11.859 (2)C13—H13A0.950
Mn1—N22.085 (3)C14—H14A0.950
Mn1—N32.111 (3)C15—C161.374 (5)
Mn1—N42.253 (3)C15—H15A0.950
Mn1—N12.265 (3)C16—C171.388 (6)
Mn1—Mn22.6576 (6)C16—H16A0.950
Mn2—O21.782 (2)C17—C181.381 (6)
Mn2—O11.798 (2)C17—H17A0.950
Mn2—N82.018 (3)C18—C191.377 (5)
Mn2—N52.021 (3)C18—H18A0.950
Mn2—N72.068 (3)C19—C201.500 (5)
Mn2—N62.072 (3)C20—H20A0.990
N1—C51.340 (4)C20—H20B0.990
N1—C11.351 (4)C21—C221.517 (5)
N2—C61.488 (4)C21—H21A0.990
N2—C71.490 (4)C21—H21B0.990
N2—H2B0.930C22—H22A0.990
N3—C91.479 (4)C22—H22B0.990
N3—C81.486 (4)C23—C241.499 (5)
N3—H3B0.930C23—H23A0.990
N4—C141.340 (4)C23—H23B0.990
N4—C101.344 (4)C24—C251.376 (5)
N5—C151.345 (4)C25—C261.383 (6)
N5—C191.349 (4)C25—H25A0.950
N6—C201.485 (4)C26—C271.379 (6)
N6—C211.489 (4)C26—H26A0.950
N6—H6C0.930C27—C281.370 (5)
N7—C231.481 (4)C27—H27A0.950
N7—C221.496 (4)C28—H28A0.950
N7—H7C0.930Cl1—O1C1.398 (3)
N8—C241.346 (4)Cl1—O1B1.401 (3)
N8—C281.347 (4)Cl1—O1A1.416 (3)
C1—C21.366 (5)Cl1—O1D1.469 (3)
C1—H1A0.950Cl2—O2C1.355 (5)
C2—C31.391 (6)Cl2—O2G1.383 (6)
C2—H2A0.950Cl2—O2A1.401 (4)
C3—C41.370 (6)Cl2—O2F1.406 (6)
C3—H3A0.950Cl2—O2D1.417 (4)
C4—C51.383 (5)Cl2—O2B1.461 (6)
C4—H4A0.950Cl2—O2E1.462 (6)
C5—C61.505 (5)Cl3—O3D1.396 (3)
C6—H6A0.990Cl3—O3C1.401 (3)
C6—H6B0.990Cl3—O3B1.418 (3)
C7—C81.504 (5)Cl3—O3A1.438 (3)
C7—H7A0.990O1W—H10.85
C7—H7B0.990O1W—H20.85
C8—H8A0.990O2W—H30.85
C8—H8B0.990O2W—H40.85
C9—C101.507 (5)O3W—H50.85
C9—H9A0.990O3W—H60.85
C9—H9B0.990O4W—H70.85
C10—C111.379 (5)O4W—H80.85
C11—C121.375 (5)O5W—H90.85
C11—H11A0.950O5W—H100.85
C12—C131.388 (5)O6W—H110.85
C12—H12A0.950O6W—H120.85
O2—Mn1—O184.46 (9)C7—C8—H8A109.7
O2—Mn1—N295.69 (10)N3—C8—H8B109.7
O1—Mn1—N2167.26 (10)C7—C8—H8B109.7
O2—Mn1—N3165.94 (10)H8A—C8—H8B108.2
O1—Mn1—N399.75 (10)N3—C9—C10109.5 (2)
N2—Mn1—N383.16 (11)N3—C9—H9A109.8
O2—Mn1—N492.09 (9)C10—C9—H9A109.8
O1—Mn1—N498.27 (9)N3—C9—H9B109.8
N2—Mn1—N494.46 (10)C10—C9—H9B109.8
N3—Mn1—N474.08 (10)H9A—C9—H9B108.2
O2—Mn1—N196.85 (9)N4—C10—C11121.7 (3)
O1—Mn1—N192.67 (10)N4—C10—C9114.4 (3)
N2—Mn1—N174.65 (10)C11—C10—C9123.9 (3)
N3—Mn1—N196.35 (10)C12—C11—C10119.3 (3)
N4—Mn1—N1166.50 (10)C12—C11—H11A120.4
O2—Mn1—Mn241.97 (6)C10—C11—H11A120.4
O1—Mn1—Mn242.49 (6)C11—C12—C13119.5 (3)
N2—Mn1—Mn2136.33 (7)C11—C12—H12A120.3
N3—Mn1—Mn2140.47 (7)C13—C12—H12A120.3
N4—Mn1—Mn296.78 (7)C14—C13—C12118.1 (3)
N1—Mn1—Mn296.64 (7)C14—C13—H13A120.9
O2—Mn2—O188.05 (10)C12—C13—H13A120.9
O2—Mn2—N898.78 (10)N4—C14—C13122.6 (3)
O1—Mn2—N893.15 (10)N4—C14—H14A118.7
O2—Mn2—N592.98 (10)C13—C14—H14A118.7
O1—Mn2—N5100.43 (10)N5—C15—C16121.4 (3)
N8—Mn2—N5162.33 (11)N5—C15—H15A119.3
O2—Mn2—N793.48 (10)C16—C15—H15A119.3
O1—Mn2—N7173.53 (10)C15—C16—C17118.6 (4)
N8—Mn2—N780.42 (11)C15—C16—H16A120.7
N5—Mn2—N785.77 (10)C17—C16—H16A120.7
O2—Mn2—N6173.40 (10)C18—C17—C16120.0 (4)
O1—Mn2—N694.92 (10)C18—C17—H17A120.0
N8—Mn2—N686.96 (11)C16—C17—H17A120.0
N5—Mn2—N680.70 (11)C19—C18—C17118.8 (4)
N7—Mn2—N684.22 (11)C19—C18—H18A120.6
O2—Mn2—Mn143.75 (6)C17—C18—H18A120.6
O1—Mn2—Mn144.31 (6)N5—C19—C18121.1 (3)
N8—Mn2—Mn198.10 (7)N5—C19—C20115.1 (3)
N5—Mn2—Mn199.51 (7)C18—C19—C20123.8 (3)
N7—Mn2—Mn1136.84 (7)N6—C20—C19109.4 (3)
N6—Mn2—Mn1138.93 (8)N6—C20—H20A109.8
Mn2—O1—Mn193.20 (9)C19—C20—H20A109.8
Mn2—O2—Mn194.28 (9)N6—C20—H20B109.8
C5—N1—C1118.4 (3)C19—C20—H20B109.8
C5—N1—Mn1112.1 (2)H20A—C20—H20B108.2
C1—N1—Mn1128.9 (2)N6—C21—C22110.0 (3)
C6—N2—C7111.3 (3)N6—C21—H21A109.7
C6—N2—Mn1109.11 (19)C22—C21—H21A109.7
C7—N2—Mn1108.43 (19)N6—C21—H21B109.7
C6—N2—H2B109.3C22—C21—H21B109.7
C7—N2—H2B109.3H21A—C21—H21B108.2
Mn1—N2—H2B109.3N7—C22—C21110.3 (3)
C9—N3—C8110.8 (3)N7—C22—H22A109.6
C9—N3—Mn1109.53 (19)C21—C22—H22A109.6
C8—N3—Mn1107.74 (19)N7—C22—H22B109.6
C9—N3—H3B109.6C21—C22—H22B109.6
C8—N3—H3B109.6H22A—C22—H22B108.1
Mn1—N3—H3B109.6N7—C23—C24109.7 (3)
C14—N4—C10118.9 (3)N7—C23—H23A109.7
C14—N4—Mn1127.2 (2)C24—C23—H23A109.7
C10—N4—Mn1113.6 (2)N7—C23—H23B109.7
C15—N5—C19120.1 (3)C24—C23—H23B109.7
C15—N5—Mn2123.6 (2)H23A—C23—H23B108.2
C19—N5—Mn2115.7 (2)N8—C24—C25121.3 (3)
C20—N6—C21115.5 (3)N8—C24—C23114.5 (3)
C20—N6—Mn2108.29 (19)C25—C24—C23124.2 (3)
C21—N6—Mn2108.98 (19)C24—C25—C26118.8 (4)
C20—N6—H6C108.0C24—C25—H25A120.6
C21—N6—H6C108.0C26—C25—H25A120.6
Mn2—N6—H6C108.0C27—C26—C25119.5 (4)
C23—N7—C22116.2 (3)C27—C26—H26A120.3
C23—N7—Mn2107.40 (18)C25—C26—H26A120.3
C22—N7—Mn2109.24 (19)C28—C27—C26119.4 (4)
C23—N7—H7C107.9C28—C27—H27A120.3
C22—N7—H7C107.9C26—C27—H27A120.3
Mn2—N7—H7C107.9N8—C28—C27121.1 (3)
C24—N8—C28119.9 (3)N8—C28—H28A119.5
C24—N8—Mn2115.8 (2)C27—C28—H28A119.5
C28—N8—Mn2124.2 (2)O1C—Cl1—O1B113.7 (3)
N1—C1—C2122.6 (3)O1C—Cl1—O1A112.6 (2)
N1—C1—H1A118.7O1B—Cl1—O1A113.1 (3)
C2—C1—H1A118.7O1C—Cl1—O1D103.8 (3)
C1—C2—C3118.7 (4)O1B—Cl1—O1D107.0 (3)
C1—C2—H2A120.6O1A—Cl1—O1D105.6 (2)
C3—C2—H2A120.6O2C—Cl2—O2A109.1 (5)
C4—C3—C2119.1 (4)O2C—Cl2—O2D114.0 (4)
C4—C3—H3A120.4O2A—Cl2—O2D113.8 (3)
C2—C3—H3A120.4O2C—Cl2—O2B110.1 (6)
C3—C4—C5119.3 (4)O2A—Cl2—O2B103.9 (4)
C3—C4—H4A120.3O2D—Cl2—O2B105.4 (4)
C5—C4—H4A120.3O2G—Cl2—O2A108.4 (5)
N1—C5—C4121.9 (3)O2G—Cl2—O2F109.1 (5)
N1—C5—C6115.2 (3)O2A—Cl2—O2F120.6 (4)
C4—C5—C6122.9 (3)O2G—Cl2—O2E107.8 (6)
N2—C6—C5109.4 (2)O2A—Cl2—O2E106.3 (4)
N2—C6—H6A109.8O2F—Cl2—O2E103.9 (4)
C5—C6—H6A109.8O3D—Cl3—O3C113.6 (3)
N2—C6—H6B109.8O3D—Cl3—O3B111.3 (3)
C5—C6—H6B109.8O3C—Cl3—O3B109.0 (3)
H6A—C6—H6B108.2O3D—Cl3—O3A107.7 (2)
N2—C7—C8108.9 (3)O3C—Cl3—O3A109.3 (2)
N2—C7—H7A109.9O3B—Cl3—O3A105.7 (2)
C8—C7—H7A109.9H1—O1W—H2105.2
N2—C7—H7B109.9H3—O2W—H4105.1
C8—C7—H7B109.9H5—O3W—H6105.1
H7A—C7—H7B108.3H7—O4W—H8105.0
N3—C8—C7109.7 (3)H9—O5W—H10105.1
N3—C8—H8A109.7H11—O6W—H12107.3
O1—Mn1—Mn2—O2179.56 (13)O1—Mn2—N5—C1982.3 (2)
N2—Mn1—Mn2—O218.18 (15)N8—Mn2—N5—C1957.4 (4)
N3—Mn1—Mn2—O2158.71 (16)N7—Mn2—N5—C1995.9 (2)
N4—Mn1—Mn2—O285.58 (12)N6—Mn2—N5—C1911.1 (2)
N1—Mn1—Mn2—O292.87 (12)Mn1—Mn2—N5—C19127.3 (2)
O2—Mn1—Mn2—O1179.56 (13)O1—Mn2—N6—C2074.2 (2)
N2—Mn1—Mn2—O1161.38 (15)N8—Mn2—N6—C20167.1 (2)
N3—Mn1—Mn2—O121.73 (16)N5—Mn2—N6—C2025.6 (2)
N4—Mn1—Mn2—O194.86 (12)N7—Mn2—N6—C20112.3 (2)
N1—Mn1—Mn2—O186.69 (12)Mn1—Mn2—N6—C2068.2 (2)
O2—Mn1—Mn2—N894.25 (12)O1—Mn2—N6—C21159.5 (2)
O1—Mn1—Mn2—N886.19 (12)N8—Mn2—N6—C2166.6 (2)
N2—Mn1—Mn2—N8112.43 (13)N5—Mn2—N6—C21100.7 (2)
N3—Mn1—Mn2—N864.46 (14)N7—Mn2—N6—C2114.1 (2)
N4—Mn1—Mn2—N88.67 (10)Mn1—Mn2—N6—C21165.45 (16)
N1—Mn1—Mn2—N8172.88 (10)O2—Mn2—N7—C2370.2 (2)
O2—Mn1—Mn2—N584.33 (13)N8—Mn2—N7—C2328.2 (2)
O1—Mn1—Mn2—N595.24 (13)N5—Mn2—N7—C23162.9 (2)
N2—Mn1—Mn2—N566.14 (14)N6—Mn2—N7—C23116.0 (2)
N3—Mn1—Mn2—N5116.96 (14)Mn1—Mn2—N7—C2363.5 (2)
N4—Mn1—Mn2—N5169.90 (10)O2—Mn2—N7—C22163.0 (2)
N1—Mn1—Mn2—N58.54 (10)N8—Mn2—N7—C2298.7 (2)
O2—Mn1—Mn2—N79.65 (14)N5—Mn2—N7—C2270.2 (2)
O1—Mn1—Mn2—N7170.79 (14)N6—Mn2—N7—C2210.8 (2)
N2—Mn1—Mn2—N727.83 (16)Mn1—Mn2—N7—C22169.62 (16)
N3—Mn1—Mn2—N7149.06 (16)O2—Mn2—N8—C2477.9 (2)
N4—Mn1—Mn2—N775.93 (13)O1—Mn2—N8—C24166.4 (2)
N1—Mn1—Mn2—N7102.52 (13)N5—Mn2—N8—C2453.3 (4)
O2—Mn1—Mn2—N6171.05 (16)N7—Mn2—N8—C2414.2 (2)
O1—Mn1—Mn2—N68.51 (15)N6—Mn2—N8—C2498.9 (2)
N2—Mn1—Mn2—N6152.87 (17)Mn1—Mn2—N8—C24122.1 (2)
N3—Mn1—Mn2—N630.24 (18)O2—Mn2—N8—C28106.2 (2)
N4—Mn1—Mn2—N6103.37 (14)O1—Mn2—N8—C2817.7 (3)
N1—Mn1—Mn2—N678.18 (14)N5—Mn2—N8—C28122.7 (3)
O2—Mn2—O1—Mn10.30 (9)N7—Mn2—N8—C28161.7 (3)
N8—Mn2—O1—Mn198.38 (10)N6—Mn2—N8—C2877.1 (3)
N5—Mn2—O1—Mn192.97 (11)Mn1—Mn2—N8—C2862.0 (2)
N6—Mn2—O1—Mn1174.40 (10)C5—N1—C1—C20.2 (5)
O2—Mn1—O1—Mn20.29 (9)Mn1—N1—C1—C2170.5 (3)
N2—Mn1—O1—Mn291.6 (4)N1—C1—C2—C30.2 (5)
N3—Mn1—O1—Mn2166.17 (10)C1—C2—C3—C40.0 (6)
N4—Mn1—O1—Mn291.02 (10)C2—C3—C4—C50.5 (6)
N1—Mn1—O1—Mn296.92 (10)C1—N1—C5—C40.7 (5)
O1—Mn2—O2—Mn10.31 (9)Mn1—N1—C5—C4172.6 (3)
N8—Mn2—O2—Mn192.58 (10)C1—N1—C5—C6177.7 (3)
N5—Mn2—O2—Mn1100.66 (10)Mn1—N1—C5—C65.8 (3)
N7—Mn2—O2—Mn1173.40 (10)C3—C4—C5—N10.9 (5)
O1—Mn1—O2—Mn20.30 (9)C3—C4—C5—C6177.4 (3)
N2—Mn1—O2—Mn2167.50 (10)C7—N2—C6—C572.7 (3)
N3—Mn1—O2—Mn2108.0 (4)Mn1—N2—C6—C546.9 (3)
N4—Mn1—O2—Mn297.81 (10)N1—C5—C6—N225.7 (4)
N1—Mn1—O2—Mn292.33 (10)C4—C5—C6—N2155.9 (3)
O2—Mn1—N1—C569.2 (2)C6—N2—C7—C8160.0 (3)
O1—Mn1—N1—C5154.0 (2)Mn1—N2—C7—C840.0 (3)
N2—Mn1—N1—C524.8 (2)C9—N3—C8—C7158.2 (3)
N3—Mn1—N1—C5105.9 (2)Mn1—N3—C8—C738.4 (3)
N4—Mn1—N1—C561.9 (5)N2—C7—C8—N353.0 (4)
Mn2—Mn1—N1—C5111.5 (2)C8—N3—C9—C1072.3 (3)
O2—Mn1—N1—C1101.6 (3)Mn1—N3—C9—C1046.5 (3)
O1—Mn1—N1—C116.9 (3)C14—N4—C10—C111.4 (5)
N2—Mn1—N1—C1164.4 (3)Mn1—N4—C10—C11175.6 (3)
N3—Mn1—N1—C183.3 (3)C14—N4—C10—C9178.8 (3)
N4—Mn1—N1—C1127.3 (4)Mn1—N4—C10—C94.7 (3)
Mn2—Mn1—N1—C159.3 (3)N3—C9—C10—N426.5 (4)
O2—Mn1—N2—C657.9 (2)N3—C9—C10—C11153.3 (3)
O1—Mn1—N2—C632.1 (5)N4—C10—C11—C121.9 (5)
N3—Mn1—N2—C6136.2 (2)C9—C10—C11—C12178.3 (3)
N4—Mn1—N2—C6150.5 (2)C10—C11—C12—C131.4 (5)
N1—Mn1—N2—C637.64 (19)C11—C12—C13—C140.5 (5)
Mn2—Mn1—N2—C645.8 (2)C10—N4—C14—C130.5 (5)
O2—Mn1—N2—C7179.2 (2)Mn1—N4—C14—C13173.7 (2)
O1—Mn1—N2—C789.2 (5)C12—C13—C14—N40.0 (5)
N3—Mn1—N2—C714.8 (2)C19—N5—C15—C161.6 (5)
N4—Mn1—N2—C788.2 (2)Mn2—N5—C15—C16172.7 (3)
N1—Mn1—N2—C783.7 (2)N5—C15—C16—C170.6 (5)
Mn2—Mn1—N2—C7167.14 (16)C15—C16—C17—C180.3 (6)
O2—Mn1—N3—C947.4 (5)C16—C17—C18—C190.0 (6)
O1—Mn1—N3—C959.1 (2)C15—N5—C19—C181.8 (5)
N2—Mn1—N3—C9133.4 (2)Mn2—N5—C19—C18173.6 (3)
N4—Mn1—N3—C936.8 (2)C15—N5—C19—C20178.4 (3)
N1—Mn1—N3—C9152.9 (2)Mn2—N5—C19—C206.6 (4)
Mn2—Mn1—N3—C944.4 (3)C17—C18—C19—N51.0 (6)
O2—Mn1—N3—C873.2 (5)C17—C18—C19—C20179.2 (4)
O1—Mn1—N3—C8179.7 (2)C21—N6—C20—C1987.2 (3)
N2—Mn1—N3—C812.8 (2)Mn2—N6—C20—C1935.3 (3)
N4—Mn1—N3—C883.8 (2)N5—C19—C20—N628.4 (4)
N1—Mn1—N3—C886.5 (2)C18—C19—C20—N6151.8 (3)
Mn2—Mn1—N3—C8165.02 (16)C20—N6—C21—C2285.8 (3)
O2—Mn1—N4—C1414.5 (3)Mn2—N6—C21—C2236.2 (3)
O1—Mn1—N4—C1499.2 (3)C23—N7—C22—C2188.0 (3)
N2—Mn1—N4—C1481.4 (3)Mn2—N7—C22—C2133.7 (3)
N3—Mn1—N4—C14162.9 (3)N6—C21—C22—N746.8 (4)
N1—Mn1—N4—C14117.0 (4)C22—N7—C23—C2485.3 (3)
Mn2—Mn1—N4—C1456.4 (3)Mn2—N7—C23—C2437.4 (3)
O2—Mn1—N4—C10159.0 (2)C28—N8—C24—C251.4 (5)
O1—Mn1—N4—C1074.3 (2)Mn2—N8—C24—C25177.5 (3)
N2—Mn1—N4—C10105.1 (2)C28—N8—C24—C23179.9 (3)
N3—Mn1—N4—C1023.5 (2)Mn2—N8—C24—C233.7 (3)
N1—Mn1—N4—C1069.4 (4)N7—C23—C24—N828.0 (4)
Mn2—Mn1—N4—C10117.2 (2)N7—C23—C24—C25153.3 (3)
O2—Mn2—N5—C1517.7 (3)N8—C24—C25—C261.4 (5)
O1—Mn2—N5—C15106.3 (2)C23—C24—C25—C26179.9 (3)
N8—Mn2—N5—C15114.1 (4)C24—C25—C26—C270.5 (6)
N7—Mn2—N5—C1575.6 (3)C25—C26—C27—C280.5 (6)
N6—Mn2—N5—C15160.4 (3)C24—N8—C28—C270.4 (5)
Mn1—Mn2—N5—C1561.2 (2)Mn2—N8—C28—C27176.1 (2)
O2—Mn2—N5—C19170.8 (2)C26—C27—C28—N80.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1W0.932.052.952 (4)162
N3—H3B···O2W0.932.092.964 (4)155
N6—H6C···O2Wi0.932.002.882 (4)158
N7—H7C···O1Wii0.932.052.901 (4)151
O1W—H2···O3A0.852.353.094 (4)147
O1W—H2···O3D0.852.293.075 (6)153
O1W—H1···O1Biii0.852.233.047 (6)161
O1W—H1···O1Diii0.852.332.990 (5)135
O2W—H4···O3W0.852.192.858 (6)136
O2W—H3···O2Aiv0.852.052.852 (6)157
O3W—H6···O6W0.851.872.716 (9)175
O3W—H5···O10.851.972.806 (4)167
O4W—H7···O1Av0.852.242.918 (5)137
O4W—H8···O3Bvi0.852.082.899 (5)161
O5W—H9···O3Cvi0.852.132.977 (7)177
O5W—H10···O2Gvii0.852.323.129 (15)160
O6W—H12···O4W0.851.872.717 (8)177
O6W—H11···O5W0.851.722.548 (12)164
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
(I_295K) Di-µ-oxido-bis{bis[N,N'-bis(2-pyridylpyridyl)ethane-1,2- diamine]manganese(III,IV)} tris(perchlorate) hexahydrate top
Crystal data top
[Mn2O2(C14H18N4)2](ClO4)3·6H2OF(000) = 2132
Mr = 1032.97Dx = 1.591 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5239 reflections
a = 15.4488 (7) Åθ = 2.5–25.7°
b = 12.2792 (5) ŵ = 0.86 mm1
c = 23.7512 (10) ÅT = 295 K
β = 106.852 (2)°Plate, brown
V = 4312.1 (3) Å30.25 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
4424 independent reflections
Radiation source: fine-focus sealed tube3026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
thin–slice ω and ϕ scansθmax = 26.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1919
Tmin = 0.832, Tmax = 0.958k = 1515
34341 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.235H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1669P)2]
where P = (Fo2 + 2Fc2)/3
4424 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.92 e Å3
30 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Mn2O2(C14H18N4)2](ClO4)3·6H2OV = 4312.1 (3) Å3
Mr = 1032.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.4488 (7) ŵ = 0.86 mm1
b = 12.2792 (5) ÅT = 295 K
c = 23.7512 (10) Å0.25 × 0.20 × 0.05 mm
β = 106.852 (2)°
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
4424 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3026 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.958Rint = 0.069
34341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06730 restraints
wR(F2) = 0.235H-atom parameters constrained
S = 1.07Δρmax = 0.92 e Å3
4424 reflectionsΔρmin = 0.70 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Water molecule O1W is fully occupied. Perchlorate Cl2 is fully occupied (although rotationally disordered). Perchlorate Cl3 is has site occupancy 0.5. When perchlorate Cl3 is not present, water molecules O3W, O4W and O5W are present [One further half-occupied water molecule is implied by analogy with the LT structure].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.41233 (6)0.25000.0374 (3)
Mn20.50000.19590 (6)0.25000.0380 (3)
O10.42079 (18)0.3023 (2)0.25150 (13)0.0445 (7)
N30.4057 (2)0.5398 (3)0.23301 (15)0.0480 (8)
H3A0.38050.54540.26310.058*
N40.4607 (2)0.4345 (3)0.15462 (16)0.0483 (8)
N70.5820 (3)0.0693 (3)0.23683 (17)0.0547 (9)
H7B0.63870.08200.26090.066*
N80.4464 (2)0.1675 (3)0.16031 (16)0.0493 (8)
C80.4541 (3)0.6435 (4)0.2277 (2)0.0628 (12)
H8A0.41930.70530.23450.075*
H8B0.46040.64960.18840.075*
C90.3354 (3)0.5164 (4)0.1780 (2)0.0597 (11)
H9A0.29910.58090.16460.072*
H9B0.29600.45900.18430.072*
C100.3807 (3)0.4811 (3)0.13250 (18)0.0508 (10)
C110.3424 (4)0.4955 (5)0.0721 (2)0.0746 (15)
H11A0.28660.52950.05720.090*
C120.3906 (5)0.4570 (5)0.0350 (2)0.0816 (17)
H12A0.36660.46360.00550.098*
C130.4710 (4)0.4110 (4)0.0575 (2)0.0753 (15)
H13A0.50330.38610.03260.090*
C140.5066 (3)0.3999 (4)0.1169 (2)0.0629 (12)
H14A0.56330.36810.13190.076*
C220.5508 (4)0.0323 (4)0.2561 (3)0.0797 (16)
H22A0.57920.04190.29790.096*
H22B0.56850.09290.23570.096*
C230.5869 (3)0.0754 (4)0.1763 (2)0.0659 (13)
H23A0.60430.00490.16460.079*
H23B0.63270.12790.17410.079*
C240.4986 (4)0.1079 (4)0.1359 (2)0.0617 (12)
C250.4695 (5)0.0790 (6)0.0775 (3)0.094 (2)
H25A0.50570.03750.06060.112*
C260.3854 (6)0.1133 (7)0.0449 (3)0.109 (2)
H26A0.36530.09750.00490.130*
C270.3298 (5)0.1715 (6)0.0708 (3)0.091 (2)
H27A0.27120.19040.04940.110*
C280.3630 (4)0.1998 (4)0.1279 (2)0.0656 (14)
H28A0.32800.24220.14540.079*
O1W0.7267 (3)0.5398 (5)0.1949 (2)0.1158 (16)
H10.70130.59080.17180.174*
H20.72820.48570.17280.174*
Cl20.09937 (13)0.27040 (16)0.11200 (9)0.1021 (6)
O2A0.1324 (9)0.1704 (8)0.0969 (6)0.1634 (18)*0.50
O2B0.0310 (7)0.3051 (9)0.0599 (5)0.1634 (18)*0.50
O2C0.0664 (9)0.2663 (10)0.1576 (5)0.1634 (18)*0.50
O2D0.1705 (7)0.3451 (10)0.1186 (5)0.1634 (18)*0.50
O2E0.1603 (8)0.2705 (10)0.1749 (4)0.1634 (18)*0.50
O2F0.0918 (9)0.1650 (7)0.0973 (6)0.1634 (18)*0.50
O2G0.0203 (7)0.3117 (9)0.1223 (6)0.1634 (18)*0.50
O2H0.1438 (8)0.3434 (10)0.0889 (5)0.1634 (18)*0.50
Cl30.7457 (2)0.3103 (3)0.10074 (18)0.0931 (10)0.50
O3A0.7548 (11)0.3046 (9)0.1633 (4)0.176 (6)0.50
O3B0.6804 (8)0.2308 (10)0.0774 (7)0.192 (8)0.50
O3C0.8279 (7)0.2797 (11)0.0949 (8)0.209 (9)0.50
O3D0.7182 (9)0.4109 (8)0.0839 (6)0.203 (8)0.50
O3W0.2552 (10)0.2812 (15)0.2718 (9)0.202 (8)0.50
H50.30460.28440.26290.303*0.50
H60.25210.28700.30680.303*0.50
O4W0.1731 (14)0.3384 (18)0.4569 (8)0.197 (7)0.50
H70.12980.31020.43030.296*0.50
H80.15590.32630.48730.296*0.50
O5W0.3653 (19)0.164 (2)0.4794 (17)0.314 (18)0.50
H90.33580.18730.50220.471*0.50
H100.41460.20000.48980.471*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0374 (5)0.0343 (5)0.0415 (5)0.0000.0132 (3)0.000
Mn20.0384 (5)0.0342 (5)0.0420 (5)0.0000.0124 (3)0.000
O10.0369 (14)0.0480 (17)0.0513 (17)0.0020 (10)0.0167 (12)0.0060 (11)
N30.0528 (19)0.0400 (19)0.054 (2)0.0064 (14)0.0205 (15)0.0007 (15)
N40.0500 (19)0.0399 (19)0.057 (2)0.0003 (15)0.0177 (16)0.0019 (15)
N70.061 (2)0.040 (2)0.067 (2)0.0090 (16)0.0241 (18)0.0001 (17)
N80.055 (2)0.0417 (18)0.051 (2)0.0048 (16)0.0155 (16)0.0024 (16)
C80.072 (3)0.035 (2)0.081 (3)0.008 (2)0.022 (2)0.003 (2)
C90.048 (2)0.052 (3)0.077 (3)0.0151 (19)0.014 (2)0.012 (2)
C100.049 (2)0.044 (2)0.055 (2)0.0012 (18)0.0090 (18)0.0039 (19)
C110.080 (3)0.068 (3)0.065 (3)0.002 (3)0.004 (3)0.010 (3)
C120.110 (5)0.078 (4)0.052 (3)0.012 (3)0.015 (3)0.005 (3)
C130.106 (4)0.066 (3)0.066 (3)0.017 (3)0.046 (3)0.005 (3)
C140.066 (3)0.049 (3)0.082 (4)0.005 (2)0.034 (3)0.004 (2)
C220.101 (4)0.046 (3)0.101 (4)0.015 (3)0.043 (4)0.008 (3)
C230.075 (3)0.058 (3)0.073 (3)0.010 (2)0.035 (3)0.010 (2)
C240.078 (3)0.056 (3)0.056 (3)0.007 (2)0.027 (2)0.002 (2)
C250.116 (5)0.114 (5)0.057 (3)0.004 (4)0.033 (3)0.019 (3)
C260.151 (7)0.120 (6)0.049 (3)0.031 (5)0.019 (4)0.004 (4)
C270.094 (4)0.096 (5)0.066 (4)0.021 (4)0.006 (3)0.020 (3)
C280.068 (3)0.057 (3)0.065 (3)0.011 (2)0.010 (2)0.014 (2)
O1W0.085 (3)0.141 (4)0.122 (4)0.015 (3)0.031 (3)0.010 (3)
Cl20.1151 (14)0.0906 (11)0.1132 (14)0.0029 (10)0.0529 (11)0.0102 (10)
Cl30.0742 (19)0.095 (3)0.112 (3)0.0242 (16)0.0296 (18)0.0190 (18)
O3A0.202 (16)0.140 (12)0.166 (15)0.035 (10)0.022 (12)0.018 (9)
O3B0.158 (16)0.189 (17)0.26 (2)0.007 (14)0.108 (16)0.054 (16)
O3C0.114 (10)0.183 (15)0.34 (3)0.050 (10)0.078 (14)0.074 (15)
O3D0.201 (15)0.130 (12)0.31 (2)0.029 (11)0.122 (15)0.088 (13)
O3W0.094 (8)0.29 (2)0.24 (2)0.004 (10)0.082 (11)0.066 (15)
O4W0.233 (19)0.231 (18)0.124 (12)0.005 (17)0.045 (12)0.017 (12)
O5W0.21 (3)0.23 (3)0.50 (6)0.01 (2)0.11 (3)0.12 (3)
Geometric parameters (Å, º) top
Mn1—O11.830 (3)C14—H14A0.930
Mn1—O1i1.830 (3)C22—C22i1.511 (11)
Mn1—N3i2.096 (3)C22—H22A0.970
Mn1—N32.096 (3)C22—H22B0.970
Mn1—N42.186 (4)C23—C241.478 (7)
Mn1—N4i2.186 (4)C23—H23A0.970
Mn1—Mn22.6575 (11)C23—H23B0.970
Mn2—O1i1.798 (3)C24—C251.376 (7)
Mn2—O11.798 (3)C25—C261.371 (10)
Mn2—N8i2.079 (4)C25—H25A0.930
Mn2—N82.079 (4)C26—C271.392 (11)
Mn2—N72.086 (3)C26—H26A0.930
Mn2—N7i2.086 (3)C27—C281.348 (8)
N3—C91.465 (6)C27—H27A0.930
N3—C81.499 (6)C28—H28A0.930
N3—H3A0.910Cl2—O2C1.325 (8)
N4—C101.324 (5)Cl2—O2F1.337 (8)
N4—C141.362 (6)Cl2—O2H1.339 (8)
N7—C221.459 (6)Cl2—O2D1.404 (8)
N7—C231.462 (6)Cl2—O2G1.409 (8)
N7—H7B0.910Cl2—O2A1.416 (8)
N8—C241.338 (6)Cl2—O2B1.438 (8)
N8—C281.354 (6)Cl2—O2E1.518 (8)
C8—C8i1.504 (10)Cl3—O3D1.330 (8)
C8—H8A0.970Cl3—O3C1.369 (8)
C8—H8B0.970Cl3—O3B1.397 (9)
C9—C101.512 (6)Cl3—O3A1.454 (9)
C9—H9A0.970O1W—H10.85
C9—H9B0.970O1W—H20.85
C10—C111.396 (6)O3W—H50.85
C11—C121.391 (8)O3W—H60.85
C11—H11A0.930O4W—H70.85
C12—C131.327 (8)O4W—H80.85
C12—H12A0.930O5W—H90.85
C13—C141.364 (7)O5W—H100.85
C13—H13A0.930
O1—Mn1—O1i84.86 (16)C10—C9—H9A110.0
O1—Mn1—N3i168.16 (13)N3—C9—H9B110.0
O1i—Mn1—N3i97.11 (13)C10—C9—H9B110.0
O1—Mn1—N397.11 (13)H9A—C9—H9B108.4
O1i—Mn1—N3168.17 (13)N4—C10—C11122.1 (4)
N3i—Mn1—N383.37 (19)N4—C10—C9114.3 (3)
O1—Mn1—N497.20 (13)C11—C10—C9123.5 (4)
O1i—Mn1—N493.34 (13)C12—C11—C10117.5 (5)
N3i—Mn1—N494.34 (13)C12—C11—H11A121.2
N3—Mn1—N474.85 (13)C10—C11—H11A121.3
O1—Mn1—N4i93.34 (13)C13—C12—C11120.0 (5)
O1i—Mn1—N4i97.20 (13)C13—C12—H12A120.0
N3i—Mn1—N4i74.85 (13)C11—C12—H12A120.0
N3—Mn1—N4i94.34 (13)C12—C13—C14120.6 (5)
N4—Mn1—N4i165.71 (18)C12—C13—H13A119.7
O1—Mn1—Mn242.43 (8)C14—C13—H13A119.7
O1i—Mn1—Mn242.43 (8)N4—C14—C13121.2 (5)
N3i—Mn1—Mn2138.32 (9)N4—C14—H14A119.4
N3—Mn1—Mn2138.32 (9)C13—C14—H14A119.4
N4—Mn1—Mn297.14 (9)N7—C22—C22i111.1 (4)
N4i—Mn1—Mn297.14 (9)N7—C22—H22A109.4
O1i—Mn2—O186.73 (17)C22i—C22—H22A109.4
O1i—Mn2—N8i94.07 (14)N7—C22—H22B109.4
O1—Mn2—N8i99.96 (14)C22i—C22—H22B109.4
O1i—Mn2—N899.96 (14)H22A—C22—H22B108.0
O1—Mn2—N894.07 (14)N7—C23—C24110.5 (4)
N8i—Mn2—N8160.7 (2)N7—C23—H23A109.5
O1i—Mn2—N795.28 (14)C24—C23—H23A109.5
O1—Mn2—N7172.51 (13)N7—C23—H23B109.5
N8i—Mn2—N787.12 (15)C24—C23—H23B109.5
N8—Mn2—N778.48 (15)H23A—C23—H23B108.1
O1i—Mn2—N7i172.51 (13)N8—C24—C25121.1 (5)
O1—Mn2—N7i95.28 (15)N8—C24—C23115.2 (4)
N8i—Mn2—N7i78.48 (15)C25—C24—C23123.7 (5)
N8—Mn2—N7i87.12 (15)C26—C25—C24118.0 (6)
N7—Mn2—N7i83.6 (2)C26—C25—H25A121.0
O1i—Mn2—Mn143.37 (8)C24—C25—H25A121.0
O1—Mn2—Mn143.37 (8)C25—C26—C27120.8 (6)
N8i—Mn2—Mn199.65 (10)C25—C26—H26A119.6
N8—Mn2—Mn199.65 (10)C27—C26—H26A119.6
N7—Mn2—Mn1138.18 (11)C28—C27—C26118.3 (6)
N7i—Mn2—Mn1138.18 (11)C28—C27—H27A120.9
Mn2—O1—Mn194.20 (13)C26—C27—H27A120.9
C9—N3—C8110.5 (3)C27—C28—N8121.2 (6)
C9—N3—Mn1108.6 (2)C27—C28—H28A119.4
C8—N3—Mn1108.4 (2)N8—C28—H28A119.4
C9—N3—H3A109.8O2C—Cl2—O2A115.2 (7)
C8—N3—H3A109.8O2D—Cl2—O2A105.5 (6)
Mn1—N3—H3A109.8O2C—Cl2—O2B110.8 (6)
C10—N4—C14118.5 (4)O2D—Cl2—O2B104.9 (6)
C10—N4—Mn1114.4 (3)O2A—Cl2—O2B105.5 (6)
C14—N4—Mn1127.0 (3)O2C—Cl2—O2D114.0 (7)
C22—N7—C23117.9 (4)O2F—Cl2—O2G112.3 (6)
C22—N7—Mn2108.7 (3)O2H—Cl2—O2G113.8 (6)
C23—N7—Mn2108.4 (3)O2F—Cl2—O2E103.9 (6)
C22—N7—H7B107.1O2H—Cl2—O2E99.1 (6)
C23—N7—H7B107.1O2G—Cl2—O2E98.6 (6)
Mn2—N7—H7B107.1O2F—Cl2—O2H123.9 (7)
C24—N8—C28120.4 (4)O3D—Cl3—O3C116.7 (7)
C24—N8—Mn2115.1 (3)O3D—Cl3—O3B113.4 (7)
C28—N8—Mn2124.3 (4)O3C—Cl3—O3B110.7 (7)
N3—C8—C8i109.4 (3)O3D—Cl3—O3A106.2 (7)
N3—C8—H8A109.8O3C—Cl3—O3A105.8 (7)
C8i—C8—H8A109.8O3B—Cl3—O3A102.6 (7)
N3—C8—H8B109.8H1—O1W—H2105.5
C8i—C8—H8B109.8H5—O3W—H6123.1
H8A—C8—H8B108.2H7—O4W—H8100.8
N3—C9—C10108.4 (3)H9—O5W—H10104.4
N3—C9—H9A110.0
O1—Mn1—Mn2—O1i180.0O1i—Mn1—N4—C1418.4 (4)
N3i—Mn1—Mn2—O1i17.67 (19)N3i—Mn1—N4—C1479.0 (3)
N3—Mn1—Mn2—O1i162.33 (19)N3—Mn1—N4—C14161.0 (4)
N4—Mn1—Mn2—O1i87.13 (16)N4i—Mn1—N4—C14119.2 (3)
N4i—Mn1—Mn2—O1i92.88 (16)Mn2—Mn1—N4—C1460.8 (3)
O1i—Mn1—Mn2—O1180.0O1i—Mn2—N7—C22160.2 (3)
N3i—Mn1—Mn2—O1162.33 (19)N8i—Mn2—N7—C2266.4 (4)
N3—Mn1—Mn2—O117.67 (19)N8—Mn2—N7—C22100.7 (4)
N4—Mn1—Mn2—O192.87 (16)N7i—Mn2—N7—C2212.3 (3)
N4i—Mn1—Mn2—O187.13 (16)Mn1—Mn2—N7—C22167.7 (3)
O1—Mn1—Mn2—N8i94.32 (17)O1i—Mn2—N7—C2370.5 (3)
O1i—Mn1—Mn2—N8i85.68 (17)O1—Mn2—N7—C2334.8 (11)
N3i—Mn1—Mn2—N8i68.01 (17)N8i—Mn2—N7—C23164.4 (3)
N3—Mn1—Mn2—N8i111.99 (17)N8—Mn2—N7—C2328.6 (3)
N4—Mn1—Mn2—N8i172.81 (12)N7i—Mn2—N7—C23116.9 (4)
N4i—Mn1—Mn2—N8i7.20 (12)Mn1—Mn2—N7—C2363.1 (4)
O1—Mn1—Mn2—N885.68 (17)O1i—Mn2—N8—C2478.1 (3)
O1i—Mn1—Mn2—N894.32 (17)O1—Mn2—N8—C24165.5 (3)
N3i—Mn1—Mn2—N8111.99 (17)N8i—Mn2—N8—C2457.8 (3)
N3—Mn1—Mn2—N868.01 (17)N7—Mn2—N8—C2415.3 (3)
N4—Mn1—Mn2—N87.19 (12)N7i—Mn2—N8—C2499.4 (3)
N4i—Mn1—Mn2—N8172.80 (12)Mn1—Mn2—N8—C24122.2 (3)
O1—Mn1—Mn2—N7169.16 (19)O1i—Mn2—N8—C28105.6 (3)
O1i—Mn1—Mn2—N710.84 (19)O1—Mn2—N8—C2818.3 (4)
N3i—Mn1—Mn2—N728.5 (2)N8i—Mn2—N8—C28118.4 (3)
N3—Mn1—Mn2—N7151.5 (2)N7—Mn2—N8—C28160.9 (4)
N4—Mn1—Mn2—N776.28 (18)N7i—Mn2—N8—C2876.8 (4)
N4i—Mn1—Mn2—N7103.72 (18)Mn1—Mn2—N8—C2861.6 (3)
O1—Mn1—Mn2—N7i10.85 (19)C9—N3—C8—C8i157.3 (5)
O1i—Mn1—Mn2—N7i169.16 (19)Mn1—N3—C8—C8i38.4 (5)
N3i—Mn1—Mn2—N7i151.5 (2)C8—N3—C9—C1072.2 (4)
N3—Mn1—Mn2—N7i28.5 (2)Mn1—N3—C9—C1046.6 (4)
N4—Mn1—Mn2—N7i103.72 (18)C14—N4—C10—C110.2 (6)
N4i—Mn1—Mn2—N7i76.28 (18)Mn1—N4—C10—C11176.0 (4)
O1i—Mn2—O1—Mn10.0C14—N4—C10—C9180.0 (4)
N8i—Mn2—O1—Mn193.56 (14)Mn1—N4—C10—C93.8 (5)
N8—Mn2—O1—Mn199.76 (14)N3—C9—C10—N427.8 (5)
N7i—Mn2—O1—Mn1172.76 (13)N3—C9—C10—C11152.4 (4)
O1i—Mn1—O1—Mn20.0N4—C10—C11—C121.1 (7)
N3i—Mn1—O1—Mn2100.2 (6)C9—C10—C11—C12178.6 (5)
N3—Mn1—O1—Mn2168.26 (13)C10—C11—C12—C131.6 (8)
N4—Mn1—O1—Mn292.73 (13)C11—C12—C13—C140.7 (9)
N4i—Mn1—O1—Mn296.94 (14)C10—N4—C14—C131.1 (6)
O1—Mn1—N3—C958.3 (3)Mn1—N4—C14—C13174.5 (3)
O1i—Mn1—N3—C940.6 (7)C12—C13—C14—N40.7 (8)
N3i—Mn1—N3—C9133.6 (3)C23—N7—C22—C22i89.3 (6)
N4—Mn1—N3—C937.3 (3)Mn2—N7—C22—C22i34.5 (7)
N4i—Mn1—N3—C9152.2 (3)C22—N7—C23—C2486.1 (5)
Mn2—Mn1—N3—C946.4 (3)Mn2—N7—C23—C2437.8 (5)
O1—Mn1—N3—C8178.4 (3)C28—N8—C24—C250.7 (7)
O1i—Mn1—N3—C879.5 (7)Mn2—N8—C24—C25177.1 (4)
N3i—Mn1—N3—C813.5 (2)C28—N8—C24—C23178.4 (4)
N4—Mn1—N3—C882.8 (3)Mn2—N8—C24—C232.0 (5)
N4i—Mn1—N3—C887.7 (3)N7—C23—C24—N826.9 (6)
Mn2—Mn1—N3—C8166.5 (2)N7—C23—C24—C25152.2 (5)
O1—Mn1—N4—C1072.2 (3)N8—C24—C25—C260.2 (9)
O1i—Mn1—N4—C10157.4 (3)C23—C24—C25—C26179.1 (6)
N3i—Mn1—N4—C10105.2 (3)C24—C25—C26—C272.8 (11)
N3—Mn1—N4—C1023.3 (3)C25—C26—C27—C284.5 (10)
N4i—Mn1—N4—C1065.0 (3)C26—C27—C28—N83.6 (8)
Mn2—Mn1—N4—C10114.9 (3)C24—N8—C28—C271.1 (7)
O1—Mn1—N4—C14103.6 (3)Mn2—N8—C28—C27174.9 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

(I_180K)(I_295K)
Crystal data
Chemical formula[Mn2O2(C14H18N4)2](ClO4)3·6H2O[Mn2O2(C14H18N4)2](ClO4)3·6H2O
Mr1032.971032.97
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)180295
a, b, c (Å)15.1204 (9), 12.2337 (7), 23.6514 (16)15.4488 (7), 12.2792 (5), 23.7512 (10)
β (°) 105.912 (2) 106.852 (2)
V3)4207.4 (5)4312.1 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.880.86
Crystal size (mm)0.25 × 0.20 × 0.050.25 × 0.20 × 0.05
Data collection
DiffractometerBruker Nonius X8 APEXII CCD area-detector
diffractometer
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.874, 0.9570.832, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
82186, 8600, 6203 34341, 4424, 3026
Rint0.0360.069
(sin θ/λ)max1)0.6260.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 1.09 0.067, 0.235, 1.07
No. of reflections86004424
No. of parameters578298
No. of restraints5730
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.830.92, 0.70

Computer programs: APEX2 (Bruker Nonius, 2004), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I_180K) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1W0.932.052.952 (4)162.2
N3—H3B···O2W0.932.092.964 (4)155.1
N6—H6C···O2Wi0.932.002.882 (4)158.0
N7—H7C···O1Wii0.932.052.901 (4)151.3
O1W—H2···O3A0.852.353.094 (4)146.8
O1W—H2···O3D0.852.293.075 (6)153.0
O1W—H1···O1Biii0.852.233.047 (6)160.5
O1W—H1···O1Diii0.852.332.990 (5)135.1
O2W—H4···O3W0.852.192.858 (6)135.7
O2W—H3···O2Aiv0.852.052.852 (6)157.2
O3W—H6···O6W0.851.872.716 (9)175.1
O3W—H5···O10.851.972.806 (4)166.8
O4W—H7···O1Av0.852.242.918 (5)136.8
O4W—H8···O3Bvi0.852.082.899 (5)161.2
O5W—H9···O3Cvi0.852.132.977 (7)176.8
O5W—H10···O2Gvii0.852.323.129 (15)159.7
O6W—H12···O4W0.851.872.717 (8)177.0
O6W—H11···O5W0.851.722.548 (12)163.6
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds