Download citation
Download citation
link to html
The title compounds, C24H30N2O3, (I), and C24H34N2O3, (II), both contain an androstane backbone and a 2-methyl­imidazole-1-carboxyl­ate moiety at the 17-position. Compound (I) contains two symmetry-independent mol­ecules (denoted 1 and 2), while compound (II) contains just one mol­ecule in the asymmetric unit. The C-C-O-C torsion angle that reflects the twisting of the 2-methyl­imidazole-1-carboxyl­ate moiety from the mean steroid plane is 143.1 (2)° for mol­ecule 1 of (I), 73.1 (3)° for mol­ecule 2 of (I) and 86.63 (17)° for (II). The significance of this study lies in its observation of significant differences in both mol­ecular conformation and supra­molecular aggregation between the mol­ecules of the title compounds. The solid-state conformations compared with those obtained theoretically from ab initio methods for the isolated mol­ecules show large differences, especially in the orientation of the methylimidazole substituent.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109003278/sf3097sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109003278/sf3097Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109003278/sf3097IIsup3.hkl
Contains datablock II

CCDC references: 728208; 728209

Comment top

Hormonal treatments for prostate cancer therapy are based on the Nobel Prize winning discovery by Huggins & Hodges (1941) that the growth and progression of prostate cancer cells depends on androgen levels in the body. Cytochrome 17α-hydroxylase-C17,20-lyase, CYP17, is one of the enzymes involved in androgen biosynthesis in the human body (Nakajin & Hall, 1981; Hall, 1991). Its inhibition has traditionally been recognized as an important strategy for prostate cancer treatment as a way of lowering androgen levels and thus preventing disease progression (Barrie & Jarman, 1996; Njar & Brodie, 1999; Hartmann et al., 2002; Moreira, Salvador et al., 2008). The present work is within a project of synthesizing and characterizing new steroidal compounds bearing heteroatom-containing moieties at C17 as potential inhibitors for C17 [CYP17 ?] and thus aiming to contribute to the field of prostate cancer treatment (Ramos Silva et al., 2008a,b; Moreira, Vasaitis et al., 2008; Moreira et al., 2007). Both title compounds, 3-oxoandrosta-4,6-dien-17β-yl 2-methyl-1H-imidazole-1-carboxylate, (I), and 3-oxo-5α-androst-17β-yl 2-methyl-1H-imidazole-1-carboxylate, (II), have previously been tested for biological activity and show very good affinity towards important receptors (Moreira, Vasaitis et al., 2008). We report here the molecular structures of (I) and (II) as determined by single-crystal X-ray analysis, and compare them with those of the free molecules as given by quantum mechanical ab initio calculations.

An ORTEPII (Johnson, 1976) plot of (I) is shown in Fig. 1 and a plot of (II) is shown in Fig. 2. The two compounds are very similar, both with a nearly planar methylimidazole carbamate moiety at the 17-position.

Compound (I) has two molecules in the asymmetric unit that differ in the orientation of the methylimidazole mean plane with respect to the steroid nucleus. In both molecules, the A/B ring junction is quasi-trans, whereas rings B/C and C/D are trans-fused. The five-membered ring D has an envelope conformation, with atom C13 at the flap position displaced by 0.738 (3) Å from the best plane of the other four C atoms for molecule 1 (atoms C1–C24) and by 0.733 (3) Å for molecule 2 (atoms C25–C46)]. The C16—C17—O2—C20 torsion angle is 143.1 (2) in molecule 1 and the corresponding angle is 73.1 (3)° in molecule 2, reflecting the large difference in the orientation of the methylimidazole plane for the two independent molecules. Rings A and B have half-chair conformations while ring C has a chair conformation, with endocyclic torsion-angle magnitudes in the range 54.6 (3)–58.7 (3)° for molecule 1 and 55.5 (3)–58.1 (3)° for molecule 2. The molecules are slightly convex towards the β side. The value of the pseudo torsion angle C19—C10···C13—C18 is -8.9 (3)° for molecule 1 and the corresponding angle in molecule 2 is -7.4 (3)°. The corresponding distances between terminal atoms C3 and C16 are 8.895 (5) and 8.838 (5) Å, respectively, for molecules 1 and 2. The molecules pack in stacks with the aromatic tail substituents interacting via ππ interactions. These stacks are further joined by C—H···O interactions to form layers (Fig. 3, Table 1).

Compound (II) crystallizes with just one independent molecule in the asymmetric unit. All six-membered rings are saturated and adjusted to chair conformations. They are all trans-fused. The five-membered ring D has an envelope conformation, with atom C13 at the flap position displaced by 0.7128 (14) Å from the best plane of the other four C atoms. The molecule is slightly convex towards the β side. The pseudo torsion angle C19—C10···C13—C18 is 1.1 (2)° and the distance between terminal atoms C3 and C16 is 9.084 (2) Å. The C16—C17—O2—C20 torsion angle is 86.63 (17)°. The molecular packing is influenced by a C—H···π interaction of type III, as described by Malone et al. (1997), with a C4···π distance of 3.670 (2) Å (Fig. 4); atom H4A is above the centre of the aromatic ring N1/C21/N2/C23/C24 but the C4—H4A bond points towards the ring edge. Further intermolecular C—H···O interactions join all the molecules into a three-dimensional network, reinforcing crystal cohesion (Table 2).

In order to check if the orientation of the 2-methylimidazole-1-carboxylate moiety is intrinsic to the free steroid molecule or rather due to intermolecular interactions, we have performed quantum mechanical calculations of the equilibrium geometries of the free molecules. These calculations were performed using the computer program GAMESS (Schmidt et al., 1993) starting with the solid-state conformations. A molecular-orbital Roothan Hartree–Fock method was used with an extended 6-31G(d,p) basis set. Tight conditions for convergence of both the self-consistent field cycles and the maximum density and energy gradients were imposed (10-5 atomic units). Before engaging in heavier calculations, we computed the energy of the molecule just by changing the orientation of the 2-methylimidazole-1-carboxylate moiety (changing the C16—C17—O2—C20 torsion angle in steps of 10°) without relaxing the molecular geometry. This preliminary calculation shows a global minimum near the conformation of molecule 2 in (I) and a local minimum near the conformation of molecule 1 in (I). Both geometries of molecules 1 and 2 were then relaxed. For molecules 1 and 2, the calculated geometries differ more significantly in the conformation of ring B and on the orientation of the methylimidazole mean plane. The geometry that corresponds to the local energy minimum of molecule 1 shows a ring B with an average torsion angle of 29.4° [observed mean value 36.05 (14)°]. The orientation of the methylimidazole plane converges to a C16—C17—O2—C20 torsion angle of 141.7°. The geometry that corresponds to the global energy minimum of molecule 2 shows a ring B with an average torsion angle of 29.4° [observed mean value 34.74 (13)°]. The orientation of the methylimidazole plane converges to a C16—C17—O2—C20 torsion angle of 81.4°. We can therefore conclude that supramolecular aggregation plays an important role in stabilizing the two observed geometries. The minimum energy for compound (II) is achieved with a C16—C17—O2—C20 torsion angle of 86.6°, equal to the experimental value. The remaining calculated structural features agree well with those determined experimentally.

Experimental top

Both compounds were synthesized as described previously (Moreira, Salvador et al., 2008 or Moreira, Vasaitis et al., 2008 ?). Compound (I) was crystallized from acetone by slow evaporation. Compound (II) was crystallized from acetonitrile by slow evaporation.

Refinement top

All H atoms were refined as riding on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The absolute configuration was not determined from the X-ray data but was known from the synthesis route. Friedel pairs were merged before refinement.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules of compound (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of compound (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A partial packing diagram of compound (I), with intermolecular interactions shown as dashed lines.
[Figure 4] Fig. 4. The packing of compound (II), with intermolecular interactions shown as dashed lines.
(I) 3-Oxoandrosta-4,6-dien-17β-yl 2-methyl-1H-imidazole-1-carboxylate top
Crystal data top
C24H30N2O3F(000) = 1696
Mr = 394.50Dx = 1.256 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 24.5935 (5) ÅCell parameters from 7283 reflections
b = 7.0351 (1) Åθ = 2.5–21.0°
c = 24.9875 (4) ŵ = 0.08 mm1
β = 105.1160 (11)°T = 293 K
V = 4173.69 (12) Å3Plate, colourless
Z = 80.36 × 0.15 × 0.04 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5398 independent reflections
Radiation source: fine-focus sealed tube3688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 3232
Tmin = 0.906, Tmax = 0.997k = 99
45077 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.5036P]
where P = (Fo2 + 2Fc2)/3
5398 reflections(Δ/σ)max < 0.001
529 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C24H30N2O3V = 4173.69 (12) Å3
Mr = 394.50Z = 8
Monoclinic, C2Mo Kα radiation
a = 24.5935 (5) ŵ = 0.08 mm1
b = 7.0351 (1) ÅT = 293 K
c = 24.9875 (4) Å0.36 × 0.15 × 0.04 mm
β = 105.1160 (11)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5398 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3688 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.997Rint = 0.052
45077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
5398 reflectionsΔρmin = 0.20 e Å3
529 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67506 (13)0.0818 (5)0.47461 (11)0.0599 (8)
H1A0.65780.19230.45380.072*
H1B0.69560.01430.45220.072*
C20.71638 (14)0.1477 (5)0.52785 (12)0.0714 (10)
H2A0.69720.23340.54730.086*
H2B0.74670.21770.51870.086*
C30.74054 (13)0.0130 (5)0.56499 (11)0.0599 (8)
O10.78870 (9)0.0072 (4)0.59467 (8)0.0803 (8)
C40.70420 (12)0.1756 (5)0.56466 (10)0.0533 (7)
H40.71660.27070.59090.064*
C50.65355 (12)0.1957 (4)0.52836 (10)0.0440 (6)
C60.61938 (11)0.3635 (4)0.52950 (10)0.0481 (7)
H60.63050.44700.55920.058*
C70.57307 (12)0.4028 (4)0.48998 (10)0.0455 (6)
H70.55220.50910.49450.055*
C80.55243 (11)0.2865 (4)0.43871 (9)0.0399 (6)
H80.52160.20560.44340.048*
C90.60007 (11)0.1578 (4)0.43047 (9)0.0406 (6)
H90.62900.24340.42360.049*
C100.62846 (11)0.0485 (4)0.48459 (10)0.0435 (6)
C110.58070 (12)0.0355 (4)0.37815 (10)0.0515 (7)
H11A0.55230.05370.38310.062*
H11B0.61240.03710.37290.062*
C120.55622 (12)0.1565 (4)0.32623 (10)0.0507 (7)
H12A0.58590.23390.31840.061*
H12B0.54180.07350.29470.061*
C130.50900 (11)0.2848 (4)0.33405 (9)0.0417 (6)
C140.53085 (11)0.4068 (4)0.38653 (9)0.0406 (6)
H140.56330.47780.38120.049*
C150.48390 (12)0.5523 (4)0.38357 (10)0.0518 (7)
H15A0.49860.66810.40310.062*
H15B0.45480.50110.39920.062*
C160.46091 (14)0.5893 (4)0.32056 (11)0.0569 (8)
H16A0.42060.56760.30880.068*
H16B0.46860.71890.31150.068*
C170.49220 (12)0.4477 (4)0.29288 (10)0.0469 (7)
H170.52620.50790.28720.056*
C180.45672 (12)0.1660 (4)0.33553 (12)0.0550 (8)
H18A0.42720.24890.34000.082*
H18B0.46630.07850.36600.082*
H18C0.44410.09650.30150.082*
C190.58543 (13)0.0678 (4)0.50591 (12)0.0593 (8)
H19A0.60490.14390.53690.089*
H19B0.56460.14900.47680.089*
H19C0.56000.01690.51730.089*
O20.45513 (7)0.3927 (3)0.23914 (6)0.0492 (5)
C200.47925 (12)0.3664 (4)0.19823 (10)0.0460 (7)
O30.52863 (8)0.3654 (4)0.20117 (7)0.0650 (6)
N10.43759 (8)0.3413 (3)0.14802 (8)0.0409 (5)
C210.44604 (11)0.3181 (4)0.09593 (10)0.0472 (6)
C220.50168 (13)0.3150 (7)0.08342 (12)0.0786 (11)
H22A0.49710.27520.04580.118*
H22B0.52610.22790.10800.118*
H22C0.51780.44010.08840.118*
N20.39832 (10)0.3040 (4)0.05845 (8)0.0548 (6)
C230.35725 (12)0.3179 (5)0.08698 (11)0.0566 (7)
H230.31870.31240.07050.068*
C240.38017 (10)0.3402 (4)0.14131 (11)0.0481 (7)
H24A0.36130.35240.16890.058*
C250.30834 (14)0.2744 (4)0.24470 (11)0.0536 (7)
H25A0.34850.25010.23210.064*
H25B0.29030.21020.21950.064*
C260.28595 (14)0.1902 (4)0.30295 (11)0.0607 (8)
H26A0.30730.24150.32720.073*
H26B0.29120.05340.30120.073*
C270.22503 (15)0.2337 (5)0.32644 (11)0.0601 (9)
O40.19278 (11)0.1228 (4)0.35642 (9)0.0912 (8)
C280.20638 (12)0.4181 (4)0.31216 (10)0.0508 (7)
H280.17000.45650.33010.061*
C290.23814 (11)0.5365 (4)0.27492 (9)0.0410 (6)
C300.21623 (11)0.7195 (4)0.26304 (11)0.0458 (7)
H300.18350.76500.28740.055*
C310.24033 (10)0.8240 (4)0.21947 (10)0.0443 (6)
H310.22410.94050.21510.053*
C320.29242 (10)0.7650 (3)0.17661 (9)0.0368 (6)
H320.32460.83360.18360.044*
C330.30255 (10)0.5501 (4)0.18126 (9)0.0365 (6)
H330.27140.48650.17080.044*
C340.29809 (11)0.4895 (4)0.24217 (10)0.0392 (6)
C350.35634 (11)0.4871 (4)0.13862 (9)0.0445 (6)
H35A0.38860.54940.14650.053*
H35B0.36110.35100.14160.053*
C360.35392 (11)0.5364 (4)0.07941 (10)0.0455 (7)
H36A0.32380.46490.07030.055*
H36B0.38910.50010.05350.055*
C370.34384 (10)0.7489 (4)0.07362 (10)0.0373 (6)
C380.28982 (10)0.8076 (4)0.11761 (9)0.0370 (5)
H380.25950.72830.11090.044*
C390.27846 (12)1.0092 (4)0.10066 (10)0.0491 (7)
H39A0.23881.04070.11370.059*
H39B0.30021.10160.11520.059*
C400.29742 (12)1.0030 (4)0.03681 (10)0.0513 (7)
H40A0.32411.10400.02250.062*
H40B0.26541.01660.02130.062*
C410.32501 (10)0.8087 (4)0.02259 (9)0.0412 (6)
H41A0.29690.71820.01650.049*
C420.39582 (11)0.8651 (5)0.07702 (11)0.0522 (7)
H42A0.38970.99670.07040.078*
H42B0.40190.85090.11320.078*
H42C0.42830.82000.04960.078*
C430.34008 (11)0.5984 (4)0.26712 (10)0.0479 (7)
H43A0.33670.55480.30430.072*
H43B0.37770.57620.24500.072*
H43C0.33200.73200.26770.072*
O50.37301 (7)0.8122 (3)0.02642 (6)0.0449 (4)
C440.35960 (11)0.8305 (4)0.07410 (10)0.0408 (6)
O60.31303 (8)0.8408 (3)0.08028 (7)0.0559 (5)
N30.40849 (8)0.8364 (3)0.11802 (8)0.0401 (5)
C450.41188 (11)0.8512 (4)0.17415 (9)0.0424 (6)
C460.36256 (11)0.8561 (5)0.19779 (10)0.0604 (8)
H46A0.37530.86000.23750.091*
H46B0.34010.74440.18650.091*
H46C0.34040.96710.18460.091*
N40.46383 (10)0.8592 (4)0.20318 (9)0.0555 (6)
C470.49603 (12)0.8483 (5)0.16537 (11)0.0604 (8)
H470.53520.85110.17480.072*
C480.46369 (11)0.8332 (5)0.11395 (11)0.0520 (7)
H480.47560.82270.08170.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (2)0.0626 (19)0.0455 (16)0.0133 (16)0.0068 (15)0.0047 (14)
C20.076 (2)0.083 (2)0.0486 (16)0.030 (2)0.0037 (15)0.0012 (17)
C30.056 (2)0.090 (2)0.0318 (14)0.0091 (18)0.0079 (14)0.0104 (16)
O10.0592 (15)0.124 (2)0.0490 (12)0.0149 (15)0.0008 (11)0.0149 (14)
C40.0545 (19)0.071 (2)0.0304 (14)0.0051 (16)0.0034 (13)0.0031 (13)
C50.0510 (17)0.0498 (16)0.0311 (13)0.0049 (13)0.0108 (13)0.0010 (11)
C60.0589 (18)0.0501 (16)0.0316 (13)0.0073 (15)0.0049 (12)0.0092 (12)
C70.0582 (18)0.0424 (14)0.0345 (13)0.0021 (13)0.0098 (13)0.0059 (11)
C80.0455 (15)0.0399 (13)0.0338 (12)0.0080 (12)0.0094 (11)0.0013 (11)
C90.0473 (16)0.0426 (14)0.0312 (12)0.0027 (12)0.0090 (11)0.0031 (11)
C100.0490 (16)0.0437 (15)0.0350 (13)0.0001 (13)0.0060 (11)0.0030 (11)
C110.0567 (18)0.0521 (17)0.0402 (14)0.0057 (14)0.0026 (12)0.0093 (13)
C120.0548 (18)0.0602 (18)0.0337 (14)0.0038 (15)0.0054 (12)0.0070 (13)
C130.0460 (16)0.0476 (14)0.0277 (12)0.0073 (12)0.0028 (11)0.0051 (11)
C140.0457 (15)0.0410 (14)0.0338 (13)0.0079 (12)0.0083 (11)0.0034 (11)
C150.069 (2)0.0483 (16)0.0343 (13)0.0025 (15)0.0079 (13)0.0035 (12)
C160.074 (2)0.0503 (16)0.0409 (15)0.0060 (15)0.0045 (14)0.0008 (13)
C170.0506 (17)0.0556 (17)0.0302 (13)0.0108 (13)0.0026 (12)0.0006 (11)
C180.058 (2)0.0518 (16)0.0498 (17)0.0143 (15)0.0050 (15)0.0033 (14)
C190.069 (2)0.0501 (17)0.0532 (18)0.0125 (15)0.0065 (15)0.0044 (14)
O20.0481 (11)0.0670 (12)0.0289 (9)0.0077 (10)0.0035 (8)0.0007 (9)
C200.0465 (17)0.0538 (17)0.0336 (13)0.0071 (14)0.0031 (12)0.0027 (12)
O30.0419 (12)0.1063 (18)0.0424 (10)0.0083 (13)0.0031 (9)0.0056 (12)
N10.0398 (12)0.0482 (13)0.0316 (10)0.0054 (11)0.0038 (9)0.0013 (9)
C210.0484 (17)0.0559 (16)0.0356 (13)0.0103 (14)0.0076 (12)0.0016 (13)
C220.068 (2)0.126 (3)0.0455 (16)0.025 (2)0.0223 (15)0.014 (2)
N20.0576 (15)0.0655 (15)0.0356 (12)0.0086 (13)0.0019 (11)0.0047 (11)
C230.0460 (17)0.0659 (19)0.0516 (17)0.0011 (16)0.0015 (14)0.0074 (15)
C240.0392 (16)0.0580 (17)0.0465 (15)0.0003 (14)0.0098 (12)0.0046 (14)
C250.074 (2)0.0447 (16)0.0383 (14)0.0037 (15)0.0085 (14)0.0012 (12)
C260.089 (2)0.0466 (16)0.0437 (16)0.0040 (16)0.0117 (16)0.0066 (13)
C270.085 (2)0.0614 (19)0.0319 (15)0.0144 (18)0.0115 (15)0.0060 (14)
O40.115 (2)0.0777 (17)0.0637 (14)0.0241 (16)0.0074 (14)0.0251 (13)
C280.0484 (17)0.0680 (19)0.0321 (14)0.0080 (14)0.0035 (12)0.0012 (13)
C290.0419 (15)0.0516 (16)0.0290 (12)0.0023 (13)0.0083 (11)0.0038 (11)
C300.0378 (15)0.0580 (16)0.0372 (14)0.0020 (13)0.0017 (12)0.0060 (12)
C310.0425 (15)0.0458 (14)0.0428 (14)0.0083 (13)0.0078 (11)0.0047 (12)
C320.0352 (14)0.0402 (13)0.0339 (13)0.0021 (11)0.0068 (11)0.0011 (10)
C330.0371 (14)0.0418 (14)0.0303 (12)0.0000 (11)0.0083 (10)0.0012 (10)
C340.0422 (15)0.0436 (13)0.0303 (12)0.0025 (12)0.0069 (11)0.0010 (11)
C350.0478 (16)0.0487 (15)0.0335 (13)0.0093 (13)0.0043 (11)0.0018 (12)
C360.0459 (16)0.0550 (17)0.0330 (13)0.0102 (13)0.0056 (11)0.0042 (12)
C370.0338 (14)0.0471 (14)0.0310 (12)0.0022 (11)0.0085 (11)0.0014 (10)
C380.0352 (13)0.0402 (13)0.0348 (12)0.0006 (11)0.0081 (10)0.0028 (11)
C390.0538 (18)0.0482 (15)0.0422 (14)0.0059 (13)0.0070 (12)0.0062 (13)
C400.0479 (17)0.0577 (17)0.0463 (15)0.0062 (14)0.0089 (13)0.0145 (14)
C410.0370 (14)0.0522 (15)0.0329 (12)0.0083 (12)0.0066 (11)0.0040 (11)
C420.0409 (15)0.072 (2)0.0434 (14)0.0126 (15)0.0107 (12)0.0027 (14)
C430.0479 (17)0.0572 (17)0.0393 (14)0.0014 (14)0.0127 (12)0.0011 (13)
O50.0426 (10)0.0621 (11)0.0295 (8)0.0048 (9)0.0084 (7)0.0049 (8)
C440.0451 (16)0.0423 (14)0.0350 (13)0.0057 (13)0.0105 (12)0.0035 (11)
O60.0447 (11)0.0819 (15)0.0421 (10)0.0101 (11)0.0131 (8)0.0080 (10)
N30.0403 (12)0.0475 (13)0.0329 (10)0.0021 (11)0.0104 (9)0.0024 (9)
C450.0505 (16)0.0445 (15)0.0320 (12)0.0006 (13)0.0103 (12)0.0006 (11)
C460.0585 (18)0.085 (2)0.0412 (15)0.0010 (18)0.0192 (13)0.0038 (16)
N40.0514 (15)0.0719 (17)0.0398 (12)0.0015 (13)0.0056 (11)0.0028 (12)
C470.0411 (16)0.088 (2)0.0497 (16)0.0005 (17)0.0074 (13)0.0043 (17)
C480.0449 (16)0.070 (2)0.0435 (15)0.0022 (16)0.0163 (13)0.0014 (15)
Geometric parameters (Å, º) top
C1—C21.521 (4)C25—C261.535 (4)
C1—C101.538 (4)C25—C341.538 (4)
C1—H1A0.9700C25—H25A0.9700
C1—H1B0.9700C25—H25B0.9700
C2—C31.485 (5)C26—C271.491 (5)
C2—H2A0.9700C26—H26A0.9700
C2—H2B0.9700C26—H26B0.9700
C3—O11.223 (3)C27—O41.221 (4)
C3—C41.450 (5)C27—C281.451 (5)
C4—C51.344 (4)C28—C291.338 (4)
C4—H40.9300C28—H280.9300
C5—C61.454 (4)C29—C301.456 (4)
C5—C101.516 (4)C29—C341.524 (4)
C6—C71.327 (3)C30—C311.319 (4)
C6—H60.9300C30—H300.9300
C7—C81.493 (3)C31—C321.498 (3)
C7—H70.9300C31—H310.9300
C8—C141.529 (3)C32—C381.522 (3)
C8—C91.536 (4)C32—C331.541 (3)
C8—H80.9800C32—H320.9800
C9—C111.534 (3)C33—C351.532 (3)
C9—C101.554 (3)C33—C341.557 (3)
C9—H90.9800C33—H330.9800
C10—C191.538 (4)C34—C431.542 (4)
C11—C121.537 (4)C35—C361.536 (3)
C11—H11A0.9700C35—H35A0.9700
C11—H11B0.9700C35—H35B0.9700
C12—C131.523 (4)C36—C371.528 (4)
C12—H12A0.9700C36—H36A0.9700
C12—H12B0.9700C36—H36B0.9700
C13—C171.523 (4)C37—C411.525 (3)
C13—C141.542 (3)C37—C421.538 (4)
C13—C181.542 (4)C37—C381.544 (3)
C14—C151.530 (4)C38—C391.527 (4)
C14—H140.9800C38—H380.9800
C15—C161.550 (4)C39—C401.542 (4)
C15—H15A0.9700C39—H39A0.9700
C15—H15B0.9700C39—H39B0.9700
C16—C171.530 (4)C40—C411.526 (4)
C16—H16A0.9700C40—H40A0.9700
C16—H16B0.9700C40—H40B0.9700
C17—O21.465 (3)C41—O51.463 (3)
C17—H170.9800C41—H41A0.9800
C18—H18A0.9600C42—H42A0.9600
C18—H18B0.9600C42—H42B0.9600
C18—H18C0.9600C42—H42C0.9600
C19—H19A0.9600C43—H43A0.9600
C19—H19B0.9600C43—H43B0.9600
C19—H19C0.9600C43—H43C0.9600
O2—C201.322 (3)O5—C441.323 (3)
C20—O31.197 (3)C44—O61.197 (3)
C20—N11.409 (3)C44—N31.401 (3)
N1—C241.378 (3)N3—C451.387 (3)
N1—C211.380 (3)N3—C481.388 (3)
C21—N21.300 (3)C45—N41.295 (3)
C21—C221.481 (4)C45—C461.482 (3)
C22—H22A0.9600C46—H46A0.9600
C22—H22B0.9600C46—H46B0.9600
C22—H22C0.9600C46—H46C0.9600
N2—C231.383 (4)N4—C471.384 (3)
C23—C241.336 (4)C47—C481.327 (4)
C23—H230.9300C47—H470.9300
C24—H24A0.9300C48—H480.9300
C2—C1—C10113.3 (2)C26—C25—C34113.4 (2)
C2—C1—H1A108.9C26—C25—H25A108.9
C10—C1—H1A108.9C34—C25—H25A108.9
C2—C1—H1B108.9C26—C25—H25B108.9
C10—C1—H1B108.9C34—C25—H25B108.9
H1A—C1—H1B107.7H25A—C25—H25B107.7
C3—C2—C1112.4 (3)C27—C26—C25111.7 (3)
C3—C2—H2A109.1C27—C26—H26A109.3
C1—C2—H2A109.1C25—C26—H26A109.3
C3—C2—H2B109.1C27—C26—H26B109.3
C1—C2—H2B109.1C25—C26—H26B109.3
H2A—C2—H2B107.8H26A—C26—H26B108.0
O1—C3—C4121.9 (3)O4—C27—C28121.7 (3)
O1—C3—C2121.3 (3)O4—C27—C26122.4 (3)
C4—C3—C2116.8 (2)C28—C27—C26115.9 (3)
C5—C4—C3123.3 (3)C29—C28—C27124.2 (3)
C5—C4—H4118.4C29—C28—H28117.9
C3—C4—H4118.4C27—C28—H28117.9
C4—C5—C6120.7 (2)C28—C29—C30120.8 (3)
C4—C5—C10123.1 (3)C28—C29—C34123.1 (3)
C6—C5—C10116.1 (2)C30—C29—C34116.1 (2)
C7—C6—C5122.9 (2)C31—C30—C29123.4 (3)
C7—C6—H6118.6C31—C30—H30118.3
C5—C6—H6118.6C29—C30—H30118.3
C6—C7—C8123.9 (3)C30—C31—C32123.5 (3)
C6—C7—H7118.0C30—C31—H31118.3
C8—C7—H7118.0C32—C31—H31118.3
C7—C8—C14113.1 (2)C31—C32—C38113.2 (2)
C7—C8—C9109.7 (2)C31—C32—C33110.0 (2)
C14—C8—C9108.63 (19)C38—C32—C33108.3 (2)
C7—C8—H8108.4C31—C32—H32108.4
C14—C8—H8108.4C38—C32—H32108.4
C9—C8—H8108.4C33—C32—H32108.4
C11—C9—C8111.5 (2)C35—C33—C32111.0 (2)
C11—C9—C10115.7 (2)C35—C33—C34115.4 (2)
C8—C9—C10111.12 (19)C32—C33—C34111.8 (2)
C11—C9—H9105.9C35—C33—H33106.0
C8—C9—H9105.9C32—C33—H33106.0
C10—C9—H9105.9C34—C33—H33106.0
C5—C10—C1110.1 (2)C29—C34—C25109.7 (2)
C5—C10—C19107.5 (2)C29—C34—C43109.3 (2)
C1—C10—C19110.4 (2)C25—C34—C43109.7 (2)
C5—C10—C9107.2 (2)C29—C34—C33106.1 (2)
C1—C10—C9109.8 (2)C25—C34—C33109.8 (2)
C19—C10—C9111.8 (2)C43—C34—C33112.0 (2)
C9—C11—C12112.0 (2)C33—C35—C36111.2 (2)
C9—C11—H11A109.2C33—C35—H35A109.4
C12—C11—H11A109.2C36—C35—H35A109.4
C9—C11—H11B109.2C33—C35—H35B109.4
C12—C11—H11B109.2C36—C35—H35B109.4
H11A—C11—H11B107.9H35A—C35—H35B108.0
C13—C12—C11111.3 (2)C37—C36—C35111.1 (2)
C13—C12—H12A109.4C37—C36—H36A109.4
C11—C12—H12A109.4C35—C36—H36A109.4
C13—C12—H12B109.4C37—C36—H36B109.4
C11—C12—H12B109.4C35—C36—H36B109.4
H12A—C12—H12B108.0H36A—C36—H36B108.0
C12—C13—C17116.2 (2)C41—C37—C36116.2 (2)
C12—C13—C14109.3 (2)C41—C37—C42109.7 (2)
C17—C13—C1497.4 (2)C36—C37—C42110.9 (2)
C12—C13—C18110.5 (2)C41—C37—C3897.41 (19)
C17—C13—C18110.1 (2)C36—C37—C38109.0 (2)
C14—C13—C18112.9 (2)C42—C37—C38113.1 (2)
C8—C14—C15120.1 (2)C32—C38—C39120.6 (2)
C8—C14—C13112.6 (2)C32—C38—C37113.03 (19)
C15—C14—C13103.9 (2)C39—C38—C37103.7 (2)
C8—C14—H14106.5C32—C38—H38106.2
C15—C14—H14106.5C39—C38—H38106.2
C13—C14—H14106.5C37—C38—H38106.2
C14—C15—C16103.4 (2)C38—C39—C40103.4 (2)
C14—C15—H15A111.1C38—C39—H39A111.1
C16—C15—H15A111.1C40—C39—H39A111.1
C14—C15—H15B111.1C38—C39—H39B111.1
C16—C15—H15B111.1C40—C39—H39B111.1
H15A—C15—H15B109.0H39A—C39—H39B109.0
C17—C16—C15104.9 (2)C41—C40—C39105.2 (2)
C17—C16—H16A110.8C41—C40—H40A110.7
C15—C16—H16A110.8C39—C40—H40A110.7
C17—C16—H16B110.8C41—C40—H40B110.7
C15—C16—H16B110.8C39—C40—H40B110.7
H16A—C16—H16B108.9H40A—C40—H40B108.8
O2—C17—C13114.5 (2)O5—C41—C37110.48 (19)
O2—C17—C16108.7 (2)O5—C41—C40113.1 (2)
C13—C17—C16105.3 (2)C37—C41—C40105.4 (2)
O2—C17—H17109.4O5—C41—H41A109.2
C13—C17—H17109.4C37—C41—H41A109.2
C16—C17—H17109.4C40—C41—H41A109.2
C13—C18—H18A109.5C37—C42—H42A109.5
C13—C18—H18B109.5C37—C42—H42B109.5
H18A—C18—H18B109.5H42A—C42—H42B109.5
C13—C18—H18C109.5C37—C42—H42C109.5
H18A—C18—H18C109.5H42A—C42—H42C109.5
H18B—C18—H18C109.5H42B—C42—H42C109.5
C10—C19—H19A109.5C34—C43—H43A109.5
C10—C19—H19B109.5C34—C43—H43B109.5
H19A—C19—H19B109.5H43A—C43—H43B109.5
C10—C19—H19C109.5C34—C43—H43C109.5
H19A—C19—H19C109.5H43A—C43—H43C109.5
H19B—C19—H19C109.5H43B—C43—H43C109.5
C20—O2—C17116.6 (2)C44—O5—C41114.80 (19)
O3—C20—O2127.3 (2)O6—C44—O5126.4 (2)
O3—C20—N1123.0 (2)O6—C44—N3123.5 (2)
O2—C20—N1109.7 (2)O5—C44—N3110.1 (2)
C24—N1—C21106.6 (2)C45—N3—C48105.9 (2)
C24—N1—C20126.4 (2)C45—N3—C44127.4 (2)
C21—N1—C20127.0 (2)C48—N3—C44126.7 (2)
N2—C21—N1111.0 (2)N4—C45—N3111.1 (2)
N2—C21—C22123.8 (2)N4—C45—C46124.5 (2)
N1—C21—C22125.1 (2)N3—C45—C46124.4 (2)
C21—C22—H22A109.5C45—C46—H46A109.5
C21—C22—H22B109.5C45—C46—H46B109.5
H22A—C22—H22B109.5H46A—C46—H46B109.5
C21—C22—H22C109.5C45—C46—H46C109.5
H22A—C22—H22C109.5H46A—C46—H46C109.5
H22B—C22—H22C109.5H46B—C46—H46C109.5
C21—N2—C23105.5 (2)C45—N4—C47105.8 (2)
C24—C23—N2111.1 (2)C48—C47—N4111.1 (2)
C24—C23—H23124.4C48—C47—H47124.4
N2—C23—H23124.4N4—C47—H47124.4
C23—C24—N1105.8 (2)C47—C48—N3106.2 (2)
C23—C24—H24A127.1C47—C48—H48126.9
N1—C24—H24A127.1N3—C48—H48126.9
C10—C1—C2—C352.8 (4)C34—C25—C26—C2754.9 (4)
C1—C2—C3—O1147.1 (3)C25—C26—C27—O4145.5 (3)
C1—C2—C3—C433.5 (4)C25—C26—C27—C2835.5 (3)
O1—C3—C4—C5172.4 (3)O4—C27—C28—C29172.4 (3)
C2—C3—C4—C58.1 (4)C26—C27—C28—C298.5 (4)
C3—C4—C5—C6179.0 (3)C27—C28—C29—C30179.9 (2)
C3—C4—C5—C101.3 (4)C27—C28—C29—C340.9 (4)
C4—C5—C6—C7170.2 (3)C28—C29—C30—C31165.4 (3)
C10—C5—C6—C710.1 (4)C34—C29—C30—C3113.8 (4)
C5—C6—C7—C83.4 (4)C29—C30—C31—C321.2 (4)
C6—C7—C8—C14138.3 (3)C30—C31—C32—C38137.8 (3)
C6—C7—C8—C916.9 (4)C30—C31—C32—C3316.5 (3)
C7—C8—C9—C11180.0 (2)C31—C32—C33—C35178.79 (19)
C14—C8—C9—C1155.9 (3)C38—C32—C33—C3557.0 (3)
C7—C8—C9—C1049.4 (3)C31—C32—C33—C3448.4 (3)
C14—C8—C9—C10173.5 (2)C38—C32—C33—C34172.62 (19)
C4—C5—C10—C119.7 (4)C28—C29—C34—C2517.4 (3)
C6—C5—C10—C1160.5 (2)C30—C29—C34—C25161.9 (2)
C4—C5—C10—C19100.6 (3)C28—C29—C34—C43103.0 (3)
C6—C5—C10—C1979.2 (3)C30—C29—C34—C4377.7 (3)
C4—C5—C10—C9139.1 (3)C28—C29—C34—C33136.0 (3)
C6—C5—C10—C941.1 (3)C30—C29—C34—C3343.3 (3)
C2—C1—C10—C544.7 (4)C26—C25—C34—C2944.5 (3)
C2—C1—C10—C1973.8 (3)C26—C25—C34—C4375.7 (3)
C2—C1—C10—C9162.5 (3)C26—C25—C34—C33160.7 (2)
C11—C9—C10—C5170.0 (2)C35—C33—C34—C29170.6 (2)
C8—C9—C10—C561.6 (3)C32—C33—C34—C2961.4 (3)
C11—C9—C10—C150.4 (3)C35—C33—C34—C2552.1 (3)
C8—C9—C10—C1178.9 (2)C32—C33—C34—C25179.9 (2)
C11—C9—C10—C1972.4 (3)C35—C33—C34—C4370.2 (3)
C8—C9—C10—C1956.0 (3)C32—C33—C34—C4357.9 (3)
C8—C9—C11—C1255.0 (3)C32—C33—C35—C3657.2 (3)
C10—C9—C11—C12176.8 (2)C34—C33—C35—C36174.3 (2)
C9—C11—C12—C1354.6 (3)C33—C35—C36—C3756.6 (3)
C11—C12—C13—C17164.0 (2)C35—C36—C37—C41164.2 (2)
C11—C12—C13—C1455.1 (3)C35—C36—C37—C4269.6 (3)
C11—C12—C13—C1869.7 (3)C35—C36—C37—C3855.5 (3)
C7—C8—C14—C1556.5 (3)C31—C32—C38—C3955.9 (3)
C9—C8—C14—C15178.6 (2)C33—C32—C38—C39178.2 (2)
C7—C8—C14—C13179.3 (2)C31—C32—C38—C37179.3 (2)
C9—C8—C14—C1358.6 (3)C33—C32—C38—C3758.4 (3)
C12—C13—C14—C858.7 (3)C41—C37—C38—C32179.1 (2)
C17—C13—C14—C8179.8 (2)C36—C37—C38—C3258.1 (3)
C18—C13—C14—C864.7 (3)C42—C37—C38—C3265.7 (3)
C12—C13—C14—C15169.8 (2)C41—C37—C38—C3948.7 (2)
C17—C13—C14—C1548.7 (2)C36—C37—C38—C39169.7 (2)
C18—C13—C14—C1566.7 (3)C42—C37—C38—C3966.5 (3)
C8—C14—C15—C16161.2 (2)C32—C38—C39—C40163.0 (2)
C13—C14—C15—C1634.3 (3)C37—C38—C39—C4035.3 (3)
C14—C15—C16—C175.7 (3)C38—C39—C40—C417.2 (3)
C12—C13—C17—O279.9 (3)C36—C37—C41—O578.1 (3)
C14—C13—C17—O2164.3 (2)C42—C37—C41—O548.7 (3)
C18—C13—C17—O246.6 (3)C38—C37—C41—O5166.5 (2)
C12—C13—C17—C16160.8 (2)C36—C37—C41—C40159.4 (2)
C14—C13—C17—C1645.0 (3)C42—C37—C41—C4073.8 (3)
C18—C13—C17—C1672.7 (3)C38—C37—C41—C4044.0 (2)
C15—C16—C17—O2148.4 (2)C39—C40—C41—O5144.6 (2)
C15—C16—C17—C1325.2 (3)C39—C40—C41—C3723.7 (3)
C13—C17—O2—C2099.4 (3)C37—C41—O5—C44168.9 (2)
C16—C17—O2—C20143.1 (2)C40—C41—O5—C4473.1 (3)
C17—O2—C20—O37.4 (4)C41—O5—C44—O61.3 (4)
C17—O2—C20—N1171.7 (2)C41—O5—C44—N3178.7 (2)
O3—C20—N1—C24179.8 (3)O6—C44—N3—C451.1 (4)
O2—C20—N1—C241.1 (4)O5—C44—N3—C45178.8 (2)
O3—C20—N1—C212.0 (5)O6—C44—N3—C48177.1 (3)
O2—C20—N1—C21177.1 (2)O5—C44—N3—C482.9 (4)
C24—N1—C21—N20.3 (3)C48—N3—C45—N40.7 (3)
C20—N1—C21—N2178.2 (3)C44—N3—C45—N4177.8 (2)
C24—N1—C21—C22178.6 (3)C48—N3—C45—C46178.9 (3)
C20—N1—C21—C220.1 (5)C44—N3—C45—C462.5 (4)
N1—C21—N2—C230.2 (3)N3—C45—N4—C470.3 (3)
C22—C21—N2—C23178.5 (3)C46—C45—N4—C47179.3 (3)
C21—N2—C23—C240.0 (4)C45—N4—C47—C480.2 (4)
N2—C23—C24—N10.2 (4)N4—C47—C48—N30.6 (4)
C21—N1—C24—C230.3 (3)C45—N3—C48—C470.8 (3)
C20—N1—C24—C23178.2 (3)C44—N3—C48—C47177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.583.468 (4)161
C43—H43A···O1ii0.962.513.415 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1.
(II) 3-oxo-5α-androst-17β-yl 2-methyl-1H-imidazole-1-carboxylate top
Crystal data top
C24H34N2O3Dx = 1.231 Mg m3
Mr = 398.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7266 reflections
a = 6.5828 (2) Åθ = 2.8–9.1°
b = 12.3368 (5) ŵ = 0.08 mm1
c = 26.4702 (10) ÅT = 293 K
V = 2149.66 (14) Å3Prism, colourless
Z = 40.35 × 0.33 × 0.13 mm
F(000) = 864
Data collection top
Bruker APEX CCD area-detector
diffractometer
5844 independent reflections
Radiation source: fine-focus sealed tube3709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 36.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.963, Tmax = 0.990k = 2020
65343 measured reflectionsl = 4344
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.068P]
where P = (Fo2 + 2Fc2)/3
5844 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C24H34N2O3V = 2149.66 (14) Å3
Mr = 398.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5828 (2) ŵ = 0.08 mm1
b = 12.3368 (5) ÅT = 293 K
c = 26.4702 (10) Å0.35 × 0.33 × 0.13 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3709 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.990Rint = 0.043
65343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
5844 reflectionsΔρmin = 0.16 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6927 (3)0.36556 (17)0.06358 (6)0.0542 (4)
H1A0.58530.41830.05870.065*
H1B0.63150.30040.07730.065*
C20.7877 (3)0.3386 (2)0.01199 (7)0.0661 (5)
H2A0.87110.27420.01550.079*
H2B0.67980.32210.01180.079*
C30.9150 (3)0.42797 (19)0.00912 (6)0.0574 (4)
O10.9051 (3)0.45238 (18)0.05317 (5)0.0878 (6)
C41.0521 (3)0.48505 (18)0.02740 (6)0.0568 (4)
H4A1.09910.55210.01230.068*
H4B1.17000.44000.03390.068*
C50.9465 (2)0.51067 (13)0.07767 (5)0.0427 (3)
H50.83680.56170.06980.051*
C61.0890 (3)0.56926 (15)0.11358 (6)0.0525 (4)
H6A1.14390.63290.09690.063*
H6B1.20170.52190.12210.063*
C70.9812 (3)0.60347 (14)0.16173 (6)0.0509 (4)
H7A0.88360.65990.15380.061*
H7B1.07990.63360.18500.061*
C80.8707 (2)0.50910 (12)0.18743 (5)0.0384 (3)
H80.97250.45720.19950.046*
C90.7298 (2)0.45053 (12)0.14965 (5)0.0389 (3)
H90.63330.50530.13770.047*
C100.8449 (2)0.41053 (12)0.10200 (5)0.0394 (3)
C110.6013 (3)0.36189 (15)0.17507 (6)0.0556 (4)
H11A0.50350.33440.15080.067*
H11B0.68940.30230.18460.067*
C120.4873 (3)0.40188 (17)0.22213 (6)0.0560 (4)
H12A0.38490.45420.21220.067*
H12B0.41910.34130.23820.067*
C130.6330 (2)0.45403 (12)0.25950 (5)0.0410 (3)
C140.7452 (2)0.54683 (12)0.23240 (5)0.0399 (3)
H140.63920.59400.21850.048*
C150.8458 (3)0.61154 (17)0.27524 (6)0.0566 (4)
H15A0.85890.68740.26610.068*
H15B0.97940.58280.28300.068*
C160.7006 (3)0.59749 (16)0.32057 (6)0.0562 (4)
H16A0.77100.56580.34920.067*
H16B0.64350.66670.33070.067*
C170.5339 (2)0.52113 (13)0.30119 (5)0.0443 (3)
H170.42340.56430.28670.053*
C180.7786 (3)0.37114 (16)0.28266 (7)0.0607 (5)
H18A0.70190.31360.29790.091*
H18B0.86060.40580.30790.091*
H18C0.86460.34200.25670.091*
C191.0017 (3)0.32244 (15)0.11563 (7)0.0550 (4)
H19A0.93230.25870.12730.082*
H19B1.08960.34890.14180.082*
H19C1.08090.30490.08630.082*
O20.45134 (17)0.45028 (9)0.34049 (4)0.0472 (3)
C200.3007 (2)0.49158 (13)0.36725 (6)0.0450 (3)
O30.2285 (2)0.57953 (12)0.36235 (5)0.0703 (4)
N10.22526 (18)0.41767 (11)0.40297 (5)0.0431 (3)
C210.3021 (2)0.32076 (13)0.42121 (6)0.0447 (3)
C220.4980 (3)0.27103 (16)0.40548 (8)0.0627 (5)
H22A0.52580.20910.42630.094*
H22B0.60530.32310.40920.094*
H22C0.48920.24880.37080.094*
N20.1826 (2)0.28013 (13)0.45555 (6)0.0537 (3)
C230.0206 (3)0.35156 (17)0.45991 (7)0.0554 (4)
H230.08930.34210.48150.066*
C240.0445 (2)0.43571 (16)0.42877 (6)0.0538 (4)
H240.04240.49460.42510.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0480 (7)0.0706 (11)0.0439 (8)0.0188 (8)0.0028 (6)0.0106 (7)
C20.0676 (10)0.0860 (14)0.0449 (8)0.0192 (11)0.0033 (8)0.0173 (9)
C30.0477 (7)0.0854 (13)0.0390 (7)0.0025 (8)0.0047 (6)0.0035 (8)
O10.0790 (9)0.1434 (16)0.0411 (6)0.0150 (12)0.0020 (7)0.0086 (8)
C40.0514 (8)0.0771 (12)0.0419 (7)0.0131 (9)0.0059 (6)0.0055 (7)
C50.0408 (6)0.0489 (7)0.0386 (6)0.0076 (6)0.0004 (5)0.0075 (6)
C60.0500 (7)0.0590 (10)0.0484 (8)0.0232 (7)0.0042 (6)0.0037 (7)
C70.0553 (8)0.0497 (8)0.0477 (8)0.0205 (7)0.0005 (6)0.0010 (6)
C80.0364 (5)0.0408 (7)0.0379 (6)0.0068 (5)0.0011 (5)0.0020 (5)
C90.0370 (5)0.0419 (7)0.0379 (6)0.0094 (5)0.0018 (5)0.0003 (5)
C100.0386 (5)0.0429 (7)0.0367 (6)0.0080 (5)0.0008 (5)0.0008 (5)
C110.0622 (9)0.0562 (9)0.0485 (8)0.0274 (8)0.0132 (7)0.0068 (7)
C120.0536 (8)0.0669 (10)0.0476 (8)0.0229 (8)0.0127 (7)0.0043 (7)
C130.0445 (6)0.0400 (7)0.0385 (6)0.0020 (6)0.0052 (5)0.0036 (5)
C140.0424 (6)0.0389 (6)0.0383 (6)0.0021 (6)0.0020 (5)0.0013 (5)
C150.0630 (9)0.0609 (10)0.0458 (8)0.0138 (8)0.0006 (7)0.0097 (7)
C160.0713 (10)0.0531 (9)0.0442 (8)0.0000 (9)0.0042 (8)0.0069 (7)
C170.0496 (7)0.0454 (7)0.0379 (6)0.0098 (6)0.0056 (5)0.0068 (5)
C180.0720 (10)0.0541 (9)0.0560 (9)0.0234 (9)0.0162 (9)0.0151 (8)
C190.0618 (9)0.0508 (9)0.0524 (8)0.0073 (8)0.0069 (7)0.0043 (7)
O20.0533 (6)0.0469 (5)0.0413 (5)0.0138 (5)0.0109 (4)0.0085 (4)
C200.0442 (7)0.0495 (8)0.0414 (6)0.0105 (6)0.0013 (5)0.0046 (6)
O30.0721 (8)0.0633 (8)0.0754 (9)0.0332 (7)0.0260 (7)0.0229 (7)
N10.0382 (5)0.0508 (7)0.0403 (5)0.0067 (5)0.0023 (5)0.0041 (5)
C210.0439 (6)0.0452 (7)0.0449 (7)0.0026 (6)0.0013 (6)0.0035 (6)
C220.0582 (9)0.0567 (10)0.0734 (11)0.0183 (8)0.0116 (9)0.0180 (9)
N20.0517 (7)0.0560 (8)0.0533 (7)0.0033 (6)0.0014 (6)0.0089 (6)
C230.0420 (7)0.0769 (12)0.0473 (8)0.0006 (8)0.0042 (6)0.0061 (8)
C240.0410 (7)0.0715 (11)0.0489 (8)0.0127 (7)0.0055 (6)0.0065 (8)
Geometric parameters (Å, º) top
C1—C101.532 (2)C13—C171.526 (2)
C1—C21.539 (2)C13—C181.529 (2)
C1—H1A0.9700C13—C141.539 (2)
C1—H1B0.9700C14—C151.537 (2)
C2—C31.493 (3)C14—H140.9800
C2—H2A0.9700C15—C161.544 (3)
C2—H2B0.9700C15—H15A0.9700
C3—O11.206 (2)C15—H15B0.9700
C3—C41.498 (2)C16—C171.535 (3)
C4—C51.534 (2)C16—H16A0.9700
C4—H4A0.9700C16—H16B0.9700
C4—H4B0.9700C17—O21.4633 (17)
C5—C61.519 (2)C17—H170.9800
C5—C101.546 (2)C18—H18A0.9600
C5—H50.9800C18—H18B0.9600
C6—C71.519 (2)C18—H18C0.9600
C6—H6A0.9700C19—H19A0.9600
C6—H6B0.9700C19—H19B0.9600
C7—C81.532 (2)C19—H19C0.9600
C7—H7A0.9700O2—C201.3209 (18)
C7—H7B0.9700C20—O31.192 (2)
C8—C141.5220 (19)C20—N11.404 (2)
C8—C91.5434 (18)N1—C211.385 (2)
C8—H80.9800N1—C241.3896 (19)
C9—C111.538 (2)C21—N21.302 (2)
C9—C101.5517 (19)C21—C221.487 (2)
C9—H90.9800C22—H22A0.9600
C10—C191.542 (2)C22—H22B0.9600
C11—C121.536 (2)C22—H22C0.9600
C11—H11A0.9700N2—C231.388 (2)
C11—H11B0.9700C23—C241.335 (3)
C12—C131.521 (2)C23—H230.9300
C12—H12A0.9700C24—H240.9300
C12—H12B0.9700
C10—C1—C2113.69 (14)C11—C12—H12B109.5
C10—C1—H1A108.8H12A—C12—H12B108.1
C2—C1—H1A108.8C12—C13—C17115.46 (13)
C10—C1—H1B108.8C12—C13—C18111.90 (16)
C2—C1—H1B108.8C17—C13—C18109.93 (12)
H1A—C1—H1B107.7C12—C13—C14108.29 (11)
C3—C2—C1113.60 (16)C17—C13—C1497.97 (12)
C3—C2—H2A108.8C18—C13—C14112.56 (13)
C1—C2—H2A108.8C8—C14—C15120.14 (12)
C3—C2—H2B108.8C8—C14—C13113.40 (12)
C1—C2—H2B108.8C15—C14—C13104.43 (12)
H2A—C2—H2B107.7C8—C14—H14106.0
O1—C3—C2121.06 (18)C15—C14—H14106.0
O1—C3—C4122.60 (19)C13—C14—H14106.0
C2—C3—C4116.34 (15)C14—C15—C16104.37 (14)
C3—C4—C5112.56 (13)C14—C15—H15A110.9
C3—C4—H4A109.1C16—C15—H15A110.9
C5—C4—H4A109.1C14—C15—H15B110.9
C3—C4—H4B109.1C16—C15—H15B110.9
C5—C4—H4B109.1H15A—C15—H15B108.9
H4A—C4—H4B107.8C17—C16—C15104.59 (12)
C6—C5—C4111.18 (12)C17—C16—H16A110.8
C6—C5—C10112.77 (12)C15—C16—H16A110.8
C4—C5—C10113.13 (14)C17—C16—H16B110.8
C6—C5—H5106.4C15—C16—H16B110.8
C4—C5—H5106.4H16A—C16—H16B108.9
C10—C5—H5106.4O2—C17—C13110.42 (12)
C5—C6—C7111.63 (13)O2—C17—C16113.24 (12)
C5—C6—H6A109.3C13—C17—C16105.59 (13)
C7—C6—H6A109.3O2—C17—H17109.2
C5—C6—H6B109.3C13—C17—H17109.2
C7—C6—H6B109.3C16—C17—H17109.2
H6A—C6—H6B108.0C13—C18—H18A109.5
C6—C7—C8112.55 (14)C13—C18—H18B109.5
C6—C7—H7A109.1H18A—C18—H18B109.5
C8—C7—H7A109.1C13—C18—H18C109.5
C6—C7—H7B109.1H18A—C18—H18C109.5
C8—C7—H7B109.1H18B—C18—H18C109.5
H7A—C7—H7B107.8C10—C19—H19A109.5
C14—C8—C7111.88 (13)C10—C19—H19B109.5
C14—C8—C9108.90 (11)H19A—C19—H19B109.5
C7—C8—C9110.69 (11)C10—C19—H19C109.5
C14—C8—H8108.4H19A—C19—H19C109.5
C7—C8—H8108.4H19B—C19—H19C109.5
C9—C8—H8108.4C20—O2—C17115.44 (12)
C11—C9—C8112.32 (12)O3—C20—O2126.32 (15)
C11—C9—C10113.46 (12)O3—C20—N1121.56 (14)
C8—C9—C10112.47 (11)O2—C20—N1112.09 (13)
C11—C9—H9105.9C21—N1—C24106.25 (13)
C8—C9—H9105.9C21—N1—C20131.75 (13)
C10—C9—H9105.9C24—N1—C20121.98 (14)
C1—C10—C19109.76 (14)N2—C21—N1110.77 (14)
C1—C10—C5107.22 (12)N2—C21—C22124.08 (15)
C19—C10—C5111.78 (12)N1—C21—C22125.11 (15)
C1—C10—C9109.60 (11)C21—C22—H22A109.5
C19—C10—C9111.15 (12)C21—C22—H22B109.5
C5—C10—C9107.21 (12)H22A—C22—H22B109.5
C12—C11—C9113.29 (14)C21—C22—H22C109.5
C12—C11—H11A108.9H22A—C22—H22C109.5
C9—C11—H11A108.9H22B—C22—H22C109.5
C12—C11—H11B108.9C21—N2—C23106.13 (14)
C9—C11—H11B108.9C24—C23—N2110.59 (15)
H11A—C11—H11B107.7C24—C23—H23124.7
C13—C12—C11110.82 (13)N2—C23—H23124.7
C13—C12—H12A109.5C23—C24—N1106.25 (15)
C11—C12—H12A109.5C23—C24—H24126.9
C13—C12—H12B109.5N1—C24—H24126.9
C10—C1—C2—C349.3 (2)C9—C8—C14—C15177.80 (14)
C1—C2—C3—O1137.2 (2)C7—C8—C14—C13179.55 (12)
C1—C2—C3—C442.3 (3)C9—C8—C14—C1357.78 (15)
O1—C3—C4—C5135.6 (2)C12—C13—C14—C861.15 (16)
C2—C3—C4—C543.9 (3)C17—C13—C14—C8178.62 (12)
C3—C4—C5—C6179.53 (16)C18—C13—C14—C863.10 (16)
C3—C4—C5—C1052.4 (2)C12—C13—C14—C15166.30 (14)
C4—C5—C6—C7175.19 (15)C17—C13—C14—C1546.07 (14)
C10—C5—C6—C756.53 (19)C18—C13—C14—C1569.45 (17)
C5—C6—C7—C852.86 (19)C8—C14—C15—C16159.56 (14)
C6—C7—C8—C14173.95 (13)C13—C14—C15—C1630.98 (18)
C6—C7—C8—C952.30 (18)C14—C15—C16—C172.86 (19)
C14—C8—C9—C1151.36 (17)C12—C13—C17—O278.11 (16)
C7—C8—C9—C11174.74 (14)C18—C13—C17—O249.63 (17)
C14—C8—C9—C10179.17 (12)C14—C13—C17—O2167.20 (12)
C7—C8—C9—C1055.79 (17)C12—C13—C17—C16159.15 (14)
C2—C1—C10—C1965.8 (2)C18—C13—C17—C1673.11 (16)
C2—C1—C10—C555.8 (2)C14—C13—C17—C1644.46 (14)
C2—C1—C10—C9171.83 (16)C15—C16—C17—O2147.51 (14)
C6—C5—C10—C1175.14 (13)C15—C16—C17—C1326.58 (17)
C4—C5—C10—C157.61 (17)C13—C17—O2—C20155.21 (13)
C6—C5—C10—C1964.52 (17)C16—C17—O2—C2086.63 (17)
C4—C5—C10—C1962.73 (17)C17—O2—C20—O30.2 (3)
C6—C5—C10—C957.52 (16)C17—O2—C20—N1178.00 (13)
C4—C5—C10—C9175.23 (12)O3—C20—N1—C21167.68 (17)
C11—C9—C10—C157.80 (18)O2—C20—N1—C2114.0 (2)
C8—C9—C10—C1173.32 (13)O3—C20—N1—C2410.3 (3)
C11—C9—C10—C1963.71 (17)O2—C20—N1—C24168.00 (14)
C8—C9—C10—C1965.17 (16)C24—N1—C21—N20.07 (19)
C11—C9—C10—C5173.86 (13)C20—N1—C21—N2178.18 (16)
C8—C9—C10—C557.27 (15)C24—N1—C21—C22177.93 (17)
C8—C9—C11—C1251.2 (2)C20—N1—C21—C220.3 (3)
C10—C9—C11—C12179.88 (14)N1—C21—N2—C230.58 (19)
C9—C11—C12—C1354.1 (2)C22—C21—N2—C23178.47 (16)
C11—C12—C13—C17165.49 (14)C21—N2—C23—C240.9 (2)
C11—C12—C13—C1867.76 (18)N2—C23—C24—N10.9 (2)
C11—C12—C13—C1456.88 (19)C21—N1—C24—C230.49 (19)
C7—C8—C14—C1555.13 (18)C20—N1—C24—C23178.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O3i0.962.473.408 (2)167
C24—H24···O1ii0.932.543.301 (2)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC24H30N2O3C24H34N2O3
Mr394.50398.53
Crystal system, space groupMonoclinic, C2Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)24.5935 (5), 7.0351 (1), 24.9875 (4)6.5828 (2), 12.3368 (5), 26.4702 (10)
α, β, γ (°)90, 105.1160 (11), 9090, 90, 90
V3)4173.69 (12)2149.66 (14)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.36 × 0.15 × 0.040.35 × 0.33 × 0.13
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Bruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.906, 0.9970.963, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
45077, 5398, 3688 65343, 5844, 3709
Rint0.0520.043
(sin θ/λ)max1)0.6600.835
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.01 0.046, 0.144, 1.01
No. of reflections53985844
No. of parameters529265
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.200.24, 0.16

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.932.583.468 (4)161
C43—H43A···O1ii0.962.513.415 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O3i0.962.473.408 (2)167
C24—H24···O1ii0.932.543.301 (2)139
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds