Download citation
Download citation
link to html
The crystal structures of the proton-transfer compounds of ferron (8-hydr­oxy-7-iodo­quinoline-5-sulfonic acid) with 4-­chloro­aniline and 4-bromo­aniline, namely 4-chloro­anilinium 8-hydr­oxy-7-iodo­quinoline-5-sulfonate monohydrate, C6H7ClN+·C9H5INO4S-·H2O, and 4-bromo­anilinium 8-hydr­oxy-7-­iodo­quinoline-5-sulfonate monohydrate, C6H7BrN+·C9H5INO4S-·H2O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen-bonded cations, anions and water mol­ecules which are extended into a three-dimensional framework structure through centrosymmetric R22(10) O-H...N hydrogen-bonded ferron dimer inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107025772/sf3040sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107025772/sf3040Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107025772/sf3040IIsup3.hkl
Contains datablock II

CCDC references: 655539; 655540

Comment top

Ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid) is a bidentate complexing agent which has analytical applications as a selective colour reagent for the detection of iron(III) but not iron(II) (Vogel, 1964). The crystal structure of ferron (Merritt & Duffin, 1970; Balasubramanian & Muthiah, 1996) has shown the molecule to exist as a sulfonate–quinolinium zwitterion. This is also the case in the structure of the 1:1:1 adduct hydrate of ferron with urea (Smith et al., 2004b). As a sulfonic acid, ferron is potentially capable of protonating most Lewis bases, but the crystal structures of only a small number of such salts have been reported to date. With 8-hydroxyquinoline, a 1:1 sesquihydrate is formed (Smith et al., 2004a), while with bifunctional 4,4'-bipyridine a monoprotonated 1:1 dihydrate is found (Hemamalini et al., 2004). However, with guanidine carbonate, a dianionic ferron species is found in the hydrated compound [2(gu+)ferron2-]·H2O (Smith et al., 2003). Since no compounds of ferron with aniline-type Lewis bases have been reported so far, and considering that anilines are particularly effective in giving stable crystalline salts with aromatic sulfonic acids, e.g. the 1:1 compounds of 5-sulfosalicylic acid with aniline (Bakasova et al., 1991) and the 4-X-substituted anilines (X = F, Cl or Br) (Smith et al., 2005), we attempted the preparation of compounds of the same Lewis base set with ferron in 50% ethanol–water solvent. The chemically stable 1:1 monohydrated crystalline title compounds C6H7ClN+·C9H5INO4S-·H2O, (I), and C6H7BrN+·C9H5INO4S-·H2O, (II), were obtained using 4-chloroaniline and 4-bromoaniline, and their crystal structures are reported here. The reaction with 4-fluoroaniline resulted in the previously observed deiodination reaction of ferron, giving 8-hydroxyquinoline-5-sulfonic acid.

The crystal structure determinations of (I) and (II) show the presence of three-dimensional hydrogen-bonded framework structures and confirm that these two compounds are isomorphous, which is consistent with previous observations (Dey & Desiraju, 2004) that, within the structures of both the 4-X-substituted anilines and 4-(4-X-phenoxy)-substituted anilines (X = Cl, Br, I and ethynyl), with only one exception (4-iodoaniline), all series members are isomorphous. Although the 4-chloro- and 4-bromoanilinium compounds with 5-sulfosalicylic acid are not isomorphous, they are found to be similar structurally (Smith et al., 2005).

In (I) and (II), the anilinium group of the cation and the sulfonate O acceptors of the anion interact head-to-tail and, together with the water molecule, give a cyclic hydrogen-bonded R33(8) (Bernstein et al., 1995) association (the asymmetric unit) (Figs. 1 and 2). Further aminium···sulfonate and water···sulfonate interactions (Tables 1 and 2) form sheets which extend across the bc planes in the cell. These sheets are linked across the a cell direction through centrosymmetric R22(10) cyclic hydrogen-bonded ferron···ferron dimer interactions between the 8-hydroxy donor and hetero-N acceptor groups (Figs. 3 and 4). This represents the first observed occurrence of this type of association in ferron structures, although a similar type of interaction is known in some of the adduct structures of the parent 8-hydroxyquinoline (oxine) (Hughes & Truter, 1979). It is usually precluded in ferron and its neutral adducts because of the presence of the sulfonate–quinolinium group zwitterion. In (I) and (II), three-dimensional framework structures are formed. Also found in the peripheral structure extension in (I) are Cl···Cl contacts [Cl41···Cl41v 3.538 (5) Å; symmetry code: (v) -x + 1, y, -z + 3/2]. In the isomorphous structure of (II), similar short Br···Br contacts [Br41···Br41i 3.612 (3) Å; symmetry code: (i) -x, -y + 1, -z + 1 Please check relocated symmetry code] are also found. Interionic aromatic ferron C2—H···O8i interactions are also present [2.977 (7) Å in (I) and 2.998 (6) Å in (II)].

With the ferron anion, the intraionic O8—H8···N1 hydrogen bond which is present in other non-zwitterionic compounds of ferron (Hemamalini et al., 2004; Smith et al., 2004b) is also found in both (I) and (II) [2.714 (6) and 2.707 (5) Å in (I) and (II), respectively]. Also, the common aromatic ring C6—H6···O51(sulfonate) association [2.857 (6) Å in (I) and 2.859 (5) in (II)] maintains the S5—O51 bond close to the plane of the aromatic ring [torsion angle C6–C5–S5–O51 3.8 (4)° in (I) and 3.1 (3)° in (II)].

Related literature top

For related literature, see: Bakasova et al. (1991); Balasubramanian & Muthiah (1996); Bernstein et al. (1995); Dey & Desiraju (2004); Hemamalini et al. (2004); Hughes & Truter (1979); Merritt & Duffin (1970); Smith et al. (2003, 2004a, 2004b, 2005); Vogel (1964).

Experimental top

The title compounds were synthesized by heating solutions containing 8-hydroxy-7-iodoquinoline-5-sulfonic acid (ferron) (1 mmol) and, respectively, 4-chloroaniline (1 mmol) or 4-bromoaniline (1 mmol) in 50% ethanol–water (50 ml) for 10 min under reflux. After concentration to ca 40 ml, partial room-temperature evaporation of the hot-filtered solutions gave pale-brown [Brown below?] flat prisms of (I) (m.p. 460.6–462.3 K) and large brown flat plates of (II) (m.p. 512.4–513.3 K).

Refinement top

H atoms involved in hydrogen-bonding interactions (H8, H11A, H11B, H11C, H1W and H2W) were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinements in calculated positions, with C—H = 0.95 Å, and were treated as riding atoms, with Uiso(H) = 1.2Ueq(C). In the case of (I), large residual difference electron-density peaks (maximum 1.20 e Å-3) were located adjacent to the iodo-substituent of the ferron anion.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the individual cation, anion and water species in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Inter-species hydrogen bonding is shown as dashed lines.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for the individual cation, anion and water species in the isomorphous compound, (II). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Inter-species hydrogen bonding is shown as dashed lines.
[Figure 3] Fig. 3. The centrosymmetric hydrogen-bonded (dashed lines) R22(10) ferron dimer found in (I) and (II). [Symmetry code: (i) x, 1 - y, 1 - z.] [Please check added symmetry code]
[Figure 4] Fig. 4. A perspective view of the packing of (I) in the unit cell, viewed down the approximate b cell direction, showing hydrogen-bonding associations as dashed lines. This packing also represents that found in (II). For symmetry codes, see Table 1.
(I) 4-chloroanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate top
Crystal data top
C6H7ClN+·C9H5INO4S·H2OF(000) = 1952
Mr = 496.70Dx = 1.843 Mg m3
Monoclinic, C2/cMelting point = 460.6–462.3 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 33.403 (10) ÅCell parameters from 25 reflections
b = 5.902 (5) Åθ = 13.1–16.9°
c = 19.970 (7) ŵ = 2.08 mm1
β = 114.56 (2)°T = 297 K
V = 3581 (4) Å3Prism, brown
Z = 80.40 × 0.25 × 0.20 mm
Data collection top
Rigaku AFC 7R
diffractometer
3356 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.047
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ω/2θ scansh = 1843
Absorption correction: ψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
k = 73
Tmin = 0.541, Tmax = 0.660l = 2523
4800 measured reflections25 standard reflections every 150 min
4108 independent reflections intensity decay: 0.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.116P)2]
where P = (Fo2 + 2Fc2)/3
4108 reflections(Δ/σ)max = 0.002
250 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
C6H7ClN+·C9H5INO4S·H2OV = 3581 (4) Å3
Mr = 496.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.403 (10) ŵ = 2.08 mm1
b = 5.902 (5) ÅT = 297 K
c = 19.970 (7) Å0.40 × 0.25 × 0.20 mm
β = 114.56 (2)°
Data collection top
Rigaku AFC 7R
diffractometer
3356 reflections with I > 2σ(I)
Absorption correction: ψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
Rint = 0.047
Tmin = 0.541, Tmax = 0.66025 standard reflections every 150 min
4800 measured reflections intensity decay: 0.7%
4108 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.20 e Å3
4108 reflectionsΔρmin = 1.09 e Å3
250 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I70.02926 (1)0.21272 (6)0.37113 (2)0.0502 (1)
S50.20169 (3)0.09466 (18)0.56351 (5)0.0332 (3)
O80.00843 (10)0.2083 (6)0.4477 (2)0.0497 (11)
O510.20815 (9)0.0879 (7)0.51997 (18)0.0493 (10)
O520.21910 (9)0.0315 (6)0.64119 (15)0.0461 (9)
O530.21916 (10)0.3089 (6)0.55289 (18)0.0428 (10)
N10.06015 (10)0.5056 (7)0.55118 (19)0.0410 (10)
C20.08514 (14)0.6540 (9)0.6000 (3)0.0470 (14)
C30.13131 (14)0.6415 (10)0.6321 (3)0.0472 (14)
C40.15222 (12)0.4728 (8)0.6123 (2)0.0407 (13)
C50.14393 (11)0.1285 (7)0.53214 (19)0.0311 (10)
C60.11651 (12)0.0163 (7)0.4803 (2)0.0366 (11)
C70.07029 (12)0.0112 (8)0.4514 (2)0.0371 (10)
C80.05199 (13)0.1829 (7)0.4755 (2)0.0368 (11)
C90.08046 (12)0.3368 (8)0.5305 (2)0.0346 (10)
C100.12683 (12)0.3114 (7)0.5590 (2)0.0345 (11)
Cl410.44704 (5)1.1799 (3)0.74998 (10)0.0731 (6)
N110.28307 (12)0.6416 (8)0.6137 (2)0.0393 (11)
C110.32303 (13)0.7778 (8)0.6477 (2)0.0376 (11)
C210.35688 (16)0.6993 (8)0.7113 (3)0.0501 (16)
C310.39506 (16)0.8242 (10)0.7431 (3)0.0561 (16)
C410.39909 (14)1.0216 (9)0.7099 (3)0.0475 (14)
C510.36571 (17)1.0976 (10)0.6467 (3)0.0552 (17)
C610.32727 (15)0.9732 (9)0.6146 (2)0.0491 (14)
O1W0.27696 (14)0.3768 (9)0.7239 (2)0.0619 (15)
H20.071400.774300.614100.0560*
H30.148000.750800.667700.0570*
H40.183400.463900.633900.0490*
H60.128600.137500.463400.0440*
H80.001 (2)0.350 (12)0.467 (5)0.063 (19)*
H11A0.2837 (15)0.542 (9)0.582 (3)0.044 (13)*
H11B0.262 (2)0.735 (12)0.598 (4)0.048 (15)*
H11C0.2812 (19)0.555 (12)0.650 (3)0.062 (17)*
H210.353800.560600.732800.0600*
H310.418300.774400.787500.0670*
H510.368901.235400.624800.0660*
H610.304101.023200.570100.0590*
H1W0.2808 (17)0.402 (11)0.763 (3)0.079 (15)*
H2W0.2630 (18)0.260 (12)0.701 (4)0.075 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I70.0403 (2)0.0591 (3)0.0459 (2)0.0052 (1)0.0126 (2)0.0171 (1)
S50.0270 (4)0.0473 (6)0.0273 (4)0.0021 (4)0.0133 (3)0.0003 (4)
O80.0258 (14)0.063 (2)0.055 (2)0.0005 (13)0.0116 (13)0.0168 (16)
O510.0345 (14)0.065 (2)0.0494 (17)0.0043 (14)0.0183 (13)0.0164 (16)
O520.0403 (15)0.065 (2)0.0294 (13)0.0006 (14)0.0109 (11)0.0116 (14)
O530.0353 (14)0.057 (2)0.0391 (15)0.0044 (13)0.0184 (12)0.0044 (13)
N10.0314 (16)0.053 (2)0.0416 (18)0.0019 (14)0.0183 (14)0.0101 (16)
C20.040 (2)0.059 (3)0.047 (2)0.003 (2)0.0230 (19)0.012 (2)
C30.039 (2)0.060 (3)0.043 (2)0.008 (2)0.0174 (18)0.022 (2)
C40.0290 (17)0.055 (3)0.038 (2)0.0036 (17)0.0137 (15)0.0082 (18)
C50.0255 (15)0.043 (2)0.0269 (16)0.0006 (14)0.0129 (13)0.0006 (15)
C60.0376 (19)0.045 (2)0.0330 (18)0.0036 (16)0.0205 (15)0.0001 (16)
C70.0298 (17)0.050 (2)0.0283 (17)0.0033 (15)0.0090 (13)0.0070 (16)
C80.0297 (18)0.046 (2)0.0344 (19)0.0004 (15)0.0131 (15)0.0005 (16)
C90.0285 (17)0.046 (2)0.0315 (17)0.0009 (15)0.0147 (14)0.0030 (16)
C100.0303 (18)0.047 (2)0.0300 (18)0.0005 (15)0.0162 (15)0.0007 (16)
Cl410.0551 (8)0.0905 (12)0.0747 (10)0.0295 (7)0.0279 (7)0.0180 (8)
N110.0344 (17)0.047 (2)0.0366 (18)0.0021 (15)0.0150 (15)0.0004 (18)
C110.0331 (18)0.052 (2)0.0307 (19)0.0004 (16)0.0164 (16)0.0035 (16)
C210.043 (2)0.050 (3)0.049 (3)0.0005 (19)0.011 (2)0.012 (2)
C310.038 (2)0.066 (3)0.049 (3)0.001 (2)0.003 (2)0.005 (2)
C410.041 (2)0.057 (3)0.047 (2)0.0084 (19)0.0208 (18)0.012 (2)
C510.063 (3)0.059 (3)0.050 (3)0.010 (2)0.030 (2)0.005 (2)
C610.047 (2)0.060 (3)0.035 (2)0.001 (2)0.0117 (18)0.010 (2)
O1W0.079 (3)0.077 (3)0.0312 (16)0.025 (2)0.0243 (17)0.0093 (18)
Geometric parameters (Å, º) top
I7—C72.090 (5)C5—C61.361 (6)
Cl41—C411.736 (6)C6—C71.415 (6)
S5—O521.461 (3)C7—C81.370 (6)
S5—O531.445 (4)C8—C91.438 (6)
S5—O511.456 (4)C9—C101.419 (6)
S5—C51.775 (4)C2—H20.9500
O8—C81.333 (6)C3—H30.9500
O8—H81.00 (8)C4—H40.9500
O1W—H1W0.75 (6)C6—H60.9500
O1W—H2W0.85 (7)C11—C611.366 (7)
N1—C21.318 (7)C11—C211.383 (7)
N1—C91.362 (6)C21—C311.378 (8)
N11—C111.461 (6)C31—C411.375 (8)
N11—H11C0.91 (6)C41—C511.367 (8)
N11—H11B0.85 (7)C51—C611.384 (8)
N11—H11A0.87 (5)C21—H210.9500
C2—C31.405 (8)C31—H310.9500
C3—C41.366 (7)C51—H510.9500
C4—C101.418 (6)C61—H610.9500
C5—C101.426 (6)
O51—S5—O52110.7 (2)N1—C9—C8116.0 (4)
O51—S5—O53113.0 (2)C4—C10—C9116.3 (4)
O51—S5—C5106.36 (19)C5—C10—C9118.1 (4)
O52—S5—O53111.9 (2)C4—C10—C5125.7 (4)
O52—S5—C5107.34 (18)N1—C2—H2119.00
O53—S5—C5107.2 (2)C3—C2—H2119.00
C8—O8—H8110 (5)C2—C3—H3120.00
H1W—O1W—H2W123 (7)C4—C3—H3120.00
C2—N1—C9117.9 (4)C3—C4—H4120.00
C11—N11—H11C107 (4)C10—C4—H4120.00
C11—N11—H11A115 (4)C7—C6—H6120.00
C11—N11—H11B106 (5)C5—C6—H6119.00
H11B—N11—H11C110 (7)N11—C11—C61119.9 (4)
H11A—N11—H11B116 (6)N11—C11—C21118.9 (4)
H11A—N11—H11C103 (6)C21—C11—C61121.2 (4)
N1—C2—C3122.7 (5)C11—C21—C31119.4 (5)
C2—C3—C4120.2 (5)C21—C31—C41119.2 (5)
C3—C4—C10119.3 (4)Cl41—C41—C31119.4 (4)
S5—C5—C6119.1 (3)Cl41—C41—C51119.4 (4)
C6—C5—C10120.9 (4)C31—C41—C51121.2 (5)
S5—C5—C10119.9 (3)C41—C51—C61119.8 (5)
C5—C6—C7120.9 (4)C11—C61—C51119.1 (4)
C6—C7—C8120.8 (4)C11—C21—H21120.00
I7—C7—C6119.8 (3)C31—C21—H21120.00
I7—C7—C8119.4 (3)C41—C31—H31120.00
C7—C8—C9119.1 (4)C21—C31—H31120.00
O8—C8—C9120.5 (4)C41—C51—H51120.00
O8—C8—C7120.4 (4)C61—C51—H51120.00
C8—C9—C10120.3 (4)C11—C61—H61120.00
N1—C9—C10123.6 (4)C51—C61—H61120.00
O51—S5—C5—C63.9 (4)I7—C7—C8—C9179.7 (3)
O51—S5—C5—C10173.5 (3)C6—C7—C8—O8179.6 (4)
O52—S5—C5—C6114.6 (3)C6—C7—C8—C90.4 (6)
O52—S5—C5—C1068.0 (4)O8—C8—C9—N10.2 (6)
O53—S5—C5—C6125.0 (3)O8—C8—C9—C10178.9 (4)
O53—S5—C5—C1052.4 (4)C7—C8—C9—N1179.0 (4)
C9—N1—C2—C31.3 (7)C7—C8—C9—C100.3 (6)
C2—N1—C9—C8178.2 (4)N1—C9—C10—C40.6 (6)
C2—N1—C9—C100.5 (6)N1—C9—C10—C5179.4 (4)
N1—C2—C3—C41.0 (8)C8—C9—C10—C4179.2 (4)
C2—C3—C4—C100.2 (7)C8—C9—C10—C50.8 (6)
C3—C4—C10—C5179.1 (4)N11—C11—C21—C31178.8 (5)
C3—C4—C10—C90.9 (6)C61—C11—C21—C312.0 (8)
S5—C5—C6—C7177.1 (3)N11—C11—C61—C51178.6 (5)
C10—C5—C6—C70.3 (6)C21—C11—C61—C511.9 (7)
S5—C5—C10—C42.2 (6)C11—C21—C31—C411.6 (8)
S5—C5—C10—C9177.8 (3)C21—C31—C41—Cl41179.8 (4)
C6—C5—C10—C4179.5 (4)C21—C31—C41—C511.0 (9)
C6—C5—C10—C90.5 (6)Cl41—C41—C51—C61179.6 (4)
C5—C6—C7—I7179.4 (3)C31—C41—C51—C610.9 (9)
C5—C6—C7—C80.7 (6)C41—C51—C61—C111.3 (8)
I7—C7—C8—O80.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N11.00 (8)2.19 (8)2.714 (6)111 (6)
O8—H8···N1i1.00 (8)2.10 (8)2.853 (6)131 (7)
O1W—H1W···O52ii0.75 (6)2.06 (6)2.796 (5)167 (6)
O1W—H2W···O520.85 (7)1.99 (7)2.822 (6)168 (7)
N11—H11A···O530.87 (5)2.42 (6)2.781 (6)106 (4)
N11—H11A···O51iii0.87 (5)2.18 (5)2.822 (6)130 (5)
N11—H11B···O51iv0.85 (7)2.10 (7)2.902 (6)157 (7)
N11—H11C···O1W0.91 (6)1.87 (6)2.775 (7)180 (9)
C2—H2···O8i0.952.432.977 (7)116
C4—H4···O530.952.553.090 (6)117
C6—H6···O510.952.432.857 (6)107
C61—H61···O53v0.952.463.307 (6)149
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z; (v) x+1/2, y+3/2, z+1.
(II) 4-bromoanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate top
Crystal data top
C6H7BrN+·C9H5INO4S·H2OF(000) = 2096
Mr = 541.15Dx = 1.990 Mg m3
Monoclinic, C2/cMelting point = 463.2–469.2 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 33.494 (9) ÅCell parameters from 25 reflections
b = 5.927 (4) Åθ = 12.9–16.8°
c = 19.963 (7) ŵ = 4.13 mm1
β = 114.29 (2)°T = 297 K
V = 3612 (3) Å3Block, brown
Z = 80.25 × 0.20 × 0.20 mm
Data collection top
Rigaku AFC 7R
diffractometer
3149 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ω/2θ scansh = 1843
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
k = 73
Tmin = 0.368, Tmax = 0.436l = 2523
4852 measured reflections3 standard reflections every 150 min
4153 independent reflections intensity decay: 3.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.1P)2 + 13.3208P]
where P = (Fo2 + 2Fc2)/3
4153 reflections(Δ/σ)max = 0.002
250 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C6H7BrN+·C9H5INO4S·H2OV = 3612 (3) Å3
Mr = 541.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.494 (9) ŵ = 4.13 mm1
b = 5.927 (4) ÅT = 297 K
c = 19.963 (7) Å0.25 × 0.20 × 0.20 mm
β = 114.29 (2)°
Data collection top
Rigaku AFC 7R
diffractometer
3149 reflections with I > 2σ(I)
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
Rint = 0.015
Tmin = 0.368, Tmax = 0.4363 standard reflections every 150 min
4852 measured reflections intensity decay: 3.1%
4153 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.1P)2 + 13.3208P]
where P = (Fo2 + 2Fc2)/3
4153 reflectionsΔρmax = 0.60 e Å3
250 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I70.028595 (8)0.21563 (5)0.371205 (15)0.0455 (1)
S50.20058 (2)0.08583 (16)0.56328 (4)0.0314 (2)
O80.00823 (8)0.2062 (5)0.44780 (18)0.0473 (9)
O510.20683 (8)0.0996 (6)0.52057 (16)0.0495 (9)
O530.21825 (8)0.2966 (5)0.55159 (16)0.0425 (9)
O520.21712 (8)0.0272 (5)0.64096 (14)0.0441 (8)
N10.06000 (9)0.5033 (6)0.54939 (17)0.0381 (9)
C20.08518 (12)0.6511 (7)0.5980 (2)0.0422 (11)
C30.13122 (12)0.6372 (8)0.6299 (2)0.0449 (11)
C40.15153 (11)0.4668 (7)0.6109 (2)0.0391 (10)
C50.14306 (10)0.1226 (6)0.53133 (18)0.0304 (9)
C60.11553 (10)0.0213 (6)0.47922 (18)0.0323 (9)
C70.06962 (10)0.0071 (6)0.45071 (18)0.0321 (9)
C80.05197 (10)0.1804 (6)0.47527 (19)0.0322 (10)
C90.08003 (11)0.3334 (6)0.52942 (19)0.0319 (9)
C100.12606 (10)0.3069 (6)0.55802 (18)0.0300 (9)
Br410.445912 (16)1.20232 (10)0.74928 (3)0.0645 (2)
N110.28112 (10)0.6306 (7)0.6121 (2)0.0388 (10)
C110.32062 (12)0.7707 (6)0.6457 (2)0.0346 (10)
C210.35410 (13)0.6969 (7)0.7091 (2)0.0466 (12)
C310.39208 (13)0.8250 (8)0.7401 (2)0.0506 (14)
C410.39474 (12)1.0231 (7)0.7069 (2)0.0425 (11)
C510.36113 (14)1.0949 (8)0.6430 (2)0.0487 (12)
C610.32347 (13)0.9666 (7)0.6117 (2)0.0433 (11)
O1W0.27665 (13)0.3667 (8)0.7232 (2)0.0623 (13)
H20.0716000.7718000.6120000.0510*
H30.1481000.7472000.6646000.0540*
H40.1825000.4547000.6330000.0470*
H60.1274000.1416000.4618000.0390*
H80.004 (2)0.320 (11)0.469 (3)0.06 (2)*
H11A0.2830 (13)0.540 (8)0.580 (2)0.044 (12)*
H11B0.2586 (19)0.702 (9)0.595 (3)0.060 (16)*
H11C0.2782 (14)0.546 (9)0.648 (3)0.049 (13)*
H210.3514000.5594000.7314000.0560*
H310.4158000.7757000.7836000.0610*
H510.3638001.2320000.6205000.0580*
H610.3001001.0135000.5673000.0520*
H1W0.2779 (18)0.402 (11)0.768 (3)0.064 (19)*
H2W0.2615 (16)0.260 (9)0.704 (3)0.074 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I70.0355 (2)0.0474 (2)0.0429 (2)0.0056 (1)0.0054 (1)0.0130 (1)
S50.0223 (3)0.0402 (5)0.0286 (4)0.0020 (3)0.0073 (3)0.0006 (3)
O80.0221 (12)0.0509 (17)0.0580 (18)0.0028 (11)0.0056 (12)0.0154 (14)
O510.0295 (12)0.063 (2)0.0509 (16)0.0069 (13)0.0113 (11)0.0188 (15)
O530.0302 (13)0.0526 (17)0.0424 (15)0.0044 (11)0.0127 (11)0.0076 (12)
O520.0350 (13)0.0550 (17)0.0343 (13)0.0006 (12)0.0063 (11)0.0120 (12)
N10.0276 (14)0.0470 (18)0.0370 (15)0.0004 (13)0.0105 (12)0.0066 (14)
C20.0324 (18)0.047 (2)0.045 (2)0.0014 (16)0.0137 (16)0.0128 (18)
C30.0307 (17)0.055 (2)0.043 (2)0.0054 (17)0.0092 (15)0.0211 (19)
C40.0231 (15)0.050 (2)0.0399 (19)0.0016 (15)0.0087 (14)0.0075 (17)
C50.0242 (14)0.0362 (17)0.0281 (15)0.0013 (13)0.0081 (12)0.0011 (14)
C60.0266 (15)0.0390 (18)0.0297 (16)0.0022 (13)0.0100 (13)0.0019 (14)
C70.0244 (14)0.0373 (18)0.0284 (15)0.0050 (13)0.0047 (12)0.0034 (13)
C80.0199 (14)0.0392 (19)0.0329 (16)0.0001 (13)0.0061 (12)0.0007 (14)
C90.0260 (15)0.0367 (18)0.0325 (16)0.0013 (13)0.0114 (13)0.0005 (14)
C100.0240 (15)0.0371 (18)0.0278 (15)0.0002 (13)0.0095 (12)0.0004 (13)
Br410.0451 (3)0.0761 (4)0.0687 (3)0.0256 (2)0.0199 (2)0.0150 (3)
N110.0279 (15)0.0420 (18)0.0396 (18)0.0032 (14)0.0069 (13)0.0051 (16)
C110.0302 (17)0.0383 (19)0.0325 (17)0.0022 (14)0.0100 (14)0.0014 (14)
C210.038 (2)0.043 (2)0.047 (2)0.0037 (16)0.0056 (17)0.0077 (18)
C310.0346 (19)0.054 (3)0.045 (2)0.0017 (18)0.0019 (16)0.0078 (19)
C410.0321 (17)0.051 (2)0.045 (2)0.0068 (16)0.0165 (15)0.0073 (18)
C510.050 (2)0.048 (2)0.045 (2)0.0083 (19)0.0164 (18)0.0061 (19)
C610.0391 (19)0.045 (2)0.0384 (19)0.0029 (17)0.0086 (16)0.0068 (17)
O1W0.077 (2)0.072 (3)0.0342 (16)0.025 (2)0.0192 (16)0.0093 (17)
Geometric parameters (Å, º) top
I7—C72.087 (4)C5—C61.368 (5)
Br41—C411.894 (4)C6—C71.413 (5)
S5—O531.442 (3)C7—C81.372 (5)
S5—O521.458 (3)C8—C91.428 (5)
S5—O511.458 (4)C9—C101.415 (5)
S5—C51.776 (4)C2—H20.9500
O8—C81.345 (5)C3—H30.9500
O8—H80.84 (6)C4—H40.9500
O1W—H1W0.90 (6)C6—H60.9500
O1W—H2W0.80 (5)C11—C611.368 (6)
N1—C21.322 (5)C11—C211.372 (6)
N1—C91.358 (5)C21—C311.389 (6)
N11—C111.470 (6)C31—C411.369 (6)
N11—H11C0.91 (5)C41—C511.376 (6)
N11—H11B0.81 (6)C51—C611.383 (6)
N11—H11A0.86 (4)C21—H210.9500
C2—C31.408 (6)C31—H310.9500
C3—C41.356 (6)C51—H510.9500
C4—C101.414 (5)C61—H610.9500
C5—C101.432 (5)
O51—S5—O53113.03 (18)N1—C9—C8116.3 (3)
O51—S5—O52111.05 (18)C4—C10—C9116.7 (3)
O51—S5—C5106.14 (17)C5—C10—C9117.9 (3)
O52—S5—O53112.15 (17)C4—C10—C5125.4 (3)
O53—S5—C5107.00 (17)N1—C2—H2119.00
O52—S5—C5107.02 (16)C3—C2—H2119.00
C8—O8—H8106 (5)C2—C3—H3120.00
H1W—O1W—H2W115 (6)C4—C3—H3120.00
C2—N1—C9117.7 (3)C3—C4—H4120.00
C11—N11—H11C109 (3)C10—C4—H4120.00
C11—N11—H11A111 (3)C7—C6—H6119.00
C11—N11—H11B114 (4)C5—C6—H6120.00
H11B—N11—H11C104 (6)N11—C11—C61119.1 (4)
H11A—N11—H11B111 (5)N11—C11—C21118.8 (3)
H11A—N11—H11C108 (5)C21—C11—C61122.1 (4)
N1—C2—C3122.9 (4)C11—C21—C31119.2 (4)
C2—C3—C4120.0 (4)C21—C31—C41118.9 (4)
C3—C4—C10119.3 (4)Br41—C41—C31119.5 (3)
S5—C5—C6119.3 (3)Br41—C41—C51119.0 (3)
C6—C5—C10120.8 (3)C31—C41—C51121.5 (4)
S5—C5—C10119.9 (3)C41—C51—C61119.7 (4)
C5—C6—C7120.9 (3)C11—C61—C51118.7 (4)
C6—C7—C8120.2 (3)C11—C21—H21120.00
I7—C7—C6119.9 (3)C31—C21—H21120.00
I7—C7—C8120.0 (3)C41—C31—H31121.00
C7—C8—C9120.0 (3)C21—C31—H31120.00
O8—C8—C9120.3 (3)C41—C51—H51120.00
O8—C8—C7119.8 (3)C61—C51—H51120.00
C8—C9—C10120.2 (3)C11—C61—H61121.00
N1—C9—C10123.5 (3)C51—C61—H61121.00
O51—S5—C5—C63.1 (3)I7—C7—C8—C9179.7 (3)
O51—S5—C5—C10174.4 (3)C6—C7—C8—O8180.0 (3)
O53—S5—C5—C6124.1 (3)C6—C7—C8—C90.4 (5)
O53—S5—C5—C1053.4 (3)O8—C8—C9—N11.2 (5)
O52—S5—C5—C6115.5 (3)O8—C8—C9—C10179.7 (3)
O52—S5—C5—C1067.0 (3)C7—C8—C9—N1178.4 (3)
C9—N1—C2—C30.8 (6)C7—C8—C9—C100.1 (5)
C2—N1—C9—C8178.3 (3)N1—C9—C10—C41.0 (5)
C2—N1—C9—C100.2 (5)N1—C9—C10—C5178.9 (3)
N1—C2—C3—C40.1 (6)C8—C9—C10—C4179.4 (3)
C2—C3—C4—C101.1 (6)C8—C9—C10—C50.5 (5)
C3—C4—C10—C5178.2 (4)N11—C11—C21—C31178.2 (4)
C3—C4—C10—C91.6 (5)C61—C11—C21—C310.3 (6)
S5—C5—C6—C7177.9 (3)N11—C11—C61—C51178.7 (4)
C10—C5—C6—C70.4 (5)C21—C11—C61—C510.8 (6)
S5—C5—C10—C41.7 (5)C11—C21—C31—C410.9 (6)
S5—C5—C10—C9178.2 (3)C21—C31—C41—Br41179.0 (3)
C6—C5—C10—C4179.1 (4)C21—C31—C41—C511.4 (7)
C6—C5—C10—C90.7 (5)Br41—C41—C51—C61179.6 (3)
C5—C6—C7—I7180.0 (3)C31—C41—C51—C610.8 (7)
C5—C6—C7—C80.2 (5)C41—C51—C61—C110.3 (6)
I7—C7—C8—O80.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N10.84 (6)2.19 (6)2.707 (5)120 (6)
O8—H8···N1i0.84 (6)2.28 (7)2.880 (5)129 (6)
O1W—H1W···O52ii0.90 (6)1.91 (6)2.799 (5)170 (6)
O1W—H2W···O520.80 (5)2.04 (6)2.833 (6)170 (6)
N11—H11A···O530.86 (4)2.47 (5)2.778 (5)102 (3)
N11—H11A···O51iii0.86 (4)2.20 (4)2.844 (5)132 (4)
N11—H11B···O51iv0.81 (6)2.12 (6)2.889 (5)160 (6)
N11—H11C···O1W0.91 (5)1.86 (5)2.768 (6)176 (5)
C2—H2···O8i0.952.442.998 (6)117
C4—H4···O530.952.563.097 (5)116
C6—H6···O510.952.442.859 (5)107
C61—H61···O53v0.952.473.287 (5)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z; (v) x+1/2, y+3/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H7ClN+·C9H5INO4S·H2OC6H7BrN+·C9H5INO4S·H2O
Mr496.70541.15
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)297297
a, b, c (Å)33.403 (10), 5.902 (5), 19.970 (7)33.494 (9), 5.927 (4), 19.963 (7)
β (°) 114.56 (2) 114.29 (2)
V3)3581 (4)3612 (3)
Z88
Radiation typeMo KαMo Kα
µ (mm1)2.084.13
Crystal size (mm)0.40 × 0.25 × 0.200.25 × 0.20 × 0.20
Data collection
DiffractometerRigaku AFC 7R
diffractometer
Rigaku AFC 7R
diffractometer
Absorption correctionψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
ψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
Tmin, Tmax0.541, 0.6600.368, 0.436
No. of measured, independent and
observed [I > 2σ(I)] reflections
4800, 4108, 3356 4852, 4153, 3149
Rint0.0470.015
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.10 0.028, 0.110, 0.81
No. of reflections41084153
No. of parameters250250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.116P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.1P)2 + 13.3208P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.20, 1.090.60, 0.63

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999), MSC/AFC Diffractometer Control Software, TEXSAN for Windows, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N11.00 (8)2.19 (8)2.714 (6)111 (6)
O8—H8···N1i1.00 (8)2.10 (8)2.853 (6)131 (7)
O1W—H1W···O52ii0.75 (6)2.06 (6)2.796 (5)167 (6)
O1W—H2W···O520.85 (7)1.99 (7)2.822 (6)168 (7)
N11—H11A···O530.87 (5)2.42 (6)2.781 (6)106 (4)
N11—H11A···O51iii0.87 (5)2.18 (5)2.822 (6)130 (5)
N11—H11B···O51iv0.85 (7)2.10 (7)2.902 (6)157 (7)
N11—H11C···O1W0.91 (6)1.87 (6)2.775 (7)180 (9)
C2—H2···O8i0.952.432.977 (7)116
C4—H4···O530.952.553.090 (6)117
C6—H6···O510.952.432.857 (6)107
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N10.84 (6)2.19 (6)2.707 (5)120 (6)
O8—H8···N1i0.84 (6)2.28 (7)2.880 (5)129 (6)
O1W—H1W···O52ii0.90 (6)1.91 (6)2.799 (5)170 (6)
O1W—H2W···O520.80 (5)2.04 (6)2.833 (6)170 (6)
N11—H11A···O530.86 (4)2.47 (5)2.778 (5)102 (3)
N11—H11A···O51iii0.86 (4)2.20 (4)2.844 (5)132 (4)
N11—H11B···O51iv0.81 (6)2.12 (6)2.889 (5)160 (6)
N11—H11C···O1W0.91 (5)1.86 (5)2.768 (6)176 (5)
C2—H2···O8i0.952.442.998 (6)117
C4—H4···O530.952.563.097 (5)116
C6—H6···O510.952.442.859 (5)107
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds