Download citation
Download citation
link to html
In the crystal structure of the title complex, [CuNi(C10H20N4O2)(C12H8N2)2(H2O)](ClO4)2·0.5CH4O or [CuNi(dmae­oxd)(phen)2(H2O)](ClO4)2·0.5CH3OH {H2dmaeoxd is N,N'-bis­[2-(dimethyl­amino)ethyl]oxamide and phen is 1,10-phen­anthroline}, the deprotonated dmaeoxd2- ligand is in a cis conformation and bridges the CuII and NiII atoms. The CuII atom is located in a slightly distorted square-based pyramidal environment, while the NiII atom is in an irregular octa­hedral environment. The binuclear Cu-Ni units inter­act with each other via [pi]-[pi] inter­actions, which results in an extended chain along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107042643/sf3053sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107042643/sf3053Isup2.hkl
Contains datablock I

CCDC reference: 665492

Comment top

The study of polynuclear complexes is a fundamental requirement not only for gaining insight into the pathways of electron transfer in biological systems, but also for obtaining information about designing and synthesizing molecular-based ferromagnets and for investigating the spin-exchange mechanism between paramagnetic metal ions (Benelli & Gatteschi, 2002; Kahn et al., 1999; Winpenny, 1998). Compared with the number of studies dealing with homopolynuclear complexes, relatively few studies dealing with heteropolynuclear complexes have been reported to date, owing to the relative difficulty of synthesizing new compounds. Against this background, we selected H2dmaeoxd as a polydentate ligand to synthesize the title heterobinuclear CuIINiII complex, (I), formulated as [Cu(dmaeoxd)(H2O)Ni(phen)2](ClO4)2·0.5CH3OH, and report its crystal structure here.

Compound (I) consists of a [Cu(dmaeoxd)(H2O)Ni(phen)2]2+ cation, one-half of a methanol molecule and two uncoordinated ClO4 anions. A view of the compound is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1. The deprotonated dmaeoxd2− ligand exhibits a cisoid conformation and bridges the CuII and NiII atoms, with a Cu···Ni distance of 5.3424 (13) Å. Within the bridging oxamide fragment, the C—O and C—N bonds have partial double-bond character [N2—C5 = 1.303 (6) and N3—C6 = 1.307 (6) Å, and C5—O2 = 1.262 (6) and C6—O3 = 1.268 (5) Å], while the C5—C5i bond of 1.526 (7) Å is identical to the standard value for a single bond (1.53 Å; Allen et al., 1987). These bonds are similar to those in many other oxamidate complexes (Lloret et al., 1989; Real et al., 1993). The Cu and Ni atoms are displaced towards the same side of the bridge plane between them, which is planar, by 0.095 (5) and 0.037 (5) Å, respectively.

Atom Cu1 is in square-based pyramidal geometry, with the equatorial plane built by an N2O2 donor set and the pyramidal apex occupied by a weakly coordinated water molecule [Cu1—O1 = 2.447 (5) Å]. The Cu atom is displaced by 0.207 (2) Å from the basal least-squares plane toward atom O1. The bridging ligand coordinates atom Cu1 by forming three five-membered chelate rings. Those formed by the ethylenediamine fragment adopt the twist form, with puckering parameters (Cremer & Pople, 1975) of Q = 0.448 (6) Å and ϕ = 51.6 (7)° for the chelate ring Cu1/N1/C3/C4/N2, and Q = 0.430 (5) Å and ϕ = 308.9 (7)° for the chelate ring Cu1/N3/C7/C8/N4.

Atom Ni1 is coordinated by four N donors of two phen molecules and two O atoms of the dmaeoxd ligand. Due to the rigidity of the three bidentate ligands, the hexacoordinated atom Ni1 has a distorted octahedral geometry. Atoms N5 and N8 are axially coordinated, with an approximately linear N—Ni—N angle [169.06 (15)°]. The equatorial plane is defined by the other four atoms and the mean displacement from this plane is 0.1018 Å. The terminal phen ligands are present in the usual chelating bidentate mode, with bite angles of 80.23 (15) and 79.75 (16)°. The three ligands around the Ni atom are almost perpendicular to each other. The dihedral angles between the oxalate bridge and the phen mean planes are 89.92 (11) and 81.15 (9)°, respectively, while the dihedral angle between the phen mean planes is 83.52 (7)°.

In the crystal structure of (I), the binuclear cation complexes and perchlorate anions are connected through two classical hydrogen bonds, O1—H1W···O12A and O1—H2W···O22, and a non-classical hydrogen bond, C42—H42···O24, which give rise to an ion triplet. As shown in Fig. 2, these triplets are linked into a one-dimensional ribbon along the b axis by ππ stacking interactions between the phen ligands and those generated by symmetry operations (−x, −y, −z) and (−x, 1 − y, −z), with shortest separations of 3.266 (6) [atom C22 at (−x, −y, −z)] and 3.391 (6) Å [atom C34 at (−x, 1 − y, −z)]. Atoms O11–O14 of the perchlorate ion appeared to be disordered and were refined as two groups. If atoms O11–O14 adopt the A position, as shown in Fig. 3, each perchlorate anion will interact with four [Cu(dmaeoxd)(H2O)Ni(phen)2]2+ dications bvia four hydrogen bonds to form a three-dimensional supramolecular hydrogen-bonded network.

Experimental top

All reagents were of AR grade and were used without further purification. The H2dmaeoxd ligand was synthesized according to the method of Ojima & Yamada (1970). [Cu(dmaeoxd)(H2O)Ni(phen)2](ClO4)2·0.5CH3OH, (I), was obtained as follows. To a solution of H2dmaeoxd (0.0230 g, 0.1 mmol) in methanol (10 ml) were added successively piperidine (0.2 mmol) and a solution of Cu(ClO4)2·6H2O (0.0370 g, 0.1 mmol) in methanol (5 ml). After stirring for 20 min, Ni(ClO4)2·6H2O (0.0365 g, 0.1 mmol) in methanol (5 ml) and phen (0.0396 g, 0.2 mmol) in methanol (5 ml) were added successively. The reaction mixture was stirred at 333 K for a further 2 h. Purple crystals of the title compound suitable for X-ray analysis were obtained from the solution by slow evaporation at room temperature on the second day (yield 71%). Elemental analysis, calculated for C34.5H40Cl2CuN8NiO11.5: C 43.90, H 4.27, N 11.87%; found: C 43.82, H 4.29, N 11.94%. IR (KBr pellet, γ, cm−1): 3471 (s), 1637 (vs), 1516 (m), 1442 (s), 1426 (m) 1097 (vs), 851 (m), 728 (m), 624 (m).

Refinement top

The methanol solvent was treated with a constrained site occupancy of 0.5. The positions of the H atoms of the methanol solvent were not located. Water H atoms were found in a difference Fouier map and were treated as riding, with fixed Uiso(H) = 0.08 Å2. The remaining H atoms were placed in calculated positions, with C—H distances of 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene), and refined in riding mode, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The CH3 groups were allowed to rotate freely around the C—N bond. Atoms O11–O14 of the perchlorate ion appeared to be disordered, and were refined as two groups sharing the same Cl1 atom (occupancy factors 0.7 and 0.3).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The methanol molecule and disordered atoms O11B–O14B of the ClO4 anion have been omitted for clarity.
[Figure 2] Fig. 2. A view showing the ribbon extending along [010], formed by ππ stacking interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for (I), viewed approximately down [130]. Hydrogen bonds are shown as dotted lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) 1/2 + x, y, 1/2 − z; (ii) x, 1/2 − y, 1/2 + z; (iii) 1/2 − x, −y, 1/2 + z.]
Aqua-2κO-µ-{N,N'-bis[2-(dimethylamino)ethyl]oxamidato(2-)}- 1κ2O,O':2κ4N,N',N'',N'''-bis(4,4'-dimethyl-2,2'-bipyridine-1κ2N,N')- copper(II)nickel(II) bis(perchlorate) methanol hemisolvate top
Crystal data top
[CuNi(C10H20N4O2)(C12H8N2)2(H2O)](ClO4)2·0.5CH4OF(000) = 3872
Mr = 943.90Dx = 1.576 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7366 reflections
a = 21.347 (4) Åθ = 2.3–25.6°
b = 14.852 (3) ŵ = 1.21 mm1
c = 25.087 (5) ÅT = 298 K
V = 7954 (3) Å3Block, purple
Z = 80.45 × 0.15 × 0.08 mm
Data collection top
Bruker APEX area-detector
diffractometer
7190 independent reflections
Radiation source: fine-focus sealed tube4662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2519
Tmin = 0.611, Tmax = 0.909k = 1716
40560 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + 5.25P]
where P = (Fo2 + 2Fc2)/3
7190 reflections(Δ/σ)max < 0.001
567 parametersΔρmax = 0.57 e Å3
58 restraintsΔρmin = 0.72 e Å3
Crystal data top
[CuNi(C10H20N4O2)(C12H8N2)2(H2O)](ClO4)2·0.5CH4OV = 7954 (3) Å3
Mr = 943.90Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 21.347 (4) ŵ = 1.21 mm1
b = 14.852 (3) ÅT = 298 K
c = 25.087 (5) Å0.45 × 0.15 × 0.08 mm
Data collection top
Bruker APEX area-detector
diffractometer
7190 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4662 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.909Rint = 0.066
40560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05058 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.11Δρmax = 0.57 e Å3
7190 reflectionsΔρmin = 0.72 e Å3
567 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.11109 (3)0.16127 (5)0.22058 (2)0.0457 (2)
O10.1988 (2)0.2579 (3)0.2465 (2)0.0897 (16)
H1W0.23300.26260.26470.080*
H2W0.21090.27870.21660.080*
N10.0478 (2)0.2058 (4)0.27660 (16)0.0575 (13)
N20.0685 (2)0.2493 (3)0.17697 (17)0.0521 (12)
N30.14661 (18)0.1273 (3)0.15300 (15)0.0418 (10)
N40.1539 (2)0.0425 (4)0.24624 (18)0.0585 (13)
Ni10.08838 (3)0.24952 (4)0.01504 (2)0.0339 (2)
O20.05468 (15)0.2897 (2)0.08861 (12)0.0410 (8)
O30.13941 (15)0.1605 (2)0.06251 (12)0.0386 (8)
N50.01387 (17)0.1629 (2)0.00156 (15)0.0356 (9)
N60.12199 (17)0.1809 (3)0.05135 (15)0.0372 (9)
N70.04213 (18)0.3516 (3)0.02814 (14)0.0373 (9)
N80.15632 (18)0.3482 (3)0.01566 (15)0.0399 (10)
C10.0676 (4)0.2053 (5)0.3328 (2)0.087 (2)
H1A0.03700.23620.35410.131*
H1B0.10730.23530.33610.131*
H1C0.07160.14430.34500.131*
C20.0100 (3)0.1518 (6)0.2712 (3)0.094 (3)
H2A0.00110.09000.27950.140*
H2B0.02520.15590.23530.140*
H2C0.04120.17430.29530.140*
C30.0361 (3)0.3017 (5)0.2614 (2)0.0698 (18)
H3A0.07220.33810.27080.084*
H3B0.00020.32450.28090.084*
C40.0238 (3)0.3093 (5)0.2018 (2)0.0683 (18)
H4A0.01880.29120.19350.082*
H4B0.03000.37070.18970.082*
C50.0789 (2)0.2444 (3)0.12586 (18)0.0364 (11)
C60.1268 (2)0.1721 (3)0.11141 (19)0.0352 (10)
C70.1897 (3)0.0517 (4)0.1518 (2)0.0560 (15)
H7A0.22630.06620.13060.067*
H7B0.16950.00080.13650.067*
C80.2081 (3)0.0339 (4)0.2091 (2)0.0656 (17)
H8A0.22530.02630.21200.079*
H8B0.24040.07620.21960.079*
C90.1103 (4)0.0348 (5)0.2375 (3)0.083 (2)
H9A0.13240.09030.24260.124*
H9B0.09410.03240.20180.124*
H9C0.07620.03120.26240.124*
C100.1775 (4)0.0375 (5)0.3016 (3)0.089 (2)
H10A0.19930.01840.30670.134*
H10B0.14290.04090.32600.134*
H10C0.20560.08680.30800.134*
C210.0400 (2)0.1571 (3)0.0277 (2)0.0413 (12)
H210.04600.19230.05790.050*
C220.0878 (2)0.0998 (4)0.0113 (2)0.0474 (13)
H220.12500.09720.03040.057*
C230.0804 (2)0.0478 (4)0.0324 (2)0.0468 (13)
H230.11210.00880.04300.056*
C240.0245 (2)0.0529 (3)0.06181 (19)0.0394 (11)
C250.0110 (3)0.0012 (3)0.1084 (2)0.0480 (13)
H250.04170.03680.12210.058*
C260.0446 (3)0.0058 (4)0.1330 (2)0.0489 (13)
H260.05210.03000.16280.059*
C270.0929 (2)0.0654 (3)0.11411 (19)0.0414 (12)
C280.1523 (3)0.0713 (4)0.1376 (2)0.0542 (14)
H280.16270.03550.16680.065*
C290.1946 (3)0.1304 (4)0.1171 (2)0.0600 (15)
H290.23480.13410.13140.072*
C300.1773 (2)0.1852 (4)0.0746 (2)0.0471 (13)
H300.20620.22690.06190.056*
C310.0802 (2)0.1196 (3)0.07014 (17)0.0347 (10)
C320.0215 (2)0.1121 (3)0.04307 (18)0.0349 (10)
C330.0143 (2)0.3525 (3)0.04978 (18)0.0426 (12)
H330.03900.30110.04720.051*
C340.0384 (3)0.4285 (4)0.0767 (2)0.0511 (14)
H340.07840.42690.09130.061*
C350.0030 (3)0.5038 (4)0.0810 (2)0.0537 (14)
H350.01860.55420.09850.064*
C360.0568 (3)0.5054 (4)0.0591 (2)0.0487 (13)
C370.0977 (3)0.5819 (4)0.0605 (2)0.0614 (16)
H370.08460.63350.07820.074*
C380.1533 (3)0.5814 (4)0.0372 (3)0.0684 (18)
H380.17800.63300.03850.082*
C390.1765 (3)0.5029 (4)0.0101 (2)0.0535 (14)
C400.2345 (3)0.4980 (4)0.0158 (3)0.0696 (18)
H400.26060.54810.01710.084*
C410.2522 (3)0.4196 (4)0.0391 (3)0.0647 (17)
H410.29120.41520.05540.078*
C420.2121 (2)0.3458 (4)0.0386 (2)0.0502 (13)
H420.22490.29280.05500.060*
C430.1385 (2)0.4263 (3)0.00886 (18)0.0411 (11)
C440.0779 (2)0.4275 (3)0.03276 (18)0.0391 (11)
Cl10.33458 (8)0.20788 (13)0.34544 (7)0.0713 (5)
O11A0.3983 (3)0.2154 (8)0.3576 (4)0.127 (3)0.70
O12A0.3138 (7)0.2830 (8)0.3193 (5)0.156 (7)0.70
O13A0.2999 (6)0.1848 (10)0.3879 (5)0.183 (8)0.70
O14A0.3352 (6)0.1340 (6)0.3085 (4)0.137 (4)0.70
O11B0.3843 (10)0.1563 (15)0.3379 (10)0.139 (9)*0.30
O12B0.3442 (13)0.2956 (10)0.3271 (12)0.160 (18)0.30
O13B0.3272 (11)0.2198 (16)0.4020 (5)0.095 (8)0.30
O14B0.2796 (9)0.1778 (18)0.3270 (10)0.181 (14)0.30
Cl20.33555 (8)0.24449 (13)0.13541 (8)0.0777 (5)
O210.3911 (3)0.2931 (6)0.1364 (3)0.157 (3)
O220.2834 (3)0.2978 (5)0.1509 (2)0.119 (2)
O230.3409 (3)0.1705 (5)0.1681 (4)0.169 (3)
O240.3276 (4)0.2141 (7)0.0831 (3)0.179 (4)
O40.1221 (8)0.5015 (14)0.2238 (9)0.169 (8)0.50
C450.1435 (14)0.459 (2)0.1749 (15)0.204 (17)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0542 (4)0.0515 (4)0.0313 (4)0.0007 (3)0.0054 (3)0.0043 (3)
O10.075 (3)0.116 (4)0.078 (3)0.021 (3)0.023 (3)0.004 (3)
N10.075 (3)0.065 (3)0.033 (2)0.006 (3)0.005 (2)0.000 (2)
N20.061 (3)0.060 (3)0.036 (2)0.018 (2)0.001 (2)0.001 (2)
N30.044 (2)0.045 (3)0.036 (2)0.0093 (19)0.0065 (18)0.0047 (19)
N40.062 (3)0.067 (3)0.047 (3)0.006 (2)0.014 (2)0.021 (2)
Ni10.0365 (4)0.0348 (4)0.0304 (4)0.0030 (3)0.0021 (2)0.0008 (3)
O20.050 (2)0.0414 (19)0.0317 (17)0.0076 (16)0.0031 (15)0.0028 (15)
O30.0421 (18)0.0409 (19)0.0327 (18)0.0031 (15)0.0002 (14)0.0003 (14)
N50.036 (2)0.035 (2)0.036 (2)0.0006 (17)0.0000 (17)0.0007 (17)
N60.030 (2)0.047 (2)0.034 (2)0.0031 (17)0.0030 (16)0.0015 (18)
N70.043 (2)0.041 (2)0.028 (2)0.0005 (18)0.0011 (17)0.0006 (17)
N80.039 (2)0.045 (3)0.036 (2)0.0058 (18)0.0037 (17)0.0030 (19)
C10.145 (7)0.086 (5)0.031 (3)0.018 (5)0.002 (4)0.003 (3)
C20.071 (5)0.113 (7)0.097 (6)0.019 (4)0.021 (4)0.028 (5)
C30.094 (5)0.073 (5)0.042 (3)0.010 (4)0.010 (3)0.004 (3)
C40.082 (4)0.082 (5)0.041 (3)0.034 (4)0.009 (3)0.002 (3)
C50.044 (3)0.037 (3)0.028 (2)0.002 (2)0.002 (2)0.002 (2)
C60.035 (3)0.035 (3)0.035 (3)0.005 (2)0.0008 (19)0.003 (2)
C70.059 (3)0.055 (4)0.054 (3)0.017 (3)0.006 (3)0.006 (3)
C80.062 (4)0.063 (4)0.072 (4)0.011 (3)0.019 (3)0.017 (3)
C90.097 (5)0.062 (5)0.089 (5)0.016 (4)0.019 (4)0.025 (4)
C100.103 (5)0.107 (6)0.058 (4)0.005 (5)0.029 (4)0.029 (4)
C210.039 (3)0.042 (3)0.043 (3)0.001 (2)0.005 (2)0.003 (2)
C220.034 (3)0.052 (3)0.055 (3)0.004 (2)0.003 (2)0.007 (3)
C230.036 (3)0.043 (3)0.061 (3)0.005 (2)0.010 (2)0.004 (3)
C240.040 (3)0.034 (3)0.044 (3)0.000 (2)0.008 (2)0.000 (2)
C250.056 (3)0.040 (3)0.048 (3)0.008 (2)0.013 (3)0.006 (2)
C260.065 (4)0.044 (3)0.038 (3)0.001 (3)0.003 (3)0.009 (2)
C270.049 (3)0.041 (3)0.035 (3)0.000 (2)0.002 (2)0.002 (2)
C280.059 (3)0.056 (4)0.048 (3)0.004 (3)0.015 (3)0.010 (3)
C290.049 (3)0.072 (4)0.059 (4)0.006 (3)0.018 (3)0.009 (3)
C300.043 (3)0.056 (3)0.043 (3)0.007 (2)0.001 (2)0.004 (3)
C310.039 (3)0.035 (3)0.031 (2)0.002 (2)0.0008 (19)0.001 (2)
C320.035 (3)0.034 (3)0.035 (3)0.003 (2)0.003 (2)0.003 (2)
C330.044 (3)0.046 (3)0.037 (3)0.004 (2)0.005 (2)0.005 (2)
C340.056 (3)0.057 (4)0.040 (3)0.017 (3)0.012 (2)0.003 (3)
C350.075 (4)0.045 (3)0.040 (3)0.014 (3)0.005 (3)0.005 (3)
C360.063 (4)0.041 (3)0.043 (3)0.008 (3)0.007 (3)0.004 (2)
C370.084 (5)0.041 (3)0.060 (4)0.000 (3)0.014 (3)0.010 (3)
C380.081 (5)0.046 (4)0.078 (4)0.020 (3)0.022 (4)0.007 (3)
C390.056 (4)0.046 (3)0.058 (3)0.012 (3)0.010 (3)0.002 (3)
C400.060 (4)0.064 (5)0.084 (5)0.026 (3)0.010 (3)0.003 (4)
C410.048 (3)0.078 (5)0.068 (4)0.022 (3)0.010 (3)0.002 (3)
C420.044 (3)0.054 (3)0.053 (3)0.011 (3)0.009 (2)0.001 (3)
C430.047 (3)0.040 (3)0.036 (3)0.009 (2)0.006 (2)0.003 (2)
C440.051 (3)0.037 (3)0.029 (2)0.001 (2)0.007 (2)0.002 (2)
Cl10.0584 (10)0.0727 (12)0.0829 (12)0.0112 (8)0.0108 (9)0.0033 (9)
O11A0.074 (5)0.180 (10)0.126 (8)0.007 (6)0.050 (5)0.005 (7)
O12A0.183 (15)0.144 (13)0.143 (10)0.111 (11)0.054 (8)0.060 (9)
O13A0.118 (11)0.25 (2)0.179 (15)0.042 (11)0.070 (11)0.090 (13)
O14A0.180 (10)0.081 (6)0.150 (9)0.002 (7)0.039 (8)0.035 (6)
O12B0.17 (3)0.038 (12)0.28 (4)0.017 (15)0.07 (3)0.066 (17)
O13B0.13 (2)0.097 (14)0.054 (10)0.023 (14)0.007 (11)0.014 (10)
O14B0.15 (2)0.17 (3)0.22 (3)0.07 (2)0.15 (2)0.05 (2)
Cl20.0669 (11)0.0821 (13)0.0840 (13)0.0113 (9)0.0123 (9)0.0084 (10)
O210.126 (6)0.156 (7)0.190 (8)0.057 (5)0.025 (5)0.002 (6)
O220.111 (4)0.146 (6)0.100 (4)0.052 (4)0.002 (3)0.003 (4)
O230.124 (5)0.145 (7)0.236 (9)0.003 (5)0.013 (5)0.102 (6)
O240.155 (6)0.242 (9)0.139 (6)0.100 (7)0.059 (5)0.085 (6)
O40.126 (12)0.175 (17)0.205 (19)0.012 (11)0.060 (13)0.066 (14)
C450.16 (2)0.20 (3)0.26 (4)0.12 (2)0.11 (3)0.12 (3)
Geometric parameters (Å, º) top
Cu1—N31.924 (4)C10—H10C0.9600
Cu1—N21.932 (4)C21—C221.391 (7)
Cu1—N12.058 (5)C21—H210.9300
Cu1—N42.088 (5)C22—C231.350 (8)
Cu1—O12.447 (5)C22—H220.9300
O1—H1W0.8641C23—C241.404 (7)
O1—H2W0.8527C23—H230.9300
N1—C11.473 (7)C24—C321.401 (6)
N1—C21.477 (8)C24—C251.428 (7)
N1—C31.497 (8)C25—C261.341 (7)
N2—C51.303 (6)C25—H250.9300
N2—C41.448 (7)C26—C271.439 (7)
N3—C61.307 (6)C26—H260.9300
N3—C71.452 (7)C27—C311.392 (7)
N4—C101.479 (7)C27—C281.403 (7)
N4—C81.490 (8)C28—C291.360 (8)
N4—C91.494 (8)C28—H280.9300
Ni1—N82.062 (4)C29—C301.392 (7)
Ni1—O22.069 (3)C29—H290.9300
Ni1—N52.074 (4)C30—H300.9300
Ni1—N62.080 (4)C31—C321.428 (6)
Ni1—O32.086 (3)C33—C341.413 (7)
Ni1—N72.109 (4)C33—H330.9300
O2—C51.262 (6)C34—C351.353 (8)
O3—C61.268 (5)C34—H340.9300
N5—C211.328 (6)C35—C361.388 (8)
N5—C321.360 (6)C35—H350.9300
N6—C301.319 (6)C36—C441.406 (7)
N6—C311.361 (6)C36—C371.432 (8)
N7—C331.321 (6)C37—C381.323 (9)
N7—C441.367 (6)C37—H370.9300
N8—C421.322 (6)C38—C391.438 (8)
N8—C431.368 (6)C38—H380.9300
C1—H1A0.9600C39—C431.398 (7)
C1—H1B0.9600C39—C401.400 (8)
C1—H1C0.9600C40—C411.356 (9)
C2—H2A0.9600C40—H400.9300
C2—H2B0.9600C41—C421.393 (7)
C2—H2C0.9600C41—H410.9300
C3—C41.520 (8)C42—H420.9300
C3—H3A0.9700C43—C441.425 (7)
C3—H3B0.9700Cl1—O11B1.322 (13)
C4—H4A0.9700Cl1—O14B1.339 (12)
C4—H4B0.9700Cl1—O13A1.341 (9)
C5—C61.526 (7)Cl1—O12A1.369 (9)
C7—C81.514 (8)Cl1—O12B1.397 (13)
C7—H7A0.9700Cl1—O11A1.398 (7)
C7—H7B0.9700Cl1—O14A1.436 (7)
C8—H8A0.9700Cl1—O13B1.438 (13)
C8—H8B0.9700Cl2—O231.375 (7)
C9—H9A0.9600Cl2—O211.388 (6)
C9—H9B0.9600Cl2—O241.398 (7)
C9—H9C0.9600Cl2—O221.421 (6)
C10—H10A0.9600O4—C451.45 (4)
C10—H10B0.9600
N3—Cu1—N282.16 (17)H10A—C10—H10B109.5
N3—Cu1—N1160.76 (18)N4—C10—H10C109.5
N2—Cu1—N181.99 (19)H10A—C10—H10C109.5
N3—Cu1—N483.01 (18)H10B—C10—H10C109.5
N2—Cu1—N4162.18 (19)N5—C21—C22121.9 (5)
N1—Cu1—N4110.3 (2)N5—C21—H21119.1
N3—Cu1—O194.96 (18)C22—C21—H21119.1
N2—Cu1—O196.55 (19)C23—C22—C21120.3 (5)
N1—Cu1—O197.61 (19)C23—C22—H22119.8
N4—Cu1—O194.51 (18)C21—C22—H22119.8
Cu1—O1—H1W146.6C22—C23—C24119.7 (5)
Cu1—O1—H2W102.1C22—C23—H23120.1
H1W—O1—H2W100.3C24—C23—H23120.1
C1—N1—C2109.0 (5)C32—C24—C23117.0 (4)
C1—N1—C3107.2 (5)C32—C24—C25118.1 (4)
C2—N1—C3110.7 (6)C23—C24—C25124.9 (5)
C1—N1—Cu1117.6 (5)C26—C25—C24121.9 (5)
C2—N1—Cu1108.1 (4)C26—C25—H25119.0
C3—N1—Cu1104.0 (3)C24—C25—H25119.0
C5—N2—C4124.8 (4)C25—C26—C27120.9 (5)
C5—N2—Cu1116.0 (3)C25—C26—H26119.5
C4—N2—Cu1118.9 (3)C27—C26—H26119.5
C6—N3—C7125.6 (4)C31—C27—C28118.3 (5)
C6—N3—Cu1116.3 (3)C31—C27—C26118.5 (4)
C7—N3—Cu1118.1 (3)C28—C27—C26123.2 (5)
C10—N4—C8108.5 (5)C29—C28—C27118.8 (5)
C10—N4—C9108.2 (5)C29—C28—H28120.6
C8—N4—C9109.0 (5)C27—C28—H28120.6
C10—N4—Cu1118.8 (4)C28—C29—C30119.4 (5)
C8—N4—Cu1102.7 (3)C28—C29—H29120.3
C9—N4—Cu1109.3 (4)C30—C29—H29120.3
N8—Ni1—O291.88 (15)N6—C30—C29123.3 (5)
N8—Ni1—N5169.06 (15)N6—C30—H30118.4
O2—Ni1—N593.31 (14)C29—C30—H30118.4
N8—Ni1—N696.40 (15)N6—C31—C27122.3 (4)
O2—Ni1—N6167.31 (15)N6—C31—C32117.5 (4)
N5—Ni1—N680.23 (15)C27—C31—C32120.2 (4)
N8—Ni1—O394.51 (14)N5—C32—C24122.7 (4)
O2—Ni1—O381.66 (12)N5—C32—C31117.0 (4)
N5—Ni1—O395.76 (14)C24—C32—C31120.3 (4)
N6—Ni1—O388.09 (14)N7—C33—C34122.4 (5)
N8—Ni1—N779.75 (16)N7—C33—H33118.8
O2—Ni1—N795.05 (14)C34—C33—H33118.8
N5—Ni1—N790.20 (15)C35—C34—C33119.6 (5)
N6—Ni1—N795.88 (15)C35—C34—H34120.2
O3—Ni1—N7173.33 (14)C33—C34—H34120.2
C5—O2—Ni1111.4 (3)C34—C35—C36119.8 (5)
C6—O3—Ni1110.8 (3)C34—C35—H35120.1
C21—N5—C32118.4 (4)C36—C35—H35120.1
C21—N5—Ni1128.7 (3)C35—C36—C44117.8 (5)
C32—N5—Ni1112.7 (3)C35—C36—C37124.3 (5)
C30—N6—C31117.8 (4)C44—C36—C37117.9 (5)
C30—N6—Ni1129.8 (3)C38—C37—C36122.2 (6)
C31—N6—Ni1112.3 (3)C38—C37—H37118.9
C33—N7—C44117.8 (4)C36—C37—H37118.9
C33—N7—Ni1130.1 (3)C37—C38—C39121.5 (6)
C44—N7—Ni1112.0 (3)C37—C38—H38119.3
C42—N8—C43118.0 (4)C39—C38—H38119.3
C42—N8—Ni1128.1 (4)C43—C39—C40117.5 (5)
C43—N8—Ni1113.8 (3)C43—C39—C38118.0 (5)
N1—C1—H1A109.5C40—C39—C38124.5 (5)
N1—C1—H1B109.5C41—C40—C39119.4 (5)
H1A—C1—H1B109.5C41—C40—H40120.3
N1—C1—H1C109.5C39—C40—H40120.3
H1A—C1—H1C109.5C40—C41—C42120.0 (6)
H1B—C1—H1C109.5C40—C41—H41120.0
N1—C2—H2A109.5C42—C41—H41120.0
N1—C2—H2B109.5N8—C42—C41122.5 (5)
H2A—C2—H2B109.5N8—C42—H42118.8
N1—C2—H2C109.5C41—C42—H42118.8
H2A—C2—H2C109.5N8—C43—C39122.6 (5)
H2B—C2—H2C109.5N8—C43—C44116.9 (4)
N1—C3—C4110.5 (5)C39—C43—C44120.5 (5)
N1—C3—H3A109.6N7—C44—C36122.6 (5)
C4—C3—H3A109.6N7—C44—C43117.4 (4)
N1—C3—H3B109.6C36—C44—C43119.9 (5)
C4—C3—H3B109.6O11B—Cl1—O14B117.5 (11)
H3A—C3—H3B108.1O11B—Cl1—O13A114.0 (13)
N2—C4—C3105.3 (5)O14B—Cl1—O13A72.9 (12)
N2—C4—H4A110.7O11B—Cl1—O12A131.6 (12)
C3—C4—H4A110.7O14B—Cl1—O12A79.7 (12)
N2—C4—H4B110.7O13A—Cl1—O12A114.2 (7)
C3—C4—H4B110.7O11B—Cl1—O12B112.1 (11)
H4A—C4—H4B108.8O14B—Cl1—O12B109.1 (10)
O2—C5—N2128.9 (4)O13A—Cl1—O12B125.5 (15)
O2—C5—C6118.3 (4)O12A—Cl1—O12B29.5 (14)
N2—C5—C6112.8 (4)O11B—Cl1—O11A45.3 (11)
O3—C6—N3129.4 (4)O14B—Cl1—O11A162.8 (12)
O3—C6—C5117.9 (4)O13A—Cl1—O11A112.5 (7)
N3—C6—C5112.6 (4)O12A—Cl1—O11A110.8 (7)
N3—C7—C8106.2 (5)O12B—Cl1—O11A81.6 (12)
N3—C7—H7A110.5O11B—Cl1—O14A57.2 (11)
C8—C7—H7A110.5O14B—Cl1—O14A62.0 (11)
N3—C7—H7B110.5O13A—Cl1—O14A108.7 (7)
C8—C7—H7B110.5O12A—Cl1—O14A108.5 (7)
H7A—C7—H7B108.7O12B—Cl1—O14A120.0 (13)
N4—C8—C7112.2 (4)O11A—Cl1—O14A101.1 (6)
N4—C8—H8A109.2O11B—Cl1—O13B107.4 (10)
C7—C8—H8A109.2O14B—Cl1—O13B106.6 (10)
N4—C8—H8B109.2O13A—Cl1—O13B35.7 (9)
C7—C8—H8B109.2O12A—Cl1—O13B109.7 (13)
H8A—C8—H8B107.9O12B—Cl1—O13B103.1 (10)
N4—C9—H9A109.5O11A—Cl1—O13B83.2 (10)
N4—C9—H9B109.5O14A—Cl1—O13B137.0 (11)
H9A—C9—H9B109.5O23—Cl2—O21109.5 (5)
N4—C9—H9C109.5O23—Cl2—O24108.1 (6)
H9A—C9—H9C109.5O21—Cl2—O24106.8 (6)
H9B—C9—H9C109.5O23—Cl2—O22110.3 (5)
N4—C10—H10A109.5O21—Cl2—O22112.0 (5)
N4—C10—H10B109.5O24—Cl2—O22110.0 (4)
N3—Cu1—N1—C1177.1 (5)C4—N2—C5—O21.5 (9)
N2—Cu1—N1—C1148.1 (5)Cu1—N2—C5—O2175.5 (4)
N4—Cu1—N1—C145.2 (5)C4—N2—C5—C6177.6 (5)
O1—Cu1—N1—C152.6 (5)Cu1—N2—C5—C63.6 (6)
N3—Cu1—N1—C253.2 (8)Ni1—O3—C6—N3176.4 (4)
N2—Cu1—N1—C287.9 (5)Ni1—O3—C6—C50.5 (5)
N4—Cu1—N1—C278.8 (5)C7—N3—C6—O30.6 (8)
O1—Cu1—N1—C2176.5 (5)Cu1—N3—C6—O3175.5 (4)
N3—Cu1—N1—C364.6 (7)C7—N3—C6—C5176.7 (5)
N2—Cu1—N1—C329.8 (4)Cu1—N3—C6—C50.6 (5)
N4—Cu1—N1—C3163.5 (4)O2—C5—C6—O30.7 (6)
O1—Cu1—N1—C365.8 (4)N2—C5—C6—O3178.5 (4)
N3—Cu1—N2—C53.2 (4)O2—C5—C6—N3177.3 (4)
N1—Cu1—N2—C5165.9 (4)N2—C5—C6—N31.9 (6)
N4—Cu1—N2—C530.7 (9)C6—N3—C7—C8169.5 (5)
O1—Cu1—N2—C597.3 (4)Cu1—N3—C7—C814.4 (6)
N3—Cu1—N2—C4177.6 (5)C10—N4—C8—C7171.7 (6)
N1—Cu1—N2—C48.5 (5)C9—N4—C8—C770.6 (6)
N4—Cu1—N2—C4143.7 (6)Cu1—N4—C8—C745.2 (6)
O1—Cu1—N2—C488.3 (5)N3—C7—C8—N440.5 (7)
N2—Cu1—N3—C62.0 (4)C32—N5—C21—C221.2 (7)
N1—Cu1—N3—C632.8 (8)Ni1—N5—C21—C22174.9 (4)
N4—Cu1—N3—C6168.1 (4)N5—C21—C22—C230.0 (8)
O1—Cu1—N3—C697.9 (4)C21—C22—C23—C241.1 (8)
N2—Cu1—N3—C7178.4 (4)C22—C23—C24—C320.9 (7)
N1—Cu1—N3—C7143.6 (6)C22—C23—C24—C25179.6 (5)
N4—Cu1—N3—C78.3 (4)C32—C24—C25—C262.4 (7)
O1—Cu1—N3—C785.7 (4)C23—C24—C25—C26176.4 (5)
N3—Cu1—N4—C10148.0 (5)C24—C25—C26—C271.7 (8)
N2—Cu1—N4—C10178.2 (6)C25—C26—C27—C311.2 (8)
N1—Cu1—N4—C1046.3 (5)C25—C26—C27—C28178.5 (5)
O1—Cu1—N4—C1053.5 (5)C31—C27—C28—C290.9 (8)
N3—Cu1—N4—C828.4 (3)C26—C27—C28—C29179.4 (5)
N2—Cu1—N4—C862.2 (8)C27—C28—C29—C302.0 (9)
N1—Cu1—N4—C8165.9 (3)C31—N6—C30—C290.1 (8)
O1—Cu1—N4—C866.1 (4)Ni1—N6—C30—C29175.6 (4)
N3—Cu1—N4—C987.2 (4)C28—C29—C30—N62.5 (9)
N2—Cu1—N4—C953.4 (8)C30—N6—C31—C273.3 (7)
N1—Cu1—N4—C978.5 (4)Ni1—N6—C31—C27179.5 (4)
O1—Cu1—N4—C9178.3 (4)C30—N6—C31—C32176.9 (4)
N8—Ni1—O2—C594.4 (3)Ni1—N6—C31—C320.6 (5)
N5—Ni1—O2—C595.2 (3)C28—C27—C31—N63.7 (7)
N6—Ni1—O2—C536.3 (8)C26—C27—C31—N6176.6 (4)
O3—Ni1—O2—C50.2 (3)C28—C27—C31—C32176.5 (5)
N7—Ni1—O2—C5174.3 (3)C26—C27—C31—C323.2 (7)
N8—Ni1—O3—C691.0 (3)C21—N5—C32—C241.3 (7)
O2—Ni1—O3—C60.2 (3)Ni1—N5—C32—C24176.0 (3)
N5—Ni1—O3—C692.7 (3)C21—N5—C32—C31179.7 (4)
N6—Ni1—O3—C6172.7 (3)Ni1—N5—C32—C315.6 (5)
N8—Ni1—N5—C21105.2 (9)C23—C24—C32—N50.3 (7)
O2—Ni1—N5—C2113.0 (4)C25—C24—C32—N5178.5 (4)
N6—Ni1—N5—C21178.0 (4)C23—C24—C32—C31178.6 (4)
O3—Ni1—N5—C2194.9 (4)C25—C24—C32—C310.2 (7)
N7—Ni1—N5—C2182.1 (4)N6—C31—C32—N54.3 (6)
N8—Ni1—N5—C3268.8 (9)C27—C31—C32—N5175.9 (4)
O2—Ni1—N5—C32173.0 (3)N6—C31—C32—C24177.3 (4)
N6—Ni1—N5—C324.0 (3)C27—C31—C32—C242.6 (7)
O3—Ni1—N5—C3291.1 (3)C44—N7—C33—C340.6 (7)
N7—Ni1—N5—C3291.9 (3)Ni1—N7—C33—C34178.6 (4)
N8—Ni1—N6—C3016.6 (5)N7—C33—C34—C350.3 (8)
O2—Ni1—N6—C30113.8 (7)C33—C34—C35—C360.3 (8)
N5—Ni1—N6—C30173.9 (5)C34—C35—C36—C440.5 (7)
O3—Ni1—N6—C3077.7 (4)C34—C35—C36—C37178.7 (5)
N7—Ni1—N6—C3096.9 (4)C35—C36—C37—C38177.2 (6)
N8—Ni1—N6—C31167.7 (3)C44—C36—C37—C381.0 (9)
O2—Ni1—N6—C3161.9 (8)C36—C37—C38—C391.3 (10)
N5—Ni1—N6—C311.8 (3)C37—C38—C39—C430.0 (9)
O3—Ni1—N6—C3198.0 (3)C37—C38—C39—C40179.2 (6)
N7—Ni1—N6—C3187.4 (3)C43—C39—C40—C412.4 (9)
N8—Ni1—N7—C33179.7 (4)C38—C39—C40—C41178.5 (6)
O2—Ni1—N7—C3389.3 (4)C39—C40—C41—C422.1 (10)
N5—Ni1—N7—C334.1 (4)C43—N8—C42—C410.8 (8)
N6—Ni1—N7—C3384.3 (4)Ni1—N8—C42—C41175.6 (4)
N8—Ni1—N7—C441.1 (3)C40—C41—C42—N80.5 (9)
O2—Ni1—N7—C4489.9 (3)C42—N8—C43—C390.4 (7)
N5—Ni1—N7—C44176.7 (3)Ni1—N8—C43—C39176.4 (4)
N6—Ni1—N7—C4496.5 (3)C42—N8—C43—C44179.3 (4)
O2—Ni1—N8—C4283.6 (4)Ni1—N8—C43—C442.4 (5)
N5—Ni1—N8—C42158.1 (7)C40—C39—C43—N81.1 (8)
N6—Ni1—N8—C4286.8 (4)C38—C39—C43—N8179.7 (5)
O3—Ni1—N8—C421.8 (4)C40—C39—C43—C44177.7 (5)
N7—Ni1—N8—C42178.4 (5)C38—C39—C43—C441.5 (8)
O2—Ni1—N8—C4392.9 (3)C33—N7—C44—C360.3 (7)
N5—Ni1—N8—C4325.4 (10)Ni1—N7—C44—C36179.0 (4)
N6—Ni1—N8—C4396.7 (3)C33—N7—C44—C43179.4 (4)
O3—Ni1—N8—C43174.7 (3)Ni1—N7—C44—C430.1 (5)
N7—Ni1—N8—C431.9 (3)C35—C36—C44—N70.2 (7)
C1—N1—C3—C4172.5 (6)C37—C36—C44—N7178.5 (5)
C2—N1—C3—C468.7 (6)C35—C36—C44—C43178.9 (4)
Cu1—N1—C3—C447.2 (6)C37—C36—C44—C430.6 (7)
C5—N2—C4—C3170.9 (6)N8—C43—C44—N71.6 (6)
Cu1—N2—C4—C315.2 (7)C39—C43—C44—N7177.3 (5)
N1—C3—C4—N241.2 (7)N8—C43—C44—C36179.3 (4)
Ni1—O2—C5—N2178.6 (5)C39—C43—C44—C361.8 (7)
Ni1—O2—C5—C60.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O12A0.862.223.081 (17)173
O1—H2W···O220.852.283.060 (8)153
C21—H21···O11Ai0.932.453.280 (10)148
C28—H28···O14Aii0.932.593.346 (11)138
C29—H29···O12Aiii0.932.433.266 (14)150
C42—H42···O240.932.583.340 (9)139
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CuNi(C10H20N4O2)(C12H8N2)2(H2O)](ClO4)2·0.5CH4O
Mr943.90
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)21.347 (4), 14.852 (3), 25.087 (5)
V3)7954 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.45 × 0.15 × 0.08
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.611, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
40560, 7190, 4662
Rint0.066
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.186, 1.11
No. of reflections7190
No. of parameters567
No. of restraints58
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.72

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—N31.924 (4)Ni1—O22.069 (3)
Cu1—N21.932 (4)Ni1—N52.074 (4)
Cu1—N12.058 (5)Ni1—N62.080 (4)
Cu1—N42.088 (5)Ni1—O32.086 (3)
Cu1—O12.447 (5)Ni1—N72.109 (4)
Ni1—N82.062 (4)
N3—Cu1—N282.16 (17)N8—Ni1—N696.40 (15)
N3—Cu1—N1160.76 (18)O2—Ni1—N6167.31 (15)
N2—Cu1—N181.99 (19)N5—Ni1—N680.23 (15)
N3—Cu1—N483.01 (18)N8—Ni1—O394.51 (14)
N2—Cu1—N4162.18 (19)O2—Ni1—O381.66 (12)
N1—Cu1—N4110.3 (2)N5—Ni1—O395.76 (14)
N3—Cu1—O194.96 (18)N6—Ni1—O388.09 (14)
N2—Cu1—O196.55 (19)N8—Ni1—N779.75 (16)
N1—Cu1—O197.61 (19)O2—Ni1—N795.05 (14)
N4—Cu1—O194.51 (18)N5—Ni1—N790.20 (15)
N8—Ni1—O291.88 (15)N6—Ni1—N795.88 (15)
N8—Ni1—N5169.06 (15)O3—Ni1—N7173.33 (14)
O2—Ni1—N593.31 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O12A0.862.223.081 (17)172.7
O1—H2W···O220.852.283.060 (8)152.6
C21—H21···O11Ai0.932.453.280 (10)148.1
C28—H28···O14Aii0.932.593.346 (11)138.3
C29—H29···O12Aiii0.932.433.266 (14)150.1
C42—H42···O240.932.583.340 (9)139.0
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z1/2; (iii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds