Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of 9-[(E)-(4-nitro­phenyl)vinyl]-9H-carbazole and 9-[(E)-(3-nitro­phenyl)vinyl]-9H-carbazole, both C20H14N2O2, are determined mainly by van der Waals forces and [pi]-[pi] inter­actions between the carbazole and benzene systems. However, the packing modes are different. In the 4-nitro derivative, the mol­ecules in the weakly bound stack are related by a unit-cell translation, while in the 3-nitro derivative there are centrosymmetric pairs of mol­ecules joined by [pi]-[pi] inter­actions and also pairs of mol­ecules, related by another centre of symmetry, connected by eight relatively short C-H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107049621/sf3059sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049621/sf3059Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049621/sf3059IIsup3.hkl
Contains datablock II

CCDC references: 672535; 672536

Comment top

Over the past few years, vigorous growth has been observed in the chemistry of carbazole derivatives, due to their electroactivity and luminescent properties (Grazulevicius et al., 2003, and references therein; Hyun et al., 2006). These compounds are thermally and photochemically stable, which makes them useful objects for technological applications. For instance, the carbazole ring is easily funtionalized and covalently linked to other molecules (Diaz et al., 2002). This enables its use as a convenient building block for the design and synthesis of molecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004). The high photoconductivities and hole-transporting properties of many polymeric materials can be greatly improved by incorporating carbazole as a pendant group in the framework. This molecule, with a π-conjugated system, is used as a host material for both small-molecule OLEDs (organic light-emitting diodes) and polymer PLEDs (polymer light-emitting diodes), due to its high triplet energy and good hole-transporting ability (see, for example, Chen et al., 2003). PLEDs can emit white (Paik et al., 2002), pure deep-blue (Lu et al., 2004) or green or red (Zhang et al., 2006) light. Further extension of the π-conjugated double-bond system has been obtained via the synthesis of N-nitrostyryl-substituted carbazole derivatives, which are interesting from the photochemical point of view (Prukała et al., 2007). We report here the crystal and molecular structures of two such derivatives, the p-nitro isomer, 9-[(E)-(4-nitrophenyl)vinyl]-9H-carbazole, (I), and the m-nitro isomer, 9-[(E)-(3-nitrophenyl)vinyl]-9H-carbazole, (II).

The bond angles within the phenyl ring are influenced by the presence of the substituents. The nitro group causes an increase in the angle at the place of substitution and a decrease in the neighbouring angles. The effect of the vinyl group is the reverse (cf. Domenicano, 1988). The final bond-angle pattern is close to an additive combination of these effects (Table 1). It might be noted, however, that other factors (e.g. crystal packing) also influence the bond angles; otherwise, for instance, the bond angles in (I) should be symmetrically distributed.

The conformation of the molecules of (I) and (II) (Figs. 1 and 2, respectively) can be described by the dihedral angles between the approximately planar fragments of the carbazole moiety, the bridging vinyl group, the phenyl ring and the nitro group (Table 2). In (I), the whole nitrostyryl group is close to planarity [maximum dihedral angle 5.6 (3)°], but it is significantly tilted with respect to the carbazole group [17.4 (2)°]. The whole of compound (II) is almost planar, with the largest dihedral angle of 8.3 (3)° being observed between the phenyl and nitro planes. Interestingly, the maximum deviation from the mean plane through all 13 atoms of the carbazole fragment is significantly larger in (II) [0.074 (2) Å] than in (I) [0.028 (1) Å].

In the crystal structures of (I) and (II), van der Waals forces and ππ stacking interactions between the phenyl and carbazole moieties seem to be the most important factors determining the packing. In (I), the mean distance between the phenyl and carbazole planes, which create a stair-like structure along [001] (Fig. 3), is ca 3.45 Å, and the planes are inclined by 17.1°. In (II), the structure is more complicated. There are two kinds of centrosymmetric dimers, one of stacked molecules, with a mean distance between the planes of 3.30 Å, and the other formed by a number of weak C—H···O contacts (Table 3, Fig. 4). These dimers lie on different centres of symmetry and together also create a stair-like structure (Fig. 5).

Related literature top

For related literature, see: Chen et al. (2003); Diaz et al. (2002); Domenicano (1988); Grazulevicius et al. (2003); Hyun et al. (2006); Lu et al. (2004); Paik et al. (2002); Prukała et al. (2007); Zhang et al. (2004, 2006).

Experimental top

The syntheses of the title compounds have been described elsewhere (Prukała et al., 2007). Crystals appropriate for X-ray diffraction experiments were obtained by slow evaporation from methanol solutions.

Refinement top

The positions of the H atoms were found in difference Fourier maps, and their positional parameters were then refined. In the case of (I), their isotropic dispacement parameters were also refined. After convergence, the positional parameters were kept as a `riding model' [Range of C—H distances?], while the displacement parameters were fixed at the refined values in (I) and set at 1.2Ueq(parent) in (II). In (I), some weak constraints on the Uij tensor components of selected atoms were applied.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The stack of molecules in the structure of (I). The short contacts between the centres of the planar fragments (see text) are depicted as dashed lines.
[Figure 4] Fig. 4. The C—H···O hydrogen-bonded centrosymmetric dimer in the structure of of (II). Hydrogen bonds are depicted as dashed lines.
[Figure 5] Fig. 5. The intermolecular interactions (dashed lines) in the structure of (II).
(I) 9-[(E)-(4-nitrophenyl)vinyl]-9H-carbazole top
Crystal data top
C20H14N2O2F(000) = 656
Mr = 314.33Dx = 1.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3233 reflections
a = 6.2627 (9) Åθ = 4–22°
b = 8.6572 (8) ŵ = 0.09 mm1
c = 27.943 (2) ÅT = 295 K
β = 92.578 (10)°Prism, colourless
V = 1513.5 (3) Å30.35 × 0.2 × 0.15 mm
Z = 4
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
1873 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 28.0°, θmin = 2.8°
ω scansh = 58
12049 measured reflectionsk = 1111
3634 independent reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106Only H-atom displacement parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3634 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.31 e Å3
8 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H14N2O2V = 1513.5 (3) Å3
Mr = 314.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2627 (9) ŵ = 0.09 mm1
b = 8.6572 (8) ÅT = 295 K
c = 27.943 (2) Å0.35 × 0.2 × 0.15 mm
β = 92.578 (10)°
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
1873 reflections with I > 2σ(I)
12049 measured reflectionsRint = 0.027
3634 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0448 restraints
wR(F2) = 0.106Only H-atom displacement parameters refined
S = 1.01Δρmax = 0.31 e Å3
3634 reflectionsΔρmin = 0.24 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Weak restraints to the Uij components were applied (DELU) due to the relatively large values of Hirshfeld differences for some pairs of atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2771 (3)0.23323 (18)0.92256 (6)0.0478 (4)
H10.40690.26000.93780.053 (5)*
C20.1324 (3)0.1413 (2)0.94503 (6)0.0535 (5)
H20.16470.10740.97610.064 (5)*
C30.0603 (3)0.0982 (2)0.92257 (6)0.0516 (4)
H30.15500.03650.93870.054 (5)*
C40.1122 (3)0.14587 (17)0.87673 (6)0.0453 (4)
H40.24110.11600.86160.046 (4)*
C50.0290 (2)0.23886 (17)0.85309 (5)0.0371 (4)
C60.0220 (2)0.30748 (16)0.80580 (5)0.0371 (4)
C70.1282 (3)0.30712 (18)0.76771 (6)0.0456 (4)
H70.25420.25110.76960.047 (5)*
C80.0885 (3)0.3905 (2)0.72712 (6)0.0542 (5)
H80.18850.39080.70150.053 (5)*
C90.0992 (3)0.4740 (2)0.72413 (6)0.0568 (5)
H90.12330.52940.69640.060 (5)*
C100.2508 (3)0.47656 (19)0.76132 (6)0.0498 (4)
H100.37600.53350.75920.046 (4)*
C110.2113 (2)0.39208 (17)0.80199 (5)0.0385 (4)
N120.33454 (18)0.37887 (14)0.84508 (4)0.0411 (3)
C130.2231 (2)0.28458 (17)0.87650 (5)0.0383 (4)
C140.5227 (2)0.46500 (18)0.85405 (6)0.0473 (4)
H140.58330.50600.82700.069 (6)*
C150.6234 (3)0.4956 (2)0.89453 (7)0.0530 (4)
H150.56450.45760.92210.112 (8)*
C160.8226 (2)0.58482 (18)0.90043 (6)0.0445 (4)
C170.9088 (3)0.6095 (2)0.94609 (6)0.0559 (5)
H170.83760.57210.97220.074 (6)*
C181.0962 (3)0.6873 (2)0.95383 (6)0.0545 (5)
H181.15300.70160.98480.064 (5)*
C191.2005 (2)0.74447 (17)0.91558 (6)0.0410 (4)
C201.1197 (2)0.72733 (18)0.86951 (6)0.0455 (4)
H201.19020.76900.84390.045 (5)*
C210.9294 (2)0.64616 (18)0.86192 (6)0.0453 (4)
H210.87270.63240.83090.065 (5)*
N221.4031 (2)0.82691 (17)0.92450 (6)0.0534 (4)
O231.4798 (2)0.83148 (18)0.96520 (5)0.0823 (5)
O241.4852 (2)0.88750 (16)0.89045 (5)0.0737 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0451 (10)0.0504 (10)0.0473 (10)0.0017 (8)0.0058 (8)0.0012 (8)
C20.0635 (12)0.0531 (10)0.0435 (10)0.0001 (9)0.0009 (9)0.0053 (8)
C30.0512 (11)0.0511 (10)0.0528 (11)0.0070 (9)0.0055 (9)0.0061 (9)
C40.0433 (10)0.0428 (9)0.0496 (10)0.0046 (8)0.0012 (8)0.0035 (8)
C50.0361 (9)0.0350 (8)0.0402 (9)0.0022 (7)0.0014 (7)0.0055 (7)
C60.0367 (9)0.0377 (8)0.0369 (9)0.0002 (7)0.0002 (7)0.0064 (7)
C70.0428 (10)0.0420 (9)0.0515 (11)0.0057 (8)0.0046 (8)0.0029 (8)
C80.0586 (11)0.0559 (11)0.0467 (11)0.0037 (9)0.0135 (9)0.0000 (9)
C90.0681 (12)0.0585 (11)0.0436 (11)0.0116 (10)0.0004 (9)0.0076 (9)
C100.0463 (10)0.0567 (11)0.0466 (11)0.0113 (9)0.0026 (9)0.0015 (8)
C110.0365 (9)0.0415 (9)0.0373 (9)0.0001 (7)0.0001 (7)0.0039 (7)
N120.0340 (7)0.0460 (8)0.0433 (8)0.0013 (6)0.0001 (6)0.0011 (6)
C130.0374 (9)0.0373 (9)0.0401 (9)0.0036 (7)0.0013 (7)0.0025 (7)
C140.0328 (8)0.0507 (10)0.0582 (10)0.0021 (7)0.0002 (7)0.0070 (8)
C150.0446 (9)0.0563 (11)0.0578 (10)0.0046 (7)0.0031 (7)0.0054 (8)
C160.0336 (8)0.0407 (9)0.0590 (10)0.0037 (6)0.0012 (7)0.0034 (7)
C170.0488 (11)0.0661 (12)0.0530 (11)0.0060 (9)0.0036 (9)0.0013 (9)
C180.0495 (11)0.0652 (12)0.0480 (11)0.0012 (10)0.0051 (9)0.0012 (9)
C190.0334 (8)0.0424 (9)0.0467 (10)0.0020 (6)0.0025 (7)0.0059 (7)
C200.0418 (10)0.0477 (10)0.0469 (11)0.0008 (8)0.0006 (8)0.0018 (8)
C210.0436 (9)0.0482 (10)0.0434 (9)0.0039 (7)0.0075 (7)0.0067 (7)
N220.0407 (8)0.0564 (9)0.0624 (10)0.0032 (7)0.0047 (8)0.0109 (8)
O230.0612 (9)0.1133 (12)0.0699 (10)0.0123 (8)0.0248 (8)0.0153 (8)
O240.0579 (8)0.0792 (9)0.0845 (10)0.0234 (7)0.0090 (7)0.0003 (8)
Geometric parameters (Å, º) top
C1—C21.378 (2)C11—N121.4053 (18)
C1—C131.389 (2)N12—C131.4069 (19)
C1—H10.9300N12—C141.4076 (19)
C2—C31.386 (2)C14—C151.297 (2)
C2—H20.9300C14—H140.9300
C3—C41.371 (2)C15—C161.470 (2)
C3—H30.9300C15—H150.9300
C4—C51.386 (2)C16—C171.380 (2)
C4—H40.9300C16—C211.397 (2)
C5—C131.411 (2)C17—C181.362 (2)
C5—C61.448 (2)C17—H170.9300
C6—C71.389 (2)C18—C191.370 (2)
C6—C111.401 (2)C18—H180.9300
C7—C81.376 (2)C19—C201.370 (2)
C7—H70.9300C19—N221.467 (2)
C8—C91.386 (2)C20—C211.391 (2)
C8—H80.9300C20—H200.9300
C9—C101.376 (2)C21—H210.9300
C9—H90.9300N22—O231.2153 (17)
C10—C111.383 (2)N22—O241.2202 (18)
C10—H100.9300
C2—C1—C13118.00 (16)C11—N12—C13108.26 (12)
C2—C1—H1121.0C11—N12—C14122.19 (13)
C13—C1—H1121.0C13—N12—C14129.12 (13)
C1—C2—C3121.74 (16)C1—C13—N12131.09 (14)
C1—C2—H2119.2C1—C13—C5120.56 (14)
C3—C2—H2119.1N12—C13—C5108.33 (12)
C4—C3—C2120.48 (16)C15—C14—N12129.31 (18)
C4—C3—H3119.8C15—C14—H14115.4
C2—C3—H3119.8N12—C14—H14115.3
C3—C4—C5119.37 (15)C14—C15—C16125.57 (18)
C3—C4—H4120.3C14—C15—H15117.1
C5—C4—H4120.3C16—C15—H15117.3
C4—C5—C13119.81 (14)C17—C16—C21118.19 (15)
C4—C5—C6132.83 (14)C17—C16—C15118.69 (16)
C13—C5—C6107.35 (13)C21—C16—C15123.13 (15)
C7—C6—C11119.28 (14)C18—C17—C16121.47 (17)
C7—C6—C5133.66 (15)C18—C17—H17119.2
C11—C6—C5107.03 (13)C16—C17—H17119.3
C8—C7—C6119.28 (16)C17—C18—C19119.51 (16)
C8—C7—H7120.4C17—C18—H18120.3
C6—C7—H7120.3C19—C18—H18120.2
C7—C8—C9120.55 (16)C18—C19—C20121.67 (15)
C7—C8—H8119.7C18—C19—N22118.83 (15)
C9—C8—H8119.7C20—C19—N22119.50 (15)
C10—C9—C8121.43 (17)C19—C20—C21118.40 (16)
C10—C9—H9119.3C19—C20—H20120.8
C8—C9—H9119.3C21—C20—H20120.8
C9—C10—C11117.97 (16)C20—C21—C16120.73 (15)
C9—C10—H10121.0C20—C21—H21119.7
C11—C10—H10121.0C16—C21—H21119.6
C10—C11—C6121.48 (14)O23—N22—O24123.59 (15)
C10—C11—N12129.44 (14)O23—N22—C19118.50 (16)
C6—C11—N12109.03 (13)O24—N22—C19117.91 (14)
C13—C1—C2—C31.1 (2)C14—N12—C13—C19.3 (3)
C1—C2—C3—C40.3 (3)C11—N12—C13—C50.17 (16)
C2—C3—C4—C50.5 (2)C14—N12—C13—C5172.28 (13)
C3—C4—C5—C130.6 (2)C4—C5—C13—C12.0 (2)
C3—C4—C5—C6179.82 (16)C6—C5—C13—C1178.59 (13)
C4—C5—C6—C71.2 (3)C4—C5—C13—N12179.33 (12)
C13—C5—C6—C7178.08 (16)C6—C5—C13—N120.05 (16)
C4—C5—C6—C11179.36 (15)C11—N12—C14—C15161.13 (16)
C13—C5—C6—C110.09 (16)C13—N12—C14—C1510.4 (3)
C11—C6—C7—C80.3 (2)N12—C14—C15—C16178.80 (14)
C5—C6—C7—C8177.68 (16)C14—C15—C16—C17179.08 (16)
C6—C7—C8—C90.0 (3)C14—C15—C16—C210.9 (3)
C7—C8—C9—C100.1 (3)C21—C16—C17—C181.9 (2)
C8—C9—C10—C110.4 (3)C15—C16—C17—C18178.05 (16)
C9—C10—C11—C60.7 (2)C16—C17—C18—C190.9 (3)
C9—C10—C11—N12177.79 (15)C17—C18—C19—C200.9 (2)
C7—C6—C11—C100.7 (2)C17—C18—C19—N22179.49 (15)
C5—C6—C11—C10177.79 (14)C18—C19—C20—C211.6 (2)
C7—C6—C11—N12178.29 (13)N22—C19—C20—C21178.79 (13)
C5—C6—C11—N120.19 (16)C19—C20—C21—C160.6 (2)
C10—C11—N12—C13177.57 (16)C17—C16—C21—C201.2 (2)
C6—C11—N12—C130.23 (16)C15—C16—C21—C20178.80 (14)
C10—C11—N12—C144.5 (2)C18—C19—N22—O235.5 (2)
C6—C11—N12—C14172.85 (13)C20—C19—N22—O23174.88 (15)
C2—C1—C13—N12179.50 (15)C18—C19—N22—O24174.35 (15)
C2—C1—C13—C52.2 (2)C20—C19—N22—O245.2 (2)
C11—N12—C13—C1178.28 (16)
(II) 9-[(E)-(3-nitrophenyl)vinyl]-9H-carbazole top
Crystal data top
C20H14N2O2F(000) = 656
Mr = 314.33Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3582 reflections
a = 8.1085 (16) Åθ = 3–24°
b = 7.5179 (11) ŵ = 0.09 mm1
c = 24.122 (4) ÅT = 100 K
β = 90.507 (14)°Prism, colourless
V = 1470.4 (4) Å30.3 × 0.15 × 0.15 mm
Z = 4
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
1278 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω scansh = 99
10298 measured reflectionsk = 85
2555 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H14N2O2V = 1470.4 (4) Å3
Mr = 314.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1085 (16) ŵ = 0.09 mm1
b = 7.5179 (11) ÅT = 100 K
c = 24.122 (4) Å0.3 × 0.15 × 0.15 mm
β = 90.507 (14)°
Data collection top
Kuma KM-4 CCD area-detector
diffractometer
1278 reflections with I > 2σ(I)
10298 measured reflectionsRint = 0.091
2555 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
2554 reflectionsΔρmin = 0.32 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4487 (3)0.4476 (3)0.84764 (11)0.0237 (7)
H10.35310.45540.87520.028*
C20.4330 (4)0.5271 (3)0.79613 (11)0.0279 (7)
H20.32390.58880.79000.034*
C30.5591 (4)0.5289 (3)0.75777 (11)0.0271 (7)
H30.55100.59190.72270.033*
C40.7082 (3)0.4451 (3)0.76950 (11)0.0259 (7)
H40.80150.43460.74190.031*
C50.7271 (3)0.3621 (3)0.82124 (11)0.0215 (6)
C60.8671 (3)0.2737 (3)0.84613 (11)0.0228 (7)
C71.0236 (4)0.2277 (3)0.82740 (11)0.0275 (7)
H71.05800.25560.78900.033*
C81.1323 (3)0.1435 (3)0.86341 (11)0.0268 (7)
H81.24230.10630.84830.032*
C91.0855 (3)0.1069 (3)0.91765 (11)0.0253 (7)
H91.16840.05170.94390.030*
C100.9313 (3)0.1503 (3)0.93759 (11)0.0234 (7)
H100.89940.12380.97960.028*
C110.8212 (3)0.2314 (3)0.90060 (11)0.0218 (7)
N120.6578 (3)0.2856 (3)0.90930 (8)0.0212 (6)
C130.6004 (4)0.3677 (3)0.86045 (11)0.0235 (7)
C140.5805 (3)0.2567 (3)0.96012 (11)0.0222 (7)
H140.64650.18810.98470.027*
C150.4334 (3)0.3086 (3)0.97653 (10)0.0214 (7)
H150.36090.37930.95180.026*
C160.3671 (3)0.2699 (3)1.03155 (10)0.0201 (7)
C170.2047 (3)0.3205 (3)1.04328 (10)0.0190 (7)
H170.13380.37781.01490.023*
C180.1416 (3)0.2848 (3)1.09534 (11)0.0209 (7)
C190.2291 (4)0.2014 (3)1.13681 (11)0.0261 (7)
H190.18080.18561.17330.031*
C200.3884 (3)0.1541 (3)1.12526 (11)0.0256 (7)
H200.45720.09781.15280.031*
C210.4564 (3)0.1875 (3)1.07385 (11)0.0240 (7)
H210.57220.15671.06810.029*
N220.0320 (3)0.3347 (3)1.10608 (10)0.0305 (6)
O230.1178 (2)0.3875 (2)1.06681 (9)0.0387 (6)
O240.0833 (2)0.3187 (3)1.15389 (8)0.0395 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (18)0.0257 (15)0.0218 (16)0.0017 (14)0.0002 (14)0.0017 (13)
C20.0271 (19)0.0273 (17)0.0293 (17)0.0008 (14)0.0010 (15)0.0014 (14)
C30.032 (2)0.0301 (17)0.0194 (16)0.0000 (15)0.0001 (15)0.0018 (14)
C40.0293 (19)0.0251 (16)0.0234 (17)0.0055 (14)0.0049 (14)0.0065 (13)
C50.0194 (16)0.0218 (15)0.0235 (16)0.0010 (13)0.0020 (14)0.0047 (13)
C60.0253 (18)0.0170 (15)0.0262 (16)0.0068 (13)0.0023 (15)0.0041 (13)
C70.0303 (19)0.0270 (17)0.0253 (17)0.0045 (15)0.0094 (15)0.0043 (13)
C80.0231 (18)0.0258 (16)0.0315 (17)0.0000 (14)0.0065 (15)0.0058 (15)
C90.0194 (17)0.0249 (16)0.0315 (18)0.0002 (13)0.0023 (15)0.0002 (13)
C100.0248 (18)0.0176 (15)0.0279 (17)0.0022 (13)0.0030 (14)0.0001 (13)
C110.0166 (16)0.0196 (15)0.0293 (17)0.0047 (13)0.0032 (14)0.0024 (13)
N120.0240 (14)0.0214 (12)0.0182 (13)0.0021 (11)0.0070 (12)0.0002 (10)
C130.0351 (19)0.0149 (15)0.0205 (16)0.0026 (14)0.0007 (15)0.0003 (13)
C140.0231 (18)0.0204 (15)0.0232 (16)0.0006 (13)0.0025 (14)0.0023 (13)
C150.0148 (16)0.0285 (17)0.0208 (15)0.0035 (13)0.0042 (13)0.0003 (13)
C160.0186 (16)0.0249 (16)0.0166 (15)0.0016 (13)0.0032 (13)0.0040 (13)
C170.0183 (16)0.0192 (15)0.0196 (16)0.0009 (13)0.0021 (13)0.0018 (12)
C180.0196 (17)0.0173 (15)0.0260 (16)0.0016 (13)0.0055 (14)0.0067 (13)
C190.036 (2)0.0255 (16)0.0165 (15)0.0033 (14)0.0033 (15)0.0048 (13)
C200.0251 (18)0.0250 (16)0.0265 (17)0.0054 (14)0.0063 (15)0.0020 (13)
C210.0132 (15)0.0268 (17)0.0319 (18)0.0007 (13)0.0021 (14)0.0041 (14)
N220.0334 (17)0.0258 (14)0.0325 (16)0.0025 (12)0.0077 (14)0.0055 (12)
O230.0271 (13)0.0502 (13)0.0389 (13)0.0068 (11)0.0016 (11)0.0022 (11)
O240.0376 (14)0.0475 (13)0.0337 (13)0.0004 (10)0.0177 (11)0.0013 (10)
Geometric parameters (Å, º) top
C1—C21.384 (3)C11—N121.404 (3)
C1—C131.401 (4)N12—C141.399 (3)
C1—H11.0265N12—C131.406 (3)
C2—C31.385 (4)C14—C151.319 (3)
C2—H21.0086C14—H140.9476
C3—C41.390 (4)C15—C161.465 (3)
C3—H30.9724C15—H150.9889
C4—C51.402 (3)C16—C211.391 (3)
C4—H41.0149C16—C171.402 (3)
C5—C131.404 (4)C17—C181.386 (3)
C5—C61.442 (4)C17—H170.9878
C6—C71.395 (4)C18—C191.373 (3)
C6—C111.405 (3)C18—N221.482 (3)
C7—C81.385 (3)C19—C201.371 (4)
C7—H70.9918C19—H190.9744
C8—C91.393 (3)C20—C211.385 (3)
C8—H81.0061C20—H200.9622
C9—C101.382 (3)C21—H210.9784
C9—H91.0089N22—O241.235 (3)
C10—C111.397 (3)N22—O231.236 (3)
C10—H101.0659
C2—C1—C13117.2 (3)C14—N12—C11121.1 (2)
C2—C1—H1119.5C14—N12—C13130.9 (2)
C13—C1—H1123.2C11—N12—C13107.9 (2)
C1—C2—C3122.8 (3)C1—C13—C5120.7 (3)
C1—C2—H2113.8C1—C13—N12131.1 (2)
C3—C2—H2123.3C5—C13—N12108.2 (2)
C2—C3—C4120.3 (3)C15—C14—N12129.1 (3)
C2—C3—H3122.8C15—C14—H14118.7
C4—C3—H3116.8N12—C14—H14112.2
C3—C4—C5118.1 (3)C14—C15—C16123.6 (2)
C3—C4—H4123.6C14—C15—H15120.8
C5—C4—H4118.2C16—C15—H15115.6
C4—C5—C13120.7 (3)C21—C16—C17117.1 (2)
C4—C5—C6131.0 (3)C21—C16—C15124.0 (3)
C13—C5—C6108.2 (2)C17—C16—C15118.8 (2)
C7—C6—C11119.8 (3)C18—C17—C16119.0 (3)
C7—C6—C5134.0 (3)C18—C17—H17119.6
C11—C6—C5106.2 (2)C16—C17—H17121.4
C8—C7—C6119.1 (3)C19—C18—C17123.8 (3)
C8—C7—H7120.0C19—C18—N22118.3 (2)
C6—C7—H7120.9C17—C18—N22117.9 (3)
C7—C8—C9120.1 (3)C20—C19—C18116.9 (2)
C7—C8—H8117.5C20—C19—H19122.6
C9—C8—H8122.3C18—C19—H19120.3
C10—C9—C8122.3 (3)C19—C20—C21121.2 (3)
C10—C9—H9118.6C19—C20—H20121.0
C8—C9—H9119.0C21—C20—H20117.7
C9—C10—C11117.1 (2)C20—C21—C16121.9 (3)
C9—C10—H10120.9C20—C21—H21118.3
C11—C10—H10121.9C16—C21—H21119.7
C10—C11—N12129.1 (2)O24—N22—O23123.7 (3)
C10—C11—C6121.5 (3)O24—N22—C18117.8 (3)
N12—C11—C6109.4 (2)O23—N22—C18118.4 (2)
C13—C1—C2—C30.4 (4)C6—C5—C13—C1179.6 (2)
C1—C2—C3—C41.6 (4)C4—C5—C13—N12175.8 (2)
C2—C3—C4—C51.0 (4)C6—C5—C13—N120.2 (3)
C3—C4—C5—C131.6 (4)C14—N12—C13—C10.7 (4)
C3—C4—C5—C6176.6 (3)C11—N12—C13—C1178.4 (3)
C4—C5—C6—C75.7 (5)C14—N12—C13—C5180.0 (2)
C13—C5—C6—C7178.8 (3)C11—N12—C13—C50.9 (3)
C4—C5—C6—C11174.2 (3)C11—N12—C14—C15175.1 (3)
C13—C5—C6—C111.2 (3)C13—N12—C14—C154.0 (5)
C11—C6—C7—C81.0 (4)N12—C14—C15—C16179.6 (2)
C5—C6—C7—C8178.9 (3)C14—C15—C16—C215.4 (4)
C6—C7—C8—C90.5 (4)C14—C15—C16—C17175.5 (3)
C7—C8—C9—C100.6 (4)C21—C16—C17—C180.6 (4)
C8—C9—C10—C110.9 (4)C15—C16—C17—C18179.8 (2)
C9—C10—C11—N12178.6 (2)C16—C17—C18—C190.2 (4)
C9—C10—C11—C62.5 (4)C16—C17—C18—N22178.2 (2)
C7—C6—C11—C102.6 (4)C17—C18—C19—C200.9 (4)
C5—C6—C11—C10177.4 (2)N22—C18—C19—C20178.9 (2)
C7—C6—C11—N12178.2 (2)C18—C19—C20—C210.8 (4)
C5—C6—C11—N121.8 (3)C19—C20—C21—C160.1 (4)
C10—C11—N12—C141.9 (4)C17—C16—C21—C200.8 (4)
C6—C11—N12—C14179.1 (2)C15—C16—C21—C20179.9 (2)
C10—C11—N12—C13177.4 (3)C19—C18—N22—O248.7 (3)
C6—C11—N12—C131.7 (3)C17—C18—N22—O24173.2 (2)
C2—C1—C13—C53.0 (4)C19—C18—N22—O23170.4 (2)
C2—C1—C13—N12176.3 (2)C17—C18—N22—O237.7 (3)
C4—C5—C13—C13.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O23i1.032.653.619 (3)157
C2—H2···O24i1.012.483.302 (3)138
C15—H15···O23i0.992.673.580 (3)153
C17—H17···O23i0.992.653.512 (3)146
Symmetry code: (i) x, y+1, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H14N2O2C20H14N2O2
Mr314.33314.33
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)295100
a, b, c (Å)6.2627 (9), 8.6572 (8), 27.943 (2)8.1085 (16), 7.5179 (11), 24.122 (4)
β (°) 92.578 (10) 90.507 (14)
V3)1513.5 (3)1470.4 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.35 × 0.2 × 0.150.3 × 0.15 × 0.15
Data collection
DiffractometerKuma KM-4 CCD area-detector
diffractometer
Kuma KM-4 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12049, 3634, 1873 10298, 2555, 1278
Rint0.0270.091
(sin θ/λ)max1)0.6610.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.01 0.046, 0.092, 0.99
No. of reflections36342554
No. of parameters231217
No. of restraints80
H-atom treatmentOnly H-atom displacement parameters refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.240.21, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1989).

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O23i1.032.653.619 (3)157
C2—H2···O24i1.012.483.302 (3)138
C15—H15···O23i0.992.673.580 (3)153
C17—H17···O23i0.992.653.512 (3)146
Symmetry code: (i) x, y+1, z+2.
The influence of the substituents on the endocyclic bond angles in the benzene ring. The `calc' values are taken from Domenicano (1988) top
Angle(I) (exp)(I) (calc)(II) (exp)(II) (calc)
C21—C16—C17118.2 (2)118.7117.1 (2)118.5
C16—C17—C18121.5 (2)121.2119.0 (3)118.9
C17—C18—C19119.5 (2)118.4123.8 (3)123.2
C18—C19—C20121.7 (2)122.5116.9 (2)117.7
C19—C20—C21118.4 (2)118.4121.2 (3)120.6
C20—C21—C16120.7 (2)121.2121.9 (3)121.2
Selected torsion angles (°) and the angles between the mean planes of the planar fragments (°). A is the carbazole ring system, B is the phenyl ring, and C is the N—CC—C bridge; s.u.'s in parentheses top
(I)(II)
C13—N12—C14—C15-10.4 (3)-4.0 (5)
N12—C14—C15—C16178.8 (1)-179.6 (2)
C14—C15—C16—C17179.1 (2)-175.5 (3)
A/B17.91 (6)1.71 (10)
A/C17.43 (16)3.3 (3)
B/C1.92 (15)5.0 (4)
B/(NO2)5.6 (3)8.3 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds