Download citation
Download citation
link to html
The title compound, {[Mn(C10H28N6)][Sn3Se7]}n, consists of anionic [infinity]{[Sn3Se7]2-} layers interspersed by [Mn(peha)]2+ complex cations (peha is penta­ethyl­ene­hexa­mine). Pseudo­cubic (Sn3Se4) cluster units within each layer are held together to form a 63 net with a hole size of 8.74 × 13.87 Å. Weak N-H...Se inter­actions between the host inorganic frameworks and metal complexes extend the components into a three-dimensional network. The incorporation of metal complexes into the flexible anion layer dictates the distortion of the holes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109010956/sf3102sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109010956/sf3102Isup2.hkl
Contains datablock I

CCDC reference: 735099

Comment top

Since the extension of established synthetic methodologies for zeolites to metal sulfides (Bedard et al., 1989), chalcogenidometalates have been of considerable interest because of the combination of the microporous features of zeolites and their intrinsic semiconducting behaviour. Organic amines play an important role in the formation of these materials by acting as templates and charge-balancing counter-ions. Synthesis of organic–inorganic hybrid tin chalcogenides is generally performed in the presence of nonchelating organic amines, and a series of dimeric anions with general formula [Sn2Q6]4- (Q = S, Se and Te; Li et al., 1999) have been prepared with in-situ-generated metal–amine complexes. However, little (Li et al., 2000) is known about the incorporation of metal complexes into two-dimensional or three-dimensional networks of tin chalcogenides. It is known that the tendancy of SnIV to extend its coordination number from 4 to 5 or 6 allows the formation of a variety of two- and three-dimensional anionic structures. The most important feature of metal complexes is the integration of their electronic, optical and magnetic properties with the host inorganic frameworks, which helps to provide complementary properties and synergistic effects. We report here the crystal structure of such a compound, {[Mn(peha)][Sn3Se7]}n {peha is pentaethylenehexamine; [-CH2(NHCH2CH2)2NH2]2}.

As shown in Figs. 1 and 2, compound (I) consists of anionic [Sn3Se7]2- layers with metal complexes [Mn(peha)]2+ accommodated between adjacent layers. Within the [Sn3Se7]2- layer, semicubic cluster units (Sn3Se4) are connected by edge sharing of five-coordinated tin polyhedra to form a 63 net with cavities surrounded by 12 Sn–Se polyhedra (Fig. 3). While all Sn atoms are coordinated in a trigonal-bipyramidal fashion, the Se atom located intermediately between three Sn atoms (Sn1, Sn2 and Sn3) is trigonally coordinated, and the remaining Se atoms are bicoordinated. In the metal complex [Mn(peha)]2+, the Mn centre is six-coordinated by N atoms from the peha molecule, displaying a distorted octahedral configuration. Atoms N1, N2 and N3 are meridional, as are the other three N atoms (N4, N5 and N6). The peha molecules are generated from the decomposition and rearrangement of triethylenetetramine {teta; [–CH2NH(CH2)2NH2]2}.

Each Sn atom of (I) adopts a coordination environment with the µ3-Se atoms in axial (ax) positions [the opposite axial atoms are Se1 for Sn1, Se7ii for Sn2 and Se2iii for Sn3; symmetry codes: (ii) -x + 1, -y + 1, -z; (iii) -x + 1/2, y + 1/2, -z + 1/2]. The axial Se—Sn bond lengths are significantly longer than those for equatorial sites, which are similar to the distances found in the literature (Parise et al., 1994). The Seax—Sn—Seax angles are 170.79 (3) (Se4—Sn1—Se1), 178.20 (3) (Se4—Sn2—Se7ii) and 176.02 (4)° (Se4—Sn3—Se2iii), so the structures can be described as slightly distorted trigonal bipyramids.

In [Mn(peha)]2+, the Mn—N distances range from 2.254 (9) to 2.340 (9) Å and are in the normal range (Wendland et al., 1998). The heavy distortion of the octahedral environment in the metal centre is manifested by the trans angles, which range from 128.9 (3) to 151.0 (3)°, and the cis angles, which lie in the range 73.2 (3)–129.1 (3)°.

As shown in Fig. 2 and Table 2, the title compound forms a three-dimensional network via weak N—H···Se interactions between N atoms of peha molecules and µ2-Se atoms from two adjacent polyanion layers. The layers are oriented normal to the b axis and along the ac direction. All Sn atoms within each layer are nearly coplanar (the mean deviation from the plane is 0.0597 Å). The average interlayer separation as measured between the tin planes is 9.23 Å. Both (I) and the previously reported compound TMA–SnSe (TMA is trimethyl amine; Ahari, Ozin et al., 1995; Ahari, Bowes et al., 1995) contain anionic [Sn3Se7]2- layers, but the steric requirements of charge-balancing cations in the two structures are different. The flexibility of the Sn3Se7 framework has been verified by varying the organic template or including molecular guests in the two structures. It is obvious that the distortion of the cavities in the title compound is a result of the bulk of the Mn complexes. On the basis of the Se···Se distances (Fig. 3), the holes have the approximate dimensions of 8.74 × 13.87 Å and are significantly distorted from a regular hexagonal shape. Therefore, the incorporation of metal complexes into such structures not only explores its flexibility [please clarify what this means] but may be able to introduce new properties into semiconductors.

Related literature top

For related literature, see: Ahari et al. (1995a); Bedard et al. (1989); Li et al. (1999, 2000); Parise et al. (1994); Wendland et al. (1998).

Experimental top

A mixture of Sn power (0.0594 g, 0.5 mmol) and Se (0.0789 g, 1.0 mmol) with MnCl2.4H2O (0.1980 g, 1.0 mmol) in 3.0 ml of teta/glycol (v/v 1:2) was stirred for 30 min in a 17.0 ml Teflon-lined stainless steel vessel. The vessel was sealed and heated at 463 K for one week. Orange block crystals were isolated by washing with ethanol and water.

Refinement top

All H atoms bound to C atoms were refined using a riding model with C—H distances of 0.97 Å and Uiso(H) values of 1.2Ueq(C). The imine H atoms were refined using a riding model with N—H distances of 0.91 Å and Uiso(H) set at 1.2Ueq(N). The amine H atoms were located in a difference Fourier map and refined isotropically with Uiso(H) set at 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I). Displacement ellipsoids are drawn at the 30% probability level and all H atoms have been omitted for clarity. Atoms labelled with the suffixes A and B are at the symmetry positions (-x + 1, -y + 1, -z) and (-x + 1/2, y + 1/2, -z + 1/2), respectively.
[Figure 2] Fig. 2. A packing diagram for (I), showing a three-dimensional network formed via weak N—H···Se interactions (dashed lines). Atoms labelled with the suffixes A and B are at the symmetry positions (-x + 1, -y, -z) and (-x + 1, y, z), respectively.
[Figure 3] Fig. 3. The Sn3Se7 framework of the crystal structure of (I). Atoms labelled with the suffixes A, B, C and D are at the symmetry positions (-x + 1/2, y - 3/2, -z + 1/2), (x - 1/2, -y + 1/2, z + 1/2), (-x + 1/2, y + 1/2, -z + 1/2) and (x - 1/2, -y - 1/2, z + 1/2), respectively.
poly[[(pentaethylenehexamine)manganese(II)] [hepta-µ-selenido-tritin(IV)]] top
Crystal data top
[Mn(C10H28N6)][Sn3Se7]F(000) = 2172
Mr = 1196.11Dx = 2.953 Mg m3
Monoclinic, P21/nMelting point: not measured K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 11.893 (5) Åθ = 1.9–26.1°
b = 13.322 (5) ŵ = 12.69 mm1
c = 17.097 (5) ÅT = 207 K
β = 96.659 (5)°Block, orange
V = 2690.5 (17) Å30.12 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5291 independent reflections
Radiation source: fine-focus sealed tube3945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scanθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.230, Tmax = 0.308k = 1616
14868 measured reflectionsl = 1521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0273P)2]
where P = (Fo2 + 2Fc2)/3
5291 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 1.20 e Å3
6 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Mn(C10H28N6)][Sn3Se7]V = 2690.5 (17) Å3
Mr = 1196.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.893 (5) ŵ = 12.69 mm1
b = 13.322 (5) ÅT = 207 K
c = 17.097 (5) Å0.12 × 0.12 × 0.08 mm
β = 96.659 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5291 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3945 reflections with I > 2σ(I)
Tmin = 0.230, Tmax = 0.308Rint = 0.055
14868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.20 e Å3
5291 reflectionsΔρmin = 0.88 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0151 (8)0.2378 (7)0.0479 (6)0.041 (3)
H1A1.03810.25010.09960.049*
H1B1.07010.19290.01990.049*
C21.0141 (8)0.3334 (7)0.0047 (6)0.041 (3)
H2A1.09100.35810.00710.049*
H2B0.97110.38290.03730.049*
C30.9266 (10)0.4091 (8)0.0970 (6)0.058 (3)
H3A0.87180.43970.05770.070*
H3B0.98990.45500.10740.070*
C40.8715 (9)0.3929 (9)0.1737 (7)0.058 (3)
H4A0.83880.45520.18970.069*
H4B0.92830.37120.21570.069*
C50.7640 (9)0.2531 (7)0.2305 (6)0.046 (3)
H5A0.76410.29900.27460.055*
H5B0.69260.21710.22480.055*
C60.8566 (8)0.1832 (7)0.2453 (5)0.038 (2)
H6A0.84500.14230.29060.046*
H6B0.92640.22040.25790.046*
C70.7910 (9)0.0288 (7)0.1775 (6)0.046 (3)
H7A0.81470.01440.22210.056*
H7B0.71430.05130.18160.056*
C80.7955 (10)0.0257 (7)0.1040 (6)0.052 (3)
H8A0.74600.08370.10250.062*
H8B0.87200.04920.10090.062*
C90.6359 (9)0.0475 (7)0.0148 (5)0.045 (3)
H9A0.59930.06000.06170.054*
H9B0.60760.01570.00790.054*
C100.6074 (8)0.1318 (7)0.0442 (6)0.041 (3)
H10A0.64150.11860.09210.050*
H10B0.52610.13650.05760.050*
N10.9061 (8)0.1906 (7)0.0563 (5)0.046 (2)
H110.910 (8)0.1237 (17)0.058 (5)0.069*
H120.869 (8)0.232 (5)0.092 (4)0.069*
N20.9642 (8)0.3202 (6)0.0677 (5)0.046 (2)
H21.02050.29750.10400.055*
N30.7761 (8)0.3099 (7)0.1578 (5)0.062 (3)
H30.70910.34030.14090.074*
N40.8683 (6)0.1165 (5)0.1773 (5)0.037 (2)
H40.94100.09430.18010.045*
N50.7596 (7)0.0408 (5)0.0362 (5)0.040 (2)
H50.79090.01730.00630.048*
N60.6527 (7)0.2277 (6)0.0075 (5)0.041 (2)
H130.607 (7)0.237 (6)0.031 (4)0.062*
H140.656 (8)0.273 (5)0.047 (4)0.062*
Mn10.82375 (12)0.20223 (10)0.06120 (8)0.0321 (4)
Se10.15410 (7)0.07534 (6)0.13339 (5)0.0223 (2)
Se20.44058 (7)0.07885 (6)0.24427 (6)0.0274 (2)
Se30.34580 (8)0.26259 (6)0.03677 (5)0.0239 (2)
Se40.45946 (7)0.37623 (6)0.22809 (5)0.0202 (2)
Se50.16816 (7)0.30535 (6)0.24788 (5)0.0242 (2)
Se60.26315 (8)0.55473 (6)0.11141 (5)0.0253 (2)
Se70.61897 (8)0.50332 (7)0.07738 (5)0.0266 (2)
Sn10.32590 (5)0.22048 (4)0.18025 (3)0.01988 (15)
Sn20.41900 (5)0.44057 (4)0.07331 (3)0.01951 (15)
Sn30.25791 (5)0.47987 (4)0.24775 (3)0.02007 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (6)0.050 (7)0.035 (7)0.004 (5)0.002 (5)0.001 (5)
C20.035 (6)0.043 (7)0.045 (7)0.001 (5)0.007 (5)0.014 (5)
C30.066 (9)0.057 (8)0.053 (8)0.004 (6)0.012 (7)0.005 (6)
C40.053 (8)0.060 (8)0.058 (8)0.010 (6)0.002 (6)0.017 (6)
C50.066 (8)0.036 (6)0.038 (7)0.006 (5)0.019 (6)0.001 (5)
C60.043 (6)0.045 (6)0.024 (6)0.005 (5)0.004 (5)0.007 (5)
C70.063 (8)0.033 (6)0.043 (7)0.001 (5)0.004 (6)0.013 (5)
C80.095 (10)0.016 (5)0.046 (7)0.005 (5)0.019 (7)0.010 (5)
C90.074 (8)0.038 (6)0.027 (6)0.014 (6)0.025 (6)0.004 (5)
C100.040 (6)0.050 (7)0.036 (7)0.003 (5)0.011 (5)0.008 (5)
N10.047 (6)0.050 (6)0.044 (6)0.016 (5)0.016 (5)0.004 (5)
N20.074 (7)0.029 (5)0.031 (5)0.009 (5)0.007 (5)0.003 (4)
N30.085 (8)0.045 (6)0.055 (7)0.028 (6)0.002 (6)0.008 (5)
N40.033 (5)0.028 (4)0.051 (6)0.009 (4)0.004 (4)0.008 (4)
N50.058 (6)0.028 (5)0.037 (5)0.002 (4)0.023 (4)0.007 (4)
N60.047 (6)0.032 (5)0.048 (6)0.004 (4)0.019 (4)0.005 (4)
Mn10.0464 (9)0.0240 (8)0.0273 (9)0.0057 (7)0.0100 (7)0.0008 (6)
Se10.0312 (5)0.0165 (4)0.0198 (5)0.0024 (4)0.0046 (4)0.0000 (4)
Se20.0234 (5)0.0192 (5)0.0405 (6)0.0015 (4)0.0068 (4)0.0103 (4)
Se30.0363 (5)0.0168 (4)0.0198 (5)0.0045 (4)0.0085 (4)0.0017 (4)
Se40.0254 (5)0.0168 (4)0.0187 (5)0.0011 (4)0.0045 (4)0.0025 (4)
Se50.0266 (5)0.0163 (4)0.0320 (6)0.0012 (4)0.0131 (4)0.0021 (4)
Se60.0341 (5)0.0208 (5)0.0219 (5)0.0102 (4)0.0071 (4)0.0047 (4)
Se70.0298 (5)0.0309 (5)0.0193 (5)0.0080 (4)0.0031 (4)0.0053 (4)
Sn10.0274 (3)0.0127 (3)0.0212 (3)0.0026 (2)0.0096 (3)0.0027 (2)
Sn20.0268 (3)0.0144 (3)0.0189 (3)0.0004 (2)0.0092 (3)0.0016 (2)
Sn30.0293 (3)0.0140 (3)0.0183 (3)0.0006 (2)0.0085 (3)0.0010 (2)
Geometric parameters (Å, º) top
C1—N11.433 (12)C10—H10B0.9700
C1—C21.474 (12)N1—Mn12.340 (9)
C1—H1A0.9700N1—H110.89 (2)
C1—H1B0.9700N1—H120.90 (2)
C2—N21.444 (11)N2—Mn12.287 (8)
C2—H2A0.9700N2—H20.9100
C2—H2B0.9700N3—Mn12.308 (8)
C3—N21.381 (12)N3—H30.9100
C3—C41.547 (14)N4—Mn12.299 (8)
C3—H3A0.9700N4—H40.9100
C3—H3B0.9700N5—Mn12.306 (7)
C4—N31.585 (13)N5—H50.9100
C4—H4A0.9700N6—Mn12.254 (9)
C4—H4B0.9700N6—H130.91 (2)
C5—C61.442 (12)N6—H140.91 (2)
C5—N31.476 (12)Se1—Sn3i2.5197 (12)
C5—H5A0.9700Se1—Sn12.8592 (13)
C5—H5B0.9700Se2—Sn12.5044 (12)
C6—N41.481 (11)Se2—Sn3i2.7211 (14)
C6—H6A0.9700Se3—Sn12.5540 (12)
C6—H6B0.9700Se3—Sn22.5776 (13)
C7—C81.458 (13)Se4—Sn12.6826 (12)
C7—N41.487 (11)Se4—Sn22.7701 (12)
C7—H7A0.9700Se4—Sn32.8200 (13)
C7—H7B0.9700Se5—Sn32.5584 (13)
C8—N51.482 (11)Se5—Sn12.5764 (12)
C8—H8A0.9700Se6—Sn22.5402 (12)
C8—H8B0.9700Se6—Sn32.5429 (12)
C9—N51.477 (12)Se7—Sn22.5142 (14)
C9—C101.521 (13)Se7—Sn2ii2.6703 (13)
C9—H9A0.9700Sn2—Se7ii2.6703 (13)
C9—H9B0.9700Sn3—Se1iii2.5197 (12)
C10—N61.496 (12)Sn3—Se2iii2.7211 (14)
C10—H10A0.9700
N1—C1—C2111.7 (8)C5—N3—H3109.1
N1—C1—H1A109.3C4—N3—H3109.1
C2—C1—H1A109.3Mn1—N3—H3109.1
N1—C1—H1B109.3C6—N4—C7110.8 (7)
C2—C1—H1B109.3C6—N4—Mn1110.2 (5)
H1A—C1—H1B107.9C7—N4—Mn1108.2 (6)
N2—C2—C1110.6 (8)C6—N4—H4109.2
N2—C2—H2A109.5C7—N4—H4109.2
C1—C2—H2A109.5Mn1—N4—H4109.2
N2—C2—H2B109.5C9—N5—C8114.7 (8)
C1—C2—H2B109.5C9—N5—Mn1106.8 (6)
H2A—C2—H2B108.1C8—N5—Mn1110.7 (6)
N2—C3—C4112.0 (9)C9—N5—H5108.2
N2—C3—H3A109.2C8—N5—H5108.2
C4—C3—H3A109.2Mn1—N5—H5108.2
N2—C3—H3B109.2C10—N6—Mn1110.4 (6)
C4—C3—H3B109.2C10—N6—H13101 (6)
H3A—C3—H3B107.9Mn1—N6—H13103 (6)
C3—C4—N3108.5 (9)C10—N6—H14108 (6)
C3—C4—H4A110.0Mn1—N6—H14112 (6)
N3—C4—H4A110.0H13—N6—H14122 (4)
C3—C4—H4B110.0N6—Mn1—N2122.1 (3)
N3—C4—H4B110.0N6—Mn1—N4128.9 (3)
H4A—C4—H4B108.4N2—Mn1—N4101.9 (3)
C6—C5—N3109.3 (8)N6—Mn1—N577.5 (3)
C6—C5—H5A109.8N2—Mn1—N5151.0 (3)
N3—C5—H5A109.8N4—Mn1—N574.6 (3)
C6—C5—H5B109.8N6—Mn1—N389.9 (3)
N3—C5—H5B109.8N2—Mn1—N377.1 (3)
H5A—C5—H5B108.3N4—Mn1—N375.0 (3)
C5—C6—N4113.0 (8)N5—Mn1—N3127.5 (3)
C5—C6—H6A109.0N6—Mn1—N190.3 (3)
N4—C6—H6A109.0N2—Mn1—N173.2 (3)
C5—C6—H6B109.0N4—Mn1—N1129.1 (3)
N4—C6—H6B109.0N5—Mn1—N186.6 (3)
H6A—C6—H6B107.8N3—Mn1—N1144.9 (3)
C8—C7—N4107.7 (8)Sn3i—Se1—Sn184.20 (4)
C8—C7—H7A110.2Sn1—Se2—Sn3i87.44 (4)
N4—C7—H7A110.2Sn1—Se3—Sn292.04 (3)
C8—C7—H7B110.2Sn1—Se4—Sn285.24 (3)
N4—C7—H7B110.2Sn1—Se4—Sn386.19 (4)
H7A—C7—H7B108.5Sn2—Se4—Sn384.64 (3)
C7—C8—N5109.9 (8)Sn3—Se5—Sn194.18 (4)
C7—C8—H8A109.7Sn2—Se6—Sn395.54 (4)
N5—C8—H8A109.7Sn2—Se7—Sn2ii90.73 (3)
C7—C8—H8B109.7Se2—Sn1—Se3118.61 (4)
N5—C8—H8B109.7Se2—Sn1—Se5121.50 (4)
H8A—C8—H8B108.2Se3—Sn1—Se5119.21 (4)
N5—C9—C10110.3 (8)Se2—Sn1—Se4100.15 (4)
N5—C9—H9A109.6Se3—Sn1—Se490.31 (3)
C10—C9—H9A109.6Se5—Sn1—Se487.71 (4)
N5—C9—H9B109.6Se2—Sn1—Se187.04 (4)
C10—C9—H9B109.6Se3—Sn1—Se191.27 (3)
H9A—C9—H9B108.1Se5—Sn1—Se183.61 (4)
N6—C10—C9108.1 (8)Se4—Sn1—Se1170.79 (3)
N6—C10—H10A110.1Se7—Sn2—Se6120.65 (4)
C9—C10—H10A110.1Se7—Sn2—Se3127.18 (4)
N6—C10—H10B110.1Se6—Sn2—Se3112.14 (4)
C9—C10—H10B110.1Se7—Sn2—Se7ii89.27 (3)
H10A—C10—H10B108.4Se6—Sn2—Se7ii91.89 (4)
C1—N1—Mn1110.4 (6)Se3—Sn2—Se7ii90.52 (4)
C1—N1—H11113 (7)Se7—Sn2—Se491.00 (3)
Mn1—N1—H1197 (7)Se6—Sn2—Se489.51 (3)
C1—N1—H12100 (7)Se3—Sn2—Se487.90 (3)
Mn1—N1—H12108 (7)Se7ii—Sn2—Se4178.20 (3)
H11—N1—H12128 (4)Se1iii—Sn3—Se6119.30 (4)
C3—N2—C2112.9 (8)Se1iii—Sn3—Se5126.32 (4)
C3—N2—Mn1110.0 (7)Se6—Sn3—Se5114.31 (4)
C2—N2—Mn1114.4 (6)Se1iii—Sn3—Se2iii89.81 (4)
C3—N2—H2106.3Se6—Sn3—Se2iii88.25 (3)
C2—N2—H2106.3Se5—Sn3—Se2iii94.35 (4)
Mn1—N2—H2106.3Se1iii—Sn3—Se493.67 (4)
C5—N3—C4110.5 (9)Se6—Sn3—Se488.35 (3)
C5—N3—Mn1109.9 (6)Se5—Sn3—Se485.16 (4)
C4—N3—Mn1109.0 (6)Se2iii—Sn3—Se4176.02 (4)
N1—C1—C2—N250.4 (11)C4—N3—Mn1—N136.8 (10)
N2—C3—C4—N353.5 (12)C1—N1—Mn1—N6141.8 (7)
N3—C5—C6—N454.2 (11)C1—N1—Mn1—N218.1 (7)
N4—C7—C8—N559.6 (11)C1—N1—Mn1—N473.7 (8)
N5—C9—C10—N659.0 (10)C1—N1—Mn1—N5140.7 (7)
C2—C1—N1—Mn142.2 (10)C1—N1—Mn1—N351.6 (10)
C4—C3—N2—C2179.0 (9)Sn3i—Se2—Sn1—Se3113.77 (4)
C4—C3—N2—Mn149.9 (11)Sn3i—Se2—Sn1—Se556.71 (5)
C1—C2—N2—C3159.7 (9)Sn3i—Se2—Sn1—Se4150.27 (3)
C1—C2—N2—Mn132.9 (10)Sn3i—Se2—Sn1—Se123.94 (3)
C6—C5—N3—C476.0 (10)Sn2—Se3—Sn1—Se2118.49 (5)
C6—C5—N3—Mn144.3 (10)Sn2—Se3—Sn1—Se570.80 (5)
C3—C4—N3—C5149.6 (8)Sn2—Se3—Sn1—Se416.74 (3)
C3—C4—N3—Mn128.7 (10)Sn2—Se3—Sn1—Se1154.19 (3)
C5—C6—N4—C784.0 (10)Sn3—Se5—Sn1—Se2121.22 (4)
C5—C6—N4—Mn135.7 (9)Sn3—Se5—Sn1—Se368.35 (5)
C8—C7—N4—C6172.3 (8)Sn3—Se5—Sn1—Se420.72 (3)
C8—C7—N4—Mn151.4 (9)Sn3—Se5—Sn1—Se1156.23 (4)
C10—C9—N5—C8169.1 (8)Sn2—Se4—Sn1—Se2134.76 (3)
C10—C9—N5—Mn146.1 (8)Sn3—Se4—Sn1—Se2140.31 (3)
C7—C8—N5—C983.6 (10)Sn2—Se4—Sn1—Se315.59 (3)
C7—C8—N5—Mn137.2 (10)Sn3—Se4—Sn1—Se3100.52 (3)
C9—C10—N6—Mn139.9 (9)Sn2—Se4—Sn1—Se5103.63 (3)
C10—N6—Mn1—N2144.6 (6)Sn3—Se4—Sn1—Se518.71 (3)
C10—N6—Mn1—N470.3 (7)Sn2—Se4—Sn1—Se184.3 (2)
C10—N6—Mn1—N512.1 (6)Sn3—Se4—Sn1—Se10.6 (2)
C10—N6—Mn1—N3140.8 (6)Sn3i—Se1—Sn1—Se226.10 (3)
C10—N6—Mn1—N174.4 (6)Sn3i—Se1—Sn1—Se3144.69 (3)
C3—N2—Mn1—N657.1 (8)Sn3i—Se1—Sn1—Se596.05 (4)
C2—N2—Mn1—N671.2 (7)Sn3i—Se1—Sn1—Se4115.5 (2)
C3—N2—Mn1—N495.9 (7)Sn2ii—Se7—Sn2—Se691.77 (4)
C2—N2—Mn1—N4135.9 (6)Sn2ii—Se7—Sn2—Se390.10 (5)
C3—N2—Mn1—N5175.5 (7)Sn2ii—Se7—Sn2—Se7ii0.0
C2—N2—Mn1—N556.2 (10)Sn2ii—Se7—Sn2—Se4178.22 (3)
C3—N2—Mn1—N324.5 (7)Sn3—Se6—Sn2—Se7102.10 (4)
C2—N2—Mn1—N3152.7 (7)Sn3—Se6—Sn2—Se376.29 (4)
C3—N2—Mn1—N1136.5 (7)Sn3—Se6—Sn2—Se7ii167.63 (3)
C2—N2—Mn1—N18.3 (6)Sn3—Se6—Sn2—Se411.23 (3)
C6—N4—Mn1—N685.2 (7)Sn1—Se3—Sn2—Se7105.86 (4)
C7—N4—Mn1—N636.0 (7)Sn1—Se3—Sn2—Se672.40 (4)
C6—N4—Mn1—N265.1 (6)Sn1—Se3—Sn2—Se7ii164.66 (3)
C7—N4—Mn1—N2173.6 (6)Sn1—Se3—Sn2—Se416.21 (3)
C6—N4—Mn1—N5144.6 (6)Sn1—Se4—Sn2—Se7142.63 (3)
C7—N4—Mn1—N523.3 (6)Sn3—Se4—Sn2—Se7130.76 (4)
C6—N4—Mn1—N37.9 (6)Sn1—Se4—Sn2—Se696.73 (4)
C7—N4—Mn1—N3113.4 (6)Sn3—Se4—Sn2—Se610.11 (3)
C6—N4—Mn1—N1143.0 (6)Sn1—Se4—Sn2—Se315.46 (3)
C7—N4—Mn1—N195.7 (6)Sn3—Se4—Sn2—Se3102.07 (4)
C9—N5—Mn1—N618.0 (5)Sn1—Se4—Sn2—Se7ii44.2 (11)
C8—N5—Mn1—N6143.5 (7)Sn3—Se4—Sn2—Se7ii130.8 (11)
C9—N5—Mn1—N2154.5 (6)Sn2—Se6—Sn3—Se1iii104.32 (5)
C8—N5—Mn1—N280.0 (8)Sn2—Se6—Sn3—Se572.90 (5)
C9—N5—Mn1—N4118.7 (6)Sn2—Se6—Sn3—Se2iii166.88 (3)
C8—N5—Mn1—N46.8 (6)Sn2—Se6—Sn3—Se411.04 (3)
C9—N5—Mn1—N362.0 (7)Sn1—Se5—Sn3—Se1iii110.73 (5)
C8—N5—Mn1—N363.5 (8)Sn1—Se5—Sn3—Se666.27 (4)
C9—N5—Mn1—N1109.1 (6)Sn1—Se5—Sn3—Se2iii156.31 (3)
C8—N5—Mn1—N1125.4 (7)Sn1—Se5—Sn3—Se419.72 (3)
C5—N3—Mn1—N6111.6 (7)Sn1—Se4—Sn3—Se1iii145.08 (3)
C4—N3—Mn1—N6127.1 (7)Sn2—Se4—Sn3—Se1iii129.36 (3)
C5—N3—Mn1—N2125.3 (8)Sn1—Se4—Sn3—Se695.67 (4)
C4—N3—Mn1—N24.0 (6)Sn2—Se4—Sn3—Se610.11 (3)
C5—N3—Mn1—N419.0 (7)Sn1—Se4—Sn3—Se518.90 (3)
C4—N3—Mn1—N4102.2 (7)Sn2—Se4—Sn3—Se5104.46 (3)
C5—N3—Mn1—N537.5 (9)Sn1—Se4—Sn3—Se2iii64.2 (5)
C4—N3—Mn1—N5158.8 (6)Sn2—Se4—Sn3—Se2iii21.4 (5)
C5—N3—Mn1—N1158.1 (7)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Se1iv0.89 (2)3.01 (5)3.818 (9)152 (7)
N5—H5···Se1iv0.912.653.542 (7)168
N4—H4···Se1v0.912.763.607 (8)156
N3—H3···Se70.912.603.380 (9)144
N2—H2···Se5v0.912.853.699 (8)155
Symmetry codes: (iv) x+1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C10H28N6)][Sn3Se7]
Mr1196.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)207
a, b, c (Å)11.893 (5), 13.322 (5), 17.097 (5)
β (°) 96.659 (5)
V3)2690.5 (17)
Z4
Radiation typeMo Kα
µ (mm1)12.69
Crystal size (mm)0.12 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.230, 0.308
No. of measured, independent and
observed [I > 2σ(I)] reflections
14868, 5291, 3945
Rint0.055
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.079, 0.99
No. of reflections5291
No. of parameters256
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.20, 0.88

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Mn12.340 (9)Se4—Sn12.6826 (12)
N2—Mn12.287 (8)Se4—Sn22.7701 (12)
N3—Mn12.308 (8)Se4—Sn32.8200 (13)
N4—Mn12.299 (8)Se5—Sn32.5584 (13)
N5—Mn12.306 (7)Se5—Sn12.5764 (12)
N6—Mn12.254 (9)Se6—Sn22.5402 (12)
Se1—Sn3i2.5197 (12)Se6—Sn32.5429 (12)
Se1—Sn12.8592 (13)Se7—Sn22.5142 (14)
Se2—Sn12.5044 (12)Se7—Sn2ii2.6703 (13)
Se2—Sn3i2.7211 (14)Sn2—Se7ii2.6703 (13)
Se3—Sn12.5540 (12)Sn3—Se1iii2.5197 (12)
Se3—Sn22.5776 (13)Sn3—Se2iii2.7211 (14)
N6—Mn1—N2122.1 (3)N5—Mn1—N3127.5 (3)
N6—Mn1—N4128.9 (3)N6—Mn1—N190.3 (3)
N2—Mn1—N4101.9 (3)N2—Mn1—N173.2 (3)
N6—Mn1—N577.5 (3)N4—Mn1—N1129.1 (3)
N2—Mn1—N5151.0 (3)N5—Mn1—N186.6 (3)
N4—Mn1—N574.6 (3)N3—Mn1—N1144.9 (3)
N6—Mn1—N389.9 (3)Se4—Sn1—Se1170.79 (3)
N2—Mn1—N377.1 (3)Se7ii—Sn2—Se4178.20 (3)
N4—Mn1—N375.0 (3)Se2iii—Sn3—Se4176.02 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Se1iv0.89 (2)3.01 (5)3.818 (9)152 (7)
N5—H5···Se1iv0.912.653.542 (7)168.4
N4—H4···Se1v0.912.763.607 (8)156.2
N3—H3···Se70.912.603.380 (9)143.7
N2—H2···Se5v0.912.853.699 (8)155.0
Symmetry codes: (iv) x+1, y, z; (v) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds