Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cd(C2O4)(C12H8N2)(C9H6O6)]·C6H5N3·H2O, the CdII atom has a distorted penta­gonal-bipyramidal geometry, defined by two N atoms and five O atoms from bidentate 1,10-phenanthroline ligands, oxalate ligands and benzene-1,3,5-tricarboxylic acid ligands. The oxalate ligands in the asymmetric unit possess inversion symmetry. The triazole molecule is not coordinated to the Cd atom. The structure of the title compound features a one-dimensional chain running along the crystallographic a axis, and a three-dimensional supra­molecular network is formed via aromatic [pi]-[pi] inter­actions and hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107064578/sf3065sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107064578/sf3065Isup2.hkl
Contains datablock I

CCDC reference: 681520

Comment top

Rational design and synthesis of metal-organic polymers is of current interest in the field of supramolecular chemistry and crystal engineering. Benzene-1,3,5-tricarboxylic acid (H3BTC), as a popular organic ligand, has been investigated in the construction of metal-organic frameworks. As a multi-carboxylate ligand, benzene-1,3,5-tricarboxylic acid exhibits versatile binding modes in the construction of polymeric complexes. It can act as H2BTC- (Ying & Mao, 2004), HBTC2-(Shi et al., 2004) and BTC3- (Almeida Paz & Kilnowski, 2004) anions and serve as µ2 (Cheng et al., 2004), µ3 (Zheng et al., 2004), µ4 (Shi et al., 2003), µ5 (Wang et al., 2003) and µ6 (Serre et al., 2004) linkers. So far, some structures of metal-organic polymers containing benzene-1,3,5-tricarboxylic acid and 1,10-phenanthroline have been reported, such as catena-[bis(µ3-benzenecarboxylic acid -3,5-dicarboxylato)bis(1,10-phenanthroline)dicadmium(II) (µ2-benzenenecarboxylic acid -3,5-dicarboxylato)bis(1,10-phenanthroline)cadmium(II)] (Shi et al., 2004), catena-[(µ3-1,3,5-benzenetricarboxylato) -(1,10-phenanthroline)indium] (Gomez-Lor et al., 2005), catena-[(µ2-1,3-dicarboxybenzene-5-carboxylato)diaqua (1,10-phenanthroline)manganese(II)1,3-dicarboxybenzene-5-carboxylate monohydrate] (Majumder et al., 2005), catena-[(µ2-benaene-1,3-dicarboxylato-5-carboxylic acid)-aqua- (1,10-phenanthroline)-cobalt(II)] (Plater et al., 2001) and bis[diaqua-bis(1,10-phenathroline)manganese(II)]hexaaquacopper(II) bis(1,3,5-benzenetricarboxylate)docosahydrate clathrate (Qiu et al., 2005). We report here the structure of [Cd(C9H6O6)(C12H8N2)(C2O4)]·(C6H5N3)·H2O, (I), which contains four different organic ligands.

As shown in Fig. 1, the asymmetric unit contains one Cd atom, one H3BTC ligand, one 1,10-phenanthroline ligand, two half oxalate ligands, one uncoordinated benzotriazole molecule and one solvent water molecule. The CdII ion is coordinated by five O atoms of one H3BTC ligand and two oxalate ligands, and two N atoms from the 1,10-phenanthroline ligand, showing a distorted pentagonal–bipyramidal geometry. The two half oxalate ligands in the asymmetric unit possess inversion symmetry. The Cd—O bond distances range from 2.287 (3) to 2.525 (4) Å, and the Cd—N bond distances are 2.334 (4) and 2.351 (4) Å (Fig. 1). Adjacent Cd atoms are linked by oxalate ligands, forming one-dimensional chains running along the crystallographic a axis (Fig. 2). The dihedral angles between the oxalate and 1,10-phenanthroline ligands are 72.348 (s.u. value?) and 82.871 (s.u.?)°. The chains of (I) are linked by O—H···O hydrogen bonds involving the hydroxy groups of H3BTC ligands and carboxyl groups of oxalate ligands (O2—H1···O8iv, O6—H3···O9iii; all symmetry codes as in Table 1), resulting in two-dimensional layers (Fig. 3). Although the benzotriazole ligands are not coordinated to the Cd atom, they take part in the construction of the three-dimensional hydrogen-bond network. These sheets are further linked into a three-dimensional supramolecular network via O —H···N, N—H···O, and O—H···O hydrogen bonds (O4—H2···N3, N5—H5A···O1Wii, O1W—H4···O1i, O1W—H5···O10) (Fig. 3), and details are given in Table 1. Meanwhile, the three-dimensional network of the title compound is stabilized by strong ππ stacking interactions between the 1,10-phenanthroline ligands and H3BTC ligands. As shown in Fig. 3, the face-to-face distance between adjacent 1,10-phenanthroline ligands is 3.324 (3) Å, and that between the H3BTC ligands and the benzotriazole system is 3.414 (3) Å. These strong ππ stacking and hydrogen-bonding interactions play important roles in forming the resulting three-dimensional supramolecular network.

Related literature top

For related literature, see: Almeida Paz & Kilnowski (2004); Cheng et al. (2004); Gomez-Lor, Gutierrez-Puebla, Iglesias, Monge, Ruiz-Valero & Snejko (2005); Majumder et al. (2005); Plater et al. (2001); Qiu et al. (2005); Serre et al. (2004); Shi et al. (2003, 2004); Wang et al. (2003); Ying & Mao (2004); Zheng et al. (2004).

Experimental top

The title compound was prepared by hydrothermal methods. A mixture of Cd(NO3)2·6H2O (0.17 g 0.5 mmol), H3BTC (0.13 g 0.6 mmol), 1,10-phenanthroline (0.1 g 0.6 mmol), oxalic acid (0.027 g 0.3 mmol), benzotriazole (0.06 g 0.5 mmol) and water (10 ml) was stirred for 20 min in air. The mixture was then transferred to a 23 ml Teflon reactor and kept at 433 K for 72 h under autogenous pressure. Crystals suitable for X-ray analysis were obtained after the mixture was cooled to room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. H atoms of hydroxy groups and water molecules were then constrained to an ideal geometry with O—H distances of 0.85 Å and Uiso(H) values of 1.5Ueq(O). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å, an N—H distance of 0.86 Å and Uiso(H) values of 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. [symmetry code: i = -x + 1,-y,-z + 1; ii = -x,-y,-z + 1]
[Figure 2] Fig. 2. View of the one-dimensional zigzag chain running along a axis.
[Figure 3] Fig. 3. Perspective views of the two and three-dimensional supramolecular networks along the b axis.
catena-Poly[[[(1,10-phenanthroline-κ2N,N')(benzene-1,3,5-tricarboxylic acid-O)cadmium(II)]-µ-oxalato] 1H-benzotriazole solvate monohydrate] top
Crystal data top
[Cd(C2O4)(C9H6O6)(C12H8N2)]·C6H5N3·H2OZ = 2
Mr = 727.91F(000) = 732
Triclinic, P1Dx = 1.750 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4531 (19) ÅCell parameters from 13575 reflections
b = 10.869 (2) Åθ = 3.0–27.5°
c = 14.100 (3) ŵ = 0.87 mm1
α = 87.86 (3)°T = 298 K
β = 73.28 (3)°Block, colorless
γ = 84.63 (3)°0.26 × 0.25 × 0.16 mm
V = 1381.3 (5) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6247 independent reflections
Radiation source: fine-focus sealed tube4186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 0.01 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.806, Tmax = 0.874l = 1718
13575 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0392P)2 + 1.7244P]
where P = (Fo2 + 2Fc2)/3
6247 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 1.12 e Å3
Crystal data top
[Cd(C2O4)(C9H6O6)(C12H8N2)]·C6H5N3·H2Oγ = 84.63 (3)°
Mr = 727.91V = 1381.3 (5) Å3
Triclinic, P1Z = 2
a = 9.4531 (19) ÅMo Kα radiation
b = 10.869 (2) ŵ = 0.87 mm1
c = 14.100 (3) ÅT = 298 K
α = 87.86 (3)°0.26 × 0.25 × 0.16 mm
β = 73.28 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6247 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4186 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.874Rint = 0.073
13575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.77 e Å3
6247 reflectionsΔρmin = 1.12 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.25785 (4)0.16874 (3)0.45375 (3)0.02870 (12)
O10.3962 (5)0.0266 (3)0.1666 (3)0.0486 (10)
O20.5701 (5)0.1450 (3)0.2533 (3)0.0459 (10)
H10.57820.09420.29930.069*
O40.7595 (4)0.4547 (3)0.0909 (3)0.0463 (10)
H20.78430.52140.07310.070*
O30.6867 (5)0.4668 (4)0.0728 (3)0.0612 (13)
O50.3123 (5)0.2107 (4)0.2699 (3)0.0500 (11)
O60.2047 (4)0.0848 (3)0.1978 (3)0.0480 (10)
H30.15430.07400.25750.072*
O70.4061 (4)0.1331 (3)0.5625 (2)0.0330 (8)
O80.5869 (4)0.0063 (3)0.5938 (2)0.0329 (8)
O90.0845 (4)0.0802 (3)0.6070 (2)0.0354 (8)
O100.1028 (4)0.0381 (3)0.5778 (3)0.0390 (9)
C10.3917 (5)0.1986 (4)0.0953 (3)0.0271 (10)
C20.3884 (6)0.1408 (4)0.0104 (4)0.0327 (12)
H2A0.32470.07930.01420.039*
C30.4805 (6)0.1749 (4)0.0807 (3)0.0297 (11)
C40.5771 (6)0.2653 (4)0.0873 (4)0.0335 (12)
H4A0.64060.28600.14830.040*
C50.5786 (6)0.3252 (4)0.0012 (4)0.0303 (11)
C60.4871 (6)0.2906 (4)0.0885 (4)0.0317 (11)
H6A0.48900.32930.14580.038*
C70.3011 (6)0.1660 (5)0.1951 (4)0.0334 (12)
C80.4779 (6)0.1075 (4)0.1706 (4)0.0324 (12)
C90.6803 (6)0.4218 (5)0.0023 (4)0.0348 (12)
C100.5094 (7)0.3610 (5)0.3434 (4)0.0416 (14)
H10A0.55960.29040.31000.050*
C110.5716 (7)0.4726 (6)0.3180 (4)0.0495 (16)
H11A0.65960.47660.26750.059*
C120.5023 (7)0.5759 (6)0.3679 (5)0.0502 (16)
H12A0.54330.65120.35230.060*
C130.3690 (7)0.5687 (5)0.4428 (4)0.0402 (14)
C140.2895 (8)0.6719 (5)0.4999 (5)0.0506 (17)
H14A0.32710.74880.48710.061*
C150.1615 (8)0.6614 (5)0.5718 (5)0.0510 (16)
H15A0.11330.73000.60870.061*
C160.0998 (6)0.5446 (5)0.5912 (4)0.0369 (13)
C170.0364 (7)0.5321 (6)0.6623 (4)0.0488 (16)
H17A0.08800.59960.69930.059*
C180.0919 (7)0.4204 (6)0.6763 (4)0.0484 (15)
H18A0.18210.41020.72330.058*
C190.0128 (6)0.3208 (5)0.6196 (4)0.0408 (13)
H19A0.05220.24450.62990.049*
C200.1721 (6)0.4420 (4)0.5371 (4)0.0327 (12)
C210.3114 (6)0.4526 (4)0.4619 (4)0.0309 (11)
C220.0072 (5)0.0119 (4)0.5524 (4)0.0256 (10)
C230.4963 (6)0.0410 (4)0.5446 (3)0.0267 (11)
C240.9473 (6)0.6964 (5)0.0006 (4)0.0391 (13)
C250.8760 (7)0.6869 (6)0.1018 (5)0.0538 (16)
H25A0.80840.62850.12670.065*
C260.9099 (9)0.7671 (6)0.1628 (5)0.065 (2)
H26A0.86340.76390.23050.078*
C271.0133 (9)0.8541 (6)0.1253 (6)0.069 (2)
H27A1.03390.90630.16950.083*
C281.0843 (8)0.8656 (6)0.0280 (6)0.0599 (19)
H28A1.15320.92310.00390.072*
C291.0467 (7)0.7848 (5)0.0342 (5)0.0445 (14)
N10.3820 (5)0.3495 (4)0.4128 (3)0.0297 (9)
N20.1159 (5)0.3299 (4)0.5516 (3)0.0329 (10)
N30.9349 (6)0.6333 (4)0.0780 (4)0.0489 (13)
N41.0211 (6)0.6779 (5)0.1586 (4)0.0562 (14)
N51.0893 (6)0.7689 (4)0.1338 (4)0.0525 (13)
H5A1.15180.81160.17540.063*
O1W0.2543 (5)0.0888 (4)0.7141 (3)0.0547 (11)
H40.30130.04470.74100.082*
H50.22660.04440.67070.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0316 (2)0.02563 (18)0.0303 (2)0.00916 (14)0.00884 (16)0.00132 (14)
O10.062 (3)0.047 (2)0.043 (2)0.025 (2)0.018 (2)0.0085 (19)
O20.066 (3)0.049 (2)0.0216 (19)0.019 (2)0.0054 (19)0.0065 (17)
O40.060 (3)0.049 (2)0.029 (2)0.033 (2)0.002 (2)0.0009 (17)
O30.081 (3)0.072 (3)0.035 (2)0.051 (3)0.009 (2)0.008 (2)
O50.065 (3)0.060 (3)0.027 (2)0.038 (2)0.007 (2)0.0065 (19)
O60.058 (3)0.058 (2)0.030 (2)0.037 (2)0.006 (2)0.0001 (18)
O70.039 (2)0.0296 (18)0.0340 (19)0.0001 (16)0.0165 (18)0.0099 (15)
O80.040 (2)0.0326 (18)0.0311 (19)0.0011 (16)0.0169 (18)0.0079 (15)
O90.035 (2)0.045 (2)0.0267 (18)0.0186 (17)0.0071 (17)0.0048 (16)
O100.042 (2)0.045 (2)0.036 (2)0.0224 (18)0.0155 (18)0.0042 (17)
C10.029 (3)0.030 (2)0.021 (2)0.006 (2)0.003 (2)0.004 (2)
C20.039 (3)0.027 (2)0.034 (3)0.011 (2)0.012 (3)0.004 (2)
C30.036 (3)0.031 (3)0.023 (2)0.006 (2)0.010 (2)0.006 (2)
C40.040 (3)0.033 (3)0.026 (3)0.005 (2)0.006 (2)0.001 (2)
C50.033 (3)0.032 (3)0.027 (3)0.009 (2)0.007 (2)0.003 (2)
C60.036 (3)0.034 (3)0.025 (3)0.012 (2)0.006 (2)0.005 (2)
C70.033 (3)0.037 (3)0.030 (3)0.011 (2)0.006 (2)0.004 (2)
C80.040 (3)0.032 (3)0.028 (3)0.002 (2)0.013 (3)0.003 (2)
C90.040 (3)0.036 (3)0.031 (3)0.012 (2)0.012 (3)0.002 (2)
C100.043 (3)0.052 (3)0.032 (3)0.016 (3)0.011 (3)0.002 (3)
C110.044 (4)0.071 (4)0.039 (3)0.028 (3)0.015 (3)0.014 (3)
C120.059 (4)0.047 (3)0.055 (4)0.028 (3)0.028 (4)0.018 (3)
C130.047 (4)0.034 (3)0.052 (4)0.018 (3)0.032 (3)0.008 (3)
C140.070 (5)0.022 (3)0.077 (5)0.011 (3)0.047 (4)0.000 (3)
C150.064 (5)0.031 (3)0.066 (4)0.002 (3)0.033 (4)0.014 (3)
C160.043 (3)0.035 (3)0.037 (3)0.002 (2)0.017 (3)0.009 (2)
C170.054 (4)0.050 (4)0.045 (4)0.015 (3)0.021 (3)0.018 (3)
C180.039 (4)0.069 (4)0.033 (3)0.000 (3)0.005 (3)0.004 (3)
C190.044 (4)0.047 (3)0.032 (3)0.008 (3)0.009 (3)0.001 (3)
C200.041 (3)0.030 (3)0.035 (3)0.002 (2)0.024 (3)0.002 (2)
C210.038 (3)0.031 (3)0.030 (3)0.010 (2)0.017 (3)0.001 (2)
C220.023 (3)0.025 (2)0.030 (3)0.008 (2)0.006 (2)0.001 (2)
C230.034 (3)0.027 (2)0.020 (2)0.013 (2)0.005 (2)0.001 (2)
C240.043 (3)0.037 (3)0.045 (3)0.012 (3)0.023 (3)0.002 (3)
C250.058 (4)0.056 (4)0.053 (4)0.016 (3)0.020 (4)0.001 (3)
C260.084 (6)0.067 (5)0.055 (4)0.004 (4)0.036 (4)0.005 (4)
C270.082 (6)0.051 (4)0.092 (6)0.003 (4)0.050 (5)0.025 (4)
C280.060 (5)0.039 (3)0.095 (6)0.011 (3)0.042 (5)0.001 (4)
C290.042 (3)0.035 (3)0.060 (4)0.008 (3)0.020 (3)0.004 (3)
N10.032 (2)0.032 (2)0.028 (2)0.0083 (19)0.010 (2)0.0023 (18)
N20.038 (3)0.032 (2)0.032 (2)0.0082 (19)0.013 (2)0.0004 (19)
N30.054 (3)0.053 (3)0.044 (3)0.029 (3)0.015 (3)0.004 (2)
N40.063 (4)0.057 (3)0.053 (3)0.028 (3)0.018 (3)0.003 (3)
N50.054 (3)0.051 (3)0.053 (3)0.024 (3)0.013 (3)0.013 (3)
O1W0.073 (3)0.050 (2)0.050 (3)0.028 (2)0.025 (2)0.007 (2)
Geometric parameters (Å, º) top
Cd1—O8i2.287 (3)C12—C131.399 (8)
Cd1—N22.334 (4)C12—H12A0.9300
Cd1—O9ii2.347 (3)C13—C211.407 (7)
Cd1—N12.351 (4)C13—C141.425 (8)
Cd1—O72.357 (3)C14—C151.348 (9)
Cd1—O102.440 (4)C14—H14A0.9300
Cd1—O52.525 (4)C15—C161.431 (8)
O1—C81.213 (6)C15—H15A0.9300
O2—C81.316 (6)C16—C201.383 (7)
O2—H10.8500C16—C171.401 (8)
O4—C91.315 (6)C17—C181.352 (8)
O4—H20.8500C17—H17A0.9300
O3—C91.201 (6)C18—C191.393 (8)
O5—C71.214 (6)C18—H18A0.9300
O6—C71.319 (6)C19—N21.324 (7)
O6—H30.8499C19—H19A0.9300
O7—C231.236 (6)C20—N21.360 (6)
O8—C231.273 (5)C20—C211.445 (7)
O8—Cd1i2.287 (3)C21—N11.354 (6)
O9—C221.260 (6)C22—C22ii1.534 (9)
O9—Cd1ii2.347 (3)C23—C23i1.549 (9)
O10—C221.238 (5)C24—N31.364 (7)
C1—C21.383 (6)C24—C291.384 (7)
C1—C61.391 (6)C24—C251.397 (8)
C1—C71.472 (7)C25—C261.366 (8)
C2—C31.388 (7)C25—H25A0.9300
C2—H2A0.9300C26—C271.403 (10)
C3—C41.386 (7)C26—H26A0.9300
C3—C81.495 (6)C27—C281.350 (10)
C4—C51.403 (7)C27—H27A0.9300
C4—H4A0.9300C28—C291.400 (8)
C5—C61.373 (7)C28—H28A0.9300
C5—C91.485 (7)C29—N51.359 (8)
C6—H6A0.9300N3—N41.300 (7)
C10—N11.329 (7)N4—N51.338 (6)
C10—C111.388 (8)N5—H5A0.8600
C10—H10A0.9300O1W—H40.8500
C11—C121.356 (9)O1W—H50.8500
C11—H11A0.9300
O8i—Cd1—N2161.05 (12)C13—C12—H12A120.2
O8i—Cd1—O9ii87.86 (12)C12—C13—C21117.5 (5)
N2—Cd1—O9ii103.10 (14)C12—C13—C14123.6 (5)
O8i—Cd1—N1112.36 (14)C21—C13—C14118.9 (6)
N2—Cd1—N171.21 (15)C15—C14—C13122.0 (5)
O9ii—Cd1—N1133.31 (12)C15—C14—H14A119.0
O8i—Cd1—O771.17 (11)C13—C14—H14A119.0
N2—Cd1—O791.26 (13)C14—C15—C16120.0 (5)
O9ii—Cd1—O7142.92 (12)C14—C15—H15A120.0
N1—Cd1—O783.60 (12)C16—C15—H15A120.0
O8i—Cd1—O1086.14 (13)C20—C16—C17118.6 (5)
N2—Cd1—O1083.79 (14)C20—C16—C15120.2 (6)
O9ii—Cd1—O1068.08 (11)C17—C16—C15121.2 (5)
N1—Cd1—O10149.68 (13)C18—C17—C16119.1 (5)
O7—Cd1—O1079.99 (12)C18—C17—H17A120.5
O8i—Cd1—O584.27 (13)C16—C17—H17A120.5
N2—Cd1—O5113.84 (14)C17—C18—C19119.3 (6)
O9ii—Cd1—O570.34 (12)C17—C18—H18A120.3
N1—Cd1—O570.51 (13)C19—C18—H18A120.3
O7—Cd1—O5134.10 (13)N2—C19—C18122.9 (5)
O10—Cd1—O5137.58 (12)N2—C19—H19A118.5
C8—O2—H1110.0C18—C19—H19A118.5
C9—O4—H296.1N2—C20—C16122.1 (5)
C7—O5—Cd1141.0 (3)N2—C20—C21118.1 (4)
C7—O6—H3109.0C16—C20—C21119.8 (5)
C23—O7—Cd1115.5 (3)N1—C21—C13122.5 (5)
C23—O8—Cd1i118.6 (3)N1—C21—C20118.3 (4)
C22—O9—Cd1ii120.8 (3)C13—C21—C20119.2 (5)
C22—O10—Cd1116.4 (3)O10—C22—O9125.3 (4)
C2—C1—C6119.7 (4)O10—C22—C22ii119.1 (5)
C2—C1—C7123.3 (4)O9—C22—C22ii115.6 (5)
C6—C1—C7117.0 (4)O7—C23—O8125.2 (4)
C1—C2—C3119.7 (4)O7—C23—C23i119.2 (5)
C1—C2—H2A120.2O8—C23—C23i115.6 (5)
C3—C2—H2A120.2N3—C24—C29108.8 (5)
C4—C3—C2120.7 (4)N3—C24—C25131.1 (5)
C4—C3—C8121.0 (5)C29—C24—C25120.1 (5)
C2—C3—C8118.3 (4)C26—C25—C24117.1 (6)
C3—C4—C5119.5 (5)C26—C25—H25A121.4
C3—C4—H4A120.2C24—C25—H25A121.4
C5—C4—H4A120.2C25—C26—C27121.4 (7)
C6—C5—C4119.3 (5)C25—C26—H26A119.3
C6—C5—C9118.1 (4)C27—C26—H26A119.3
C4—C5—C9122.6 (5)C28—C27—C26122.9 (6)
C5—C6—C1121.2 (4)C28—C27—H27A118.5
C5—C6—H6A119.4C26—C27—H27A118.5
C1—C6—H6A119.4C27—C28—C29115.3 (6)
O5—C7—O6121.9 (5)C27—C28—H28A122.3
O5—C7—C1123.0 (5)C29—C28—H28A122.3
O6—C7—C1115.1 (4)N5—C29—C24103.5 (5)
O1—C8—O2123.7 (5)N5—C29—C28133.4 (6)
O1—C8—C3122.3 (5)C24—C29—C28123.1 (6)
O2—C8—C3114.0 (4)C10—N1—C21117.6 (4)
O3—C9—O4123.4 (5)C10—N1—Cd1126.4 (4)
O3—C9—C5121.7 (5)C21—N1—Cd1115.9 (3)
O4—C9—C5114.9 (4)C19—N2—C20118.0 (5)
N1—C10—C11123.5 (6)C19—N2—Cd1125.6 (4)
N1—C10—H10A118.3C20—N2—Cd1116.4 (4)
C11—C10—H10A118.3N4—N3—C24108.4 (5)
C12—C11—C10119.2 (6)N3—N4—N5108.4 (5)
C12—C11—H11A120.4N4—N5—C29110.9 (5)
C10—C11—H11A120.4N4—N5—H5A124.5
C11—C12—C13119.7 (5)C29—N5—H5A124.5
C11—C12—H12A120.2H4—O1W—H5107.7
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H4···O1iii0.851.992.824 (5)165
N5—H5A···O1Wiv0.861.932.775 (6)166
O6—H3···O9ii0.851.832.659 (5)163
O2—H1···O8v0.851.792.636 (5)172
O4—H2···N30.851.942.711 (6)150
O1W—H5···O100.852.122.942 (5)164
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C2O4)(C9H6O6)(C12H8N2)]·C6H5N3·H2O
Mr727.91
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.4531 (19), 10.869 (2), 14.100 (3)
α, β, γ (°)87.86 (3), 73.28 (3), 84.63 (3)
V3)1381.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.26 × 0.25 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.806, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
13575, 6247, 4186
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.119, 1.03
No. of reflections6247
No. of parameters415
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 1.12

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2005), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H4···O1i0.851.992.824 (5)164.9
N5—H5A···O1Wii0.861.932.775 (6)165.6
O6—H3···O9iii0.851.832.659 (5)163.1
O2—H1···O8iv0.851.792.636 (5)171.6
O4—H2···N30.851.942.711 (6)150.0
O1W—H5···O100.852.122.942 (5)163.5
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z1; (iii) x, y, z+1; (iv) x, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds