Download citation
Download citation
link to html
The two new title complexes, [Cu(N3)(dpyam)2]PF6 (dpyam is di-2-pyridylamine, C10H11N3), (I), and [Cu(N3)(dpyam)2]Cl·4H2O, (II), respectively, have been characterized by single-crystal X-ray diffraction. Both complexes display a distorted square-pyramidal geometry. Each Cu atom is coordinated in the basal plane by three dpyam N atoms and one azide N atom in equatorial positions, and by another N atom from the dpyam group in the apical position. In complex (I), the one-dimensional supra­molecular architecture is assembled via hydrogen-bonding inter­actions between the amine N atom and terminal azide N atoms and the F atoms of the PF6- anion. For complex (II), hydrogen-bonding inter­actions between the amine N atom, the Cl- anion and water O atoms result in a two-dimensional lattice.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106052693/sf3027sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106052693/sf3027Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106052693/sf3027IIsup3.hkl
Contains datablock II

CCDC references: 638299; 638300

Comment top

The synthesis of pseudohalide bridged complexes continues to be a subject of much interest, and intensive investigations have taken place as a result of their diverse structures and potential applications in magnetic materials. Pseudohalide (OCN-, SCN-, N3- etc.) ligands can coordinate to transition metal atoms in different ways, for example as a terminal ligand or as a bridge (Talukder et al., 2004). One-, two- or three-dimensional supramolecular architectures assembled via intermolecular non-covalent interactions are of considerable interest for the crystal engineering of new functional solid-state materials, as well as for their fascinating structures (Gao et al., 2001). Hydrogen bonding, which combines directionality, selectivity and strength, has been noted as the most versatile organizing force for supramolecular assembly (Chen et al., 2001). We report here the two new title complexes, [Cu(dpyam)2(N3)]PF6, (I), and [Cu(dpyam)2(N3)]Cl·(H2O)4, (II). The dpyam ligand has been selected primarily because it also has an N—H hydrogen-bond donor function that might produce one-, two- or three-dimensional supramolecular architectures.

The crystal structures of (I) and (II) (Figs. 1 and 2) consist of a [Cu(dpyam)2(N3)]+ cation and PF6- and Cl- anions, respectively. The Cu atoms of both molecules exhibit five-coordination of the CuN4N' chromophore (see scheme). The coordination around each Cu atom consists of three dpyam N atoms and one azido N atom in equatorial positions, and in the apical position is the other N atom from dpyam. Both complexes exhibit a slightly distorted square-pyramidal environment, the geometric τ values (Addison et al., 1984) being 0.061 for (I) and 0.148 for (II). The Cu—N distances are shown in Tables 1 and 3. The average Cu—N distances in the equatorial positions are 2.017 (1) Å for (I) and 2.009 (1) Å for (II). The axial Cu—N distances are longer, at 2.153 (2) Å for (I) and 2.169 (2) Å for (II). The Cu atoms are displaced by 0.264 (1) Å for (I) and 0.255 (1) Å for (II) from the mean basal plane towards the apical position. The dpyam ligands are not planar, with dihedral angles between the two pyridine rings of 34.4 (1) and 16.1 (1)° for (I) and 35.3 (1) and 14.6 (1)° for (II).

There are extensive hydrogen-bonding interactions in the both structures. In complex (I), the intermolecular hydrogen-bonding interactions between N—H···F and NH···N(azido) (Table 2) produce a one-dimensional chain (Fig. 3). The crystal packing of complex (II) is stabilized by intermolecular N—H···Cl, OH···N(azido), O—H···Cl and O—H···O hydrogen bonds (Table 4) leading to a two-dimensional supramolecular structure (Fig. 4).

The chromophores of (I) and (II) are very similar except for the four additional water molecules in the asymmetric unit of complex (II), which create a two-dimensional hydrogen-bonded network in (II).

Related literature top

For related literature, see: Addison et al. (1984); Chen et al. (2001); Gao et al. (2001); Sheldrick (2000b); Talukder et al. (2004).

Experimental top

Complex (I) was prepared by adding a warm solution of di-2-pyridylamine (0.17 g, 1.00 mmol) in methanol (15 ml) to a hot aqueous solution (10 ml) containing Cu(CH3COO)2·H2O (0.091 g, 0.5 mmol) and NaN3 (0.065 g, 1.0 mmol). An aqueous solution (15 ml) of KPF6 (0.184 g, 1.0 mmol) was then added, giving a clear green solution. The resulting solution was slowly evaporated at room temperature. After several days, green needle-shaped crystals of (I) were formed which were filtered off, washed with mother liquor and air-dried (yield ca 90%).

Green needle crystals of (II) were obtained by adding a warm solution of di-2-pyridylamine (0.171 g, 1.0 mmol) in methanol (15 ml) to a boiling aqueous solution (15 ml) of CuCl2·2H2O (0.085 g, 0.5 mmol). NaN3 (0.130 g, 2.0 mmol) was then added to the reaction mixture. After several days, crystals of (II) were formed which were filtered off, washed with mother liquor and air-dried (yield ca 85%).

The electronic reflectance spectra of both complexes involve main peaks at 14050 and 14000 cm-1 and lower energy shoulders at 11010 and 11110 cm-1 for (I) and (II), respectively. These spectroscopic characteristics of the compounds are consistent with the distorted square-pyramidal geometry with a small τ value. The transitions may be assigned as the dz2 dx2-y2 transition for the low-energy shoulder and the dxz ~ dyz dx2-y2 transition for the high-energy peak. The strongest intensity features in the spectra of (I) and (II) appear at 2042 and 2040 cm-1, respectively, together with sharp and medium intensity peaks at 2035 and 2034 cm-1, respectively, attributed to νas(N3). For the IR spectrum of sodium azide, a single strong peak at 2033 cm-1 is observed. Hence, in the present compounds, the shift towards higher wavenumbers of the νas stretching of the azide indicates that it must be coordinated.

Refinement top

In (I), H atoms attached to N3 and N6 were located in a difference Fourier map and refined with a DFIX (SHELXTL; Sheldrick, 2000b) restraint of N—H = 0.86 (1) Å. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C) [Please check added text]. The F atoms of the PF6 group showed disorder; the occupancies of the disordered positions were initially refined and later fixed at 0.5.

In (II), H atoms attached to water O atoms were located in difference Fourier maps and refined with a DFIX restraint of O—H = 0.90 (1) Å. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N) [Please check added text].

Computing details top

Data collection: SMART (Bruker, 2000) for (I); MACH3 (Enraf–Nonius, 1993) for (II). Cell refinement: SAINT (Bruker, 2000) for (I); MACH3 for (II). Data reduction: SAINT for (I); MolEN (Fair, 1990) for (II). For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 2000b); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), with 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A packing diagram for (I) with hydrogen bonds (dashed lines), showing the one-dimensional structure.
[Figure 4] Fig. 4. A packing diagram for (II) with hydrogen bonds (dashed lines), showing the two-dimensional structure.
(I) (Azido-κN)bis(di-2-pyridylamine)copper(II) hexafluorophosphate top
Crystal data top
[Cu(N3)(C10H11N3)2]PF6F(000) = 1196
Mr = 592.94Dx = 1.683 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 20720 reflections
a = 14.1074 (8) Åθ = 1.7–28.3°
b = 8.5839 (5) ŵ = 1.08 mm1
c = 19.4144 (11) ÅT = 298 K
β = 95.635 (1)°Needle, green
V = 2339.7 (2) Å30.31 × 0.21 × 0.11 mm
Z = 4
Data collection top
Siemens SMART CCD area detector
diffractometer
5804 independent reflections
Radiation source: fine-focus sealed tube4381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000a)
h = 1718
Tmin = 0.769, Tmax = 0.884k = 1111
19955 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.9007P]
where P = (Fo2 + 2Fc2)/3
5635 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Cu(N3)(C10H11N3)2]PF6V = 2339.7 (2) Å3
Mr = 592.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.1074 (8) ŵ = 1.08 mm1
b = 8.5839 (5) ÅT = 298 K
c = 19.4144 (11) Å0.31 × 0.21 × 0.11 mm
β = 95.635 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
5804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000a)
4381 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.884Rint = 0.027
19955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.39 e Å3
5635 reflectionsΔρmin = 0.22 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
H50.6160 (19)0.426 (3)0.4399 (10)0.054 (8)*
Cu10.570147 (19)0.50403 (3)0.236855 (13)0.03382 (10)
P10.31278 (5)0.70725 (8)0.40283 (4)0.04793 (18)
N10.59821 (14)0.6512 (2)0.31640 (10)0.0370 (4)
N20.49990 (14)0.3691 (2)0.30004 (10)0.0398 (5)
N30.59923 (17)0.4481 (3)0.39722 (11)0.0493 (5)
N40.44637 (14)0.5883 (2)0.17416 (10)0.0403 (5)
N50.57562 (14)0.3218 (2)0.17021 (9)0.0366 (4)
N60.45768 (17)0.4085 (3)0.08334 (11)0.0489 (6)
N70.66685 (15)0.6195 (3)0.18704 (10)0.0459 (5)
N80.65241 (15)0.6322 (2)0.12557 (11)0.0417 (5)
N90.6401 (2)0.6466 (3)0.06652 (12)0.0696 (8)
C10.61004 (19)0.8047 (3)0.30363 (14)0.0459 (6)
H10.59880.83960.25820.055*
C20.6377 (2)0.9113 (3)0.35414 (16)0.0548 (7)
H20.64491.01580.34330.066*
C30.6545 (2)0.8599 (4)0.42144 (16)0.0594 (8)
H30.67410.92940.45670.071*
C40.6420 (2)0.7064 (4)0.43577 (13)0.0525 (7)
H40.65320.67020.48100.063*
C50.61236 (16)0.6034 (3)0.38198 (12)0.0386 (5)
C60.52824 (18)0.3515 (3)0.36700 (12)0.0396 (5)
C70.4893 (2)0.2377 (3)0.40724 (15)0.0558 (7)
H70.51260.22400.45330.067*
C80.4172 (3)0.1476 (3)0.37822 (17)0.0657 (9)
H80.39080.07090.40430.079*
C90.3834 (2)0.1702 (3)0.30987 (17)0.0627 (8)
H90.33260.11170.28960.075*
C100.42589 (19)0.2799 (3)0.27277 (14)0.0520 (7)
H100.40330.29450.22660.062*
C110.4075 (2)0.7201 (3)0.19623 (15)0.0550 (7)
H110.41990.74680.24270.066*
C120.3510 (2)0.8163 (4)0.15455 (18)0.0711 (10)
H120.32630.90720.17180.085*
C130.3316 (3)0.7757 (4)0.08626 (18)0.0783 (11)
H130.29470.84070.05610.094*
C140.3665 (2)0.6396 (4)0.06277 (15)0.0626 (8)
H140.35190.60870.01700.075*
C150.42454 (17)0.5475 (3)0.10858 (13)0.0399 (5)
C160.52202 (18)0.2993 (3)0.11050 (12)0.0415 (5)
C170.5308 (3)0.1631 (4)0.07217 (17)0.0702 (10)
H170.49260.14800.03090.084*
C180.5957 (3)0.0522 (4)0.0954 (2)0.0745 (10)
H180.60210.03840.07000.089*
C190.6517 (2)0.0760 (3)0.15711 (15)0.0538 (7)
H190.69620.00210.17420.065*
C200.63977 (17)0.2098 (3)0.19174 (13)0.0431 (6)
H200.67790.22630.23300.052*
F10.2536 (6)0.8287 (12)0.3699 (6)0.159 (5)0.50
F20.4030 (7)0.7743 (11)0.3725 (4)0.083 (3)0.50
F30.3334 (9)0.5749 (11)0.4493 (6)0.170 (6)0.50
F40.2319 (6)0.6336 (11)0.4380 (6)0.122 (4)0.50
F50.3096 (10)0.8409 (14)0.4564 (6)0.111 (5)0.50
F60.3140 (8)0.5686 (14)0.3484 (6)0.119 (4)0.50
F1A0.2788 (6)0.8411 (7)0.3458 (4)0.112 (3)0.50
F2A0.4147 (7)0.7553 (15)0.3955 (6)0.143 (5)0.50
F3A0.3863 (7)0.5884 (10)0.4504 (4)0.119 (4)0.50
F4A0.2007 (5)0.6689 (13)0.4027 (6)0.121 (4)0.50
F5A0.3306 (12)0.8104 (18)0.4700 (8)0.115 (4)0.50
F6A0.3035 (9)0.6021 (13)0.3388 (3)0.101 (4)0.50
H150.432 (2)0.393 (4)0.0418 (11)0.070 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03666 (16)0.03901 (17)0.02500 (15)0.00203 (12)0.00090 (11)0.00146 (11)
P10.0561 (4)0.0403 (4)0.0471 (4)0.0067 (3)0.0038 (3)0.0013 (3)
N10.0399 (11)0.0393 (10)0.0322 (10)0.0035 (8)0.0051 (8)0.0002 (8)
N20.0436 (11)0.0430 (11)0.0327 (10)0.0064 (9)0.0025 (8)0.0010 (8)
N30.0622 (14)0.0521 (13)0.0309 (11)0.0070 (11)0.0086 (10)0.0097 (10)
N40.0398 (11)0.0470 (12)0.0332 (10)0.0068 (9)0.0012 (8)0.0004 (9)
N50.0395 (10)0.0392 (11)0.0304 (10)0.0013 (8)0.0009 (8)0.0011 (8)
N60.0583 (14)0.0486 (13)0.0355 (11)0.0068 (11)0.0170 (10)0.0065 (10)
N70.0477 (12)0.0584 (14)0.0316 (10)0.0094 (10)0.0044 (9)0.0005 (9)
N80.0471 (12)0.0403 (11)0.0386 (12)0.0044 (9)0.0088 (9)0.0038 (9)
N90.091 (2)0.0837 (19)0.0332 (12)0.0138 (16)0.0048 (12)0.0017 (12)
C10.0517 (15)0.0410 (14)0.0464 (14)0.0040 (11)0.0117 (12)0.0036 (11)
C20.0599 (17)0.0393 (15)0.0665 (19)0.0115 (12)0.0131 (14)0.0090 (13)
C30.0585 (17)0.0594 (18)0.0597 (18)0.0146 (14)0.0032 (14)0.0246 (15)
C40.0549 (16)0.0672 (19)0.0341 (13)0.0045 (14)0.0028 (11)0.0107 (12)
C50.0364 (12)0.0464 (14)0.0325 (11)0.0033 (10)0.0007 (9)0.0009 (10)
C60.0476 (14)0.0371 (12)0.0346 (12)0.0001 (10)0.0065 (10)0.0012 (10)
C70.080 (2)0.0448 (15)0.0439 (15)0.0036 (14)0.0130 (14)0.0087 (12)
C80.091 (2)0.0443 (16)0.066 (2)0.0191 (16)0.0293 (18)0.0033 (14)
C90.0656 (19)0.0541 (17)0.071 (2)0.0248 (15)0.0183 (16)0.0112 (15)
C100.0528 (16)0.0573 (17)0.0459 (15)0.0127 (13)0.0054 (12)0.0062 (13)
C110.0515 (16)0.0669 (18)0.0451 (15)0.0175 (14)0.0024 (12)0.0091 (13)
C120.069 (2)0.066 (2)0.074 (2)0.0340 (17)0.0158 (17)0.0123 (16)
C130.086 (2)0.071 (2)0.070 (2)0.0339 (19)0.0334 (18)0.0003 (17)
C140.073 (2)0.0615 (18)0.0476 (16)0.0162 (15)0.0243 (14)0.0034 (14)
C150.0378 (13)0.0421 (13)0.0378 (13)0.0002 (10)0.0061 (10)0.0004 (10)
C160.0481 (14)0.0382 (13)0.0365 (12)0.0011 (11)0.0043 (10)0.0014 (10)
C170.089 (2)0.0521 (17)0.0628 (19)0.0109 (16)0.0273 (17)0.0226 (15)
C180.092 (3)0.0450 (16)0.083 (2)0.0129 (17)0.014 (2)0.0207 (16)
C190.0552 (17)0.0435 (15)0.0622 (18)0.0075 (13)0.0033 (14)0.0047 (13)
C200.0408 (13)0.0472 (14)0.0403 (13)0.0039 (11)0.0016 (10)0.0060 (11)
F10.076 (4)0.200 (9)0.200 (10)0.069 (5)0.011 (5)0.107 (7)
F20.103 (7)0.069 (3)0.086 (3)0.032 (4)0.054 (4)0.014 (3)
F30.245 (13)0.089 (5)0.148 (7)0.056 (8)0.118 (8)0.070 (5)
F40.120 (7)0.084 (5)0.181 (9)0.051 (6)0.108 (7)0.036 (6)
F50.193 (12)0.054 (3)0.100 (8)0.041 (6)0.085 (9)0.040 (4)
F60.094 (5)0.080 (5)0.192 (10)0.025 (4)0.063 (5)0.077 (6)
F1A0.168 (8)0.058 (3)0.097 (4)0.036 (4)0.049 (5)0.035 (3)
F2A0.031 (3)0.129 (7)0.265 (13)0.011 (3)0.005 (5)0.037 (8)
F3A0.186 (8)0.112 (6)0.054 (3)0.086 (6)0.011 (4)0.009 (3)
F4A0.049 (3)0.090 (5)0.222 (11)0.007 (3)0.006 (4)0.041 (6)
F5A0.140 (6)0.120 (10)0.083 (5)0.000 (5)0.009 (4)0.052 (5)
F6A0.169 (8)0.097 (6)0.037 (2)0.060 (5)0.009 (3)0.021 (3)
Geometric parameters (Å, º) top
Cu1—N12.0046 (19)C1—H10.9300
Cu1—N72.009 (2)C2—C31.377 (4)
Cu1—N22.0166 (19)C2—H20.9300
Cu1—N52.0361 (19)C3—C41.361 (4)
Cu1—N42.1534 (19)C3—H30.9300
P1—F11.445 (7)C4—C51.401 (3)
P1—F31.461 (8)C4—H40.9300
P1—F2A1.516 (9)C6—C71.396 (3)
P1—F41.522 (6)C7—C81.356 (4)
P1—F6A1.531 (8)C7—H70.9300
P1—F51.552 (12)C8—C91.379 (5)
P1—F21.564 (7)C8—H80.9300
P1—F5A1.576 (14)C9—C101.360 (4)
P1—F61.593 (10)C9—H90.9300
P1—F4A1.615 (8)C10—H100.9300
P1—F1A1.634 (7)C11—C121.358 (4)
P1—F3A1.668 (7)C11—H110.9300
N1—C51.334 (3)C12—C131.372 (4)
N1—C11.354 (3)C12—H120.9300
N2—C61.331 (3)C13—C141.364 (4)
N2—C101.360 (3)C13—H130.9300
N3—C51.382 (3)C14—C151.394 (4)
N3—C61.385 (3)C14—H140.9300
N3—H50.859 (17)C16—C171.398 (4)
N4—C151.327 (3)C17—C181.365 (4)
N4—C111.345 (3)C17—H170.9300
N5—C161.335 (3)C18—C191.384 (4)
N5—C201.358 (3)C18—H180.9300
N6—C161.374 (3)C19—C201.350 (4)
N6—C151.389 (3)C19—H190.9300
N6—H150.863 (18)C20—H200.9300
N7—N81.196 (3)F1—F1A0.624 (14)
N8—N91.149 (3)F3—F3A0.754 (15)
C1—C21.369 (4)F4—F4A0.834 (14)
N1—Cu1—N788.15 (8)C6—N3—H5113 (2)
N1—Cu1—N288.00 (8)C15—N4—C11117.6 (2)
N7—Cu1—N2166.76 (8)C15—N4—Cu1123.53 (16)
N1—Cu1—N5163.10 (8)C11—N4—Cu1115.85 (16)
N7—Cu1—N590.18 (8)C16—N5—C20117.9 (2)
N2—Cu1—N589.82 (8)C16—N5—Cu1127.57 (16)
N1—Cu1—N4108.15 (8)C20—N5—Cu1114.47 (15)
N7—Cu1—N496.51 (8)C16—N6—C15133.1 (2)
N2—Cu1—N496.73 (8)C16—N6—H15117 (2)
N5—Cu1—N488.75 (8)C15—N6—H15109 (2)
F1—P1—F3154.8 (7)N8—N7—Cu1117.91 (17)
F1—P1—F2A105.9 (6)N9—N8—N7178.6 (3)
F3—P1—F2A97.8 (7)N1—C1—C2123.4 (3)
F1—P1—F494.1 (5)N1—C1—H1118.3
F3—P1—F460.9 (6)C2—C1—H1118.3
F2A—P1—F4156.1 (7)C1—C2—C3118.4 (3)
F1—P1—F6A93.8 (7)C1—C2—H2120.8
F3—P1—F6A92.2 (6)C3—C2—H2120.8
F2A—P1—F6A95.2 (6)C4—C3—C2119.3 (3)
F4—P1—F6A96.4 (6)C4—C3—H3120.3
F1—P1—F573.1 (8)C2—C3—H3120.3
F3—P1—F5100.3 (7)C3—C4—C5119.6 (3)
F2A—P1—F587.2 (7)C3—C4—H4120.2
F4—P1—F586.3 (5)C5—C4—H4120.2
F6A—P1—F5166.8 (7)N1—C5—N3119.4 (2)
F1—P1—F291.4 (5)N1—C5—C4121.5 (2)
F3—P1—F2113.5 (7)N3—C5—C4119.1 (2)
F4—P1—F2174.1 (6)N2—C6—N3118.8 (2)
F6A—P1—F285.4 (5)N2—C6—C7121.9 (2)
F5—P1—F293.3 (5)N3—C6—C7119.3 (2)
F1—P1—F5A89.9 (7)C8—C7—C6119.1 (3)
F3—P1—F5A85.4 (7)C8—C7—H7120.4
F2A—P1—F5A81.3 (8)C6—C7—H7120.4
F4—P1—F5A85.9 (7)C7—C8—C9119.6 (3)
F6A—P1—F5A175.5 (8)C7—C8—H8120.2
F2—P1—F5A92.0 (7)C9—C8—H8120.2
F1—P1—F6106.8 (7)C10—C9—C8118.6 (3)
F3—P1—F679.3 (7)C10—C9—H9120.7
F2A—P1—F694.0 (6)C8—C9—H9120.7
F4—P1—F692.5 (5)N2—C10—C9123.0 (3)
F5—P1—F6178.7 (6)N2—C10—H10118.5
F2—P1—F687.9 (5)C9—C10—H10118.5
F5A—P1—F6163.2 (8)N4—C11—C12123.7 (3)
F1—P1—F4A67.9 (5)N4—C11—H11118.1
F3—P1—F4A88.7 (6)C12—C11—H11118.1
F2A—P1—F4A173.2 (6)C11—C12—C13118.1 (3)
F6A—P1—F4A82.7 (6)C11—C12—H12121.0
F5—P1—F4A93.4 (6)C13—C12—H12121.0
F2—P1—F4A155.2 (5)C14—C13—C12119.7 (3)
F5A—P1—F4A101.1 (7)C14—C13—H13120.1
F6—P1—F4A85.4 (6)C12—C13—H13120.1
F3—P1—F1A172.5 (4)C13—C14—C15118.8 (3)
F2A—P1—F1A87.9 (5)C13—C14—H14120.6
F4—P1—F1A114.4 (5)C15—C14—H14120.6
F6A—P1—F1A82.4 (5)N4—C15—N6120.7 (2)
F5—P1—F1A84.7 (6)N4—C15—C14121.9 (2)
F2—P1—F1A71.5 (5)N6—C15—C14117.3 (2)
F5A—P1—F1A100.2 (6)N5—C16—N6122.1 (2)
F6—P1—F1A95.6 (5)N5—C16—C17120.7 (2)
F4A—P1—F1A85.4 (5)N6—C16—C17117.2 (2)
F1—P1—F3A170.8 (6)C18—C17—C16119.9 (3)
F2A—P1—F3A71.0 (6)C18—C17—H17120.0
F4—P1—F3A87.2 (5)C16—C17—H17120.0
F6A—P1—F3A95.1 (5)C17—C18—C19119.4 (3)
F5—P1—F3A98.0 (6)C17—C18—H18120.3
F2—P1—F3A87.0 (5)C19—C18—H18120.3
F5A—P1—F3A81.1 (7)C20—C19—C18117.9 (3)
F6—P1—F3A82.2 (5)C20—C19—H19121.1
F4A—P1—F3A115.6 (5)C18—C19—H19121.1
F1A—P1—F3A158.5 (5)C19—C20—N5124.1 (2)
C5—N1—C1117.7 (2)C19—C20—H20117.9
C5—N1—Cu1122.74 (16)N5—C20—H20117.9
C1—N1—Cu1119.40 (17)F1A—F1—P196.2 (13)
C6—N2—C10117.5 (2)F3A—F3—P192.0 (13)
C6—N2—Cu1122.75 (16)F4A—F4—P180.8 (10)
C10—N2—Cu1119.42 (17)F1—F1A—P161.5 (10)
C5—N3—C6126.4 (2)F3—F3A—P161.1 (10)
C5—N3—H5113 (2)F4—F4A—P168.5 (8)
N7—Cu1—N1—C5133.96 (19)C16—N6—C15—N48.8 (5)
N2—Cu1—N1—C533.37 (19)C16—N6—C15—C14172.4 (3)
N5—Cu1—N1—C549.4 (4)C13—C14—C15—N40.2 (5)
N4—Cu1—N1—C5129.79 (18)C13—C14—C15—N6179.0 (3)
N7—Cu1—N1—C141.32 (19)C20—N5—C16—N6177.6 (2)
N2—Cu1—N1—C1151.35 (19)Cu1—N5—C16—N64.9 (4)
N5—Cu1—N1—C1125.9 (3)C20—N5—C16—C171.1 (4)
N4—Cu1—N1—C154.9 (2)Cu1—N5—C16—C17176.4 (2)
N1—Cu1—N2—C636.0 (2)C15—N6—C16—N57.6 (5)
N7—Cu1—N2—C637.2 (5)C15—N6—C16—C17173.7 (3)
N5—Cu1—N2—C6127.2 (2)N5—C16—C17—C180.7 (5)
N4—Cu1—N2—C6144.04 (19)N6—C16—C17—C18178.0 (3)
N1—Cu1—N2—C10150.6 (2)C16—C17—C18—C190.3 (6)
N7—Cu1—N2—C10136.2 (3)C17—C18—C19—C200.3 (5)
N5—Cu1—N2—C1046.2 (2)C18—C19—C20—N50.7 (4)
N4—Cu1—N2—C1042.5 (2)C16—N5—C20—C191.1 (4)
N1—Cu1—N4—C15159.72 (19)Cu1—N5—C20—C19176.7 (2)
N7—Cu1—N4—C1569.5 (2)F2A—P1—F1—F1A37.2 (17)
N2—Cu1—N4—C15110.2 (2)F4—P1—F1—F1A156.0 (16)
N5—Cu1—N4—C1520.5 (2)F6A—P1—F1—F1A59.3 (16)
N1—Cu1—N4—C110.2 (2)F5—P1—F1—F1A119.2 (16)
N7—Cu1—N4—C1190.4 (2)F2—P1—F1—F1A26.1 (16)
N2—Cu1—N4—C1189.9 (2)F5A—P1—F1—F1A118.1 (17)
N5—Cu1—N4—C11179.5 (2)F6—P1—F1—F1A62.1 (16)
N1—Cu1—N5—C16174.6 (2)F4A—P1—F1—F1A139.9 (18)
N7—Cu1—N5—C1690.4 (2)F1—P1—F3—F3A159.4 (14)
N2—Cu1—N5—C16102.9 (2)F2A—P1—F3—F3A1.2 (15)
N4—Cu1—N5—C166.1 (2)F4—P1—F3—F3A167.2 (17)
N1—Cu1—N5—C207.8 (4)F6A—P1—F3—F3A96.8 (14)
N7—Cu1—N5—C2092.07 (18)F5—P1—F3—F3A87.4 (15)
N2—Cu1—N5—C2074.69 (18)F2—P1—F3—F3A10.9 (16)
N4—Cu1—N5—C20171.43 (17)F5A—P1—F3—F3A79.4 (15)
N1—Cu1—N7—N8145.5 (2)F6—P1—F3—F3A93.8 (15)
N2—Cu1—N7—N8141.3 (3)F4A—P1—F3—F3A179.4 (15)
N5—Cu1—N7—N851.3 (2)F1—P1—F4—F4A30.4 (14)
N4—Cu1—N7—N837.5 (2)F3—P1—F4—F4A153.0 (15)
C5—N1—C1—C21.5 (4)F2A—P1—F4—F4A177.6 (14)
Cu1—N1—C1—C2174.0 (2)F6A—P1—F4—F4A63.9 (14)
N1—C1—C2—C30.1 (4)F5—P1—F4—F4A103.1 (14)
C1—C2—C3—C40.8 (4)F5A—P1—F4—F4A120.0 (14)
C2—C3—C4—C50.0 (4)F6—P1—F4—F4A76.7 (14)
C1—N1—C5—N3178.8 (2)F1A—P1—F4—F4A20.6 (15)
Cu1—N1—C5—N35.9 (3)F3A—P1—F4—F4A158.7 (13)
C1—N1—C5—C42.4 (3)F2A—P1—F1A—F1144.4 (17)
Cu1—N1—C5—C4172.92 (19)F4—P1—F1A—F126.4 (17)
C6—N3—C5—N139.0 (4)F6A—P1—F1A—F1120.0 (17)
C6—N3—C5—C4142.2 (3)F5—P1—F1A—F157.0 (17)
C3—C4—C5—N11.7 (4)F2—P1—F1A—F1152.3 (17)
C3—C4—C5—N3179.5 (3)F5A—P1—F1A—F163.7 (17)
C10—N2—C6—N3175.8 (2)F6—P1—F1A—F1121.8 (16)
Cu1—N2—C6—N310.7 (3)F4A—P1—F1A—F136.8 (16)
C10—N2—C6—C75.0 (4)F3A—P1—F1A—F1155.4 (15)
Cu1—N2—C6—C7168.5 (2)F2A—P1—F3A—F3178.7 (16)
C5—N3—C6—N236.1 (4)F4—P1—F3A—F311.2 (15)
C5—N3—C6—C7144.7 (3)F6A—P1—F3A—F385.0 (15)
N2—C6—C7—C83.4 (4)F5—P1—F3A—F397.0 (15)
N3—C6—C7—C8177.4 (3)F2—P1—F3A—F3170.0 (15)
C6—C7—C8—C90.3 (5)F5A—P1—F3A—F397.5 (15)
C7—C8—C9—C102.1 (5)F6—P1—F3A—F381.7 (15)
C6—N2—C10—C93.1 (4)F4A—P1—F3A—F30.7 (16)
Cu1—N2—C10—C9170.7 (2)F1A—P1—F3A—F3167.1 (12)
C8—C9—C10—N20.5 (5)F1—P1—F4A—F4147.0 (15)
C15—N4—C11—C123.1 (4)F3—P1—F4A—F423.4 (14)
Cu1—N4—C11—C12158.1 (3)F6A—P1—F4A—F4115.8 (14)
N4—C11—C12—C130.9 (5)F5—P1—F4A—F476.8 (14)
C11—C12—C13—C141.9 (6)F2—P1—F4A—F4177.7 (10)
C12—C13—C14—C152.4 (6)F5A—P1—F4A—F461.7 (14)
C11—N4—C15—N6176.3 (2)F6—P1—F4A—F4102.8 (14)
Cu1—N4—C15—N624.1 (3)F1A—P1—F4A—F4161.2 (13)
C11—N4—C15—C142.5 (4)F3A—P1—F4A—F423.7 (15)
Cu1—N4—C15—C14157.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H5···F3i0.86 (2)2.20 (2)3.045 (12)168 (2)
N3—H5···F3Ai0.86 (2)2.14 (2)2.963 (8)161 (2)
N6—H15···N9ii0.86 (2)2.27 (2)3.130 (3)179 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
(II) (azido-κN)bis(di-2-pyridylamine)copper(II) chloride tetrahydrate top
Crystal data top
[Cu(N3)(C10H11N3)2]Cl·4H2OF(000) = 1148
Mr = 555.49Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12357 reflections
a = 7.0560 (2) Åθ = 1.5–29.1°
b = 27.8360 (13) ŵ = 1.03 mm1
c = 12.8780 (6) ÅT = 298 K
β = 99.009 (2)°Needle, green
V = 2498.18 (18) Å30.50 × 0.20 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius MACH3
diffractometer
4900 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 29.1°, θmin = 1.5°
psi–scanh = 99
12357 measured reflectionsk = 3738
6685 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.2714P]
where P = (Fo2 + 2Fc2)/3
6407 reflections(Δ/σ)max = 0.012
348 parametersΔρmax = 0.46 e Å3
12 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Cu(N3)(C10H11N3)2]Cl·4H2OV = 2498.18 (18) Å3
Mr = 555.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0560 (2) ŵ = 1.03 mm1
b = 27.8360 (13) ÅT = 298 K
c = 12.8780 (6) Å0.50 × 0.20 × 0.15 mm
β = 99.009 (2)°
Data collection top
Enraf–Nonius MACH3
diffractometer
4900 reflections with I > 2σ(I)
12357 measured reflectionsRint = 0.032
6685 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04612 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.46 e Å3
6407 reflectionsΔρmin = 0.82 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.83631 (4)0.147129 (10)0.69350 (2)0.03488 (12)
Cl10.92856 (15)0.13850 (3)0.19694 (6)0.0656 (2)
O11.1787 (4)0.02182 (10)0.1077 (2)0.0707 (6)
H2W1.176 (5)0.0257 (13)0.0383 (15)0.077 (12)*
H1W1.079 (4)0.0023 (13)0.112 (3)0.084 (13)*
O20.3700 (5)0.11480 (15)0.2813 (3)0.1026 (10)
H3W0.248 (4)0.1238 (17)0.257 (3)0.109 (18)*
H4W0.355 (7)0.102 (2)0.344 (3)0.15 (3)*
O30.8391 (4)0.03325 (11)0.1132 (2)0.0790 (7)
H5W0.731 (5)0.0293 (17)0.144 (4)0.15 (2)*
H6W0.880 (5)0.0617 (9)0.140 (3)0.090 (13)*
O40.5012 (4)0.02940 (12)0.1944 (2)0.0840 (8)
H7W0.455 (5)0.0566 (9)0.217 (3)0.085 (13)*
H8W0.399 (5)0.0157 (14)0.155 (3)0.115 (17)*
N10.7802 (3)0.19488 (7)0.80059 (15)0.0382 (4)
N21.0597 (3)0.12442 (8)0.80080 (15)0.0379 (4)
N30.9012 (3)0.14473 (8)0.94253 (16)0.0427 (5)
H50.86720.13120.99670.051*
N41.0074 (3)0.18866 (7)0.59980 (15)0.0381 (4)
N50.8549 (3)0.09194 (7)0.59587 (15)0.0368 (4)
N60.9125 (3)0.13975 (8)0.45143 (16)0.0414 (5)
H150.88120.14180.38430.050*
N70.5662 (3)0.15840 (9)0.62191 (19)0.0497 (6)
N80.4725 (3)0.13130 (9)0.56518 (18)0.0438 (5)
N90.3727 (4)0.10560 (11)0.5108 (3)0.0723 (8)
C10.6881 (4)0.23620 (10)0.7664 (2)0.0471 (6)
H10.67680.24380.69540.056*
C20.6113 (4)0.26709 (11)0.8311 (2)0.0507 (7)
H20.55460.29580.80570.061*
C30.6208 (3)0.25425 (11)0.9354 (2)0.0493 (7)
H30.56660.27410.98090.059*
C40.7092 (4)0.21262 (10)0.9720 (2)0.0443 (6)
H40.71220.20341.04160.053*
C50.7955 (3)0.18403 (9)0.90283 (18)0.0381 (5)
C61.0570 (4)0.12463 (9)0.90444 (18)0.0379 (5)
C71.2082 (4)0.10579 (11)0.9764 (2)0.0532 (7)
H71.20140.10541.04790.064*
C81.3650 (5)0.08805 (13)0.9402 (2)0.0633 (9)
H81.46630.07520.98670.076*
C91.3728 (4)0.08929 (13)0.8334 (3)0.0614 (8)
H91.48080.07830.80760.074*
C101.2192 (4)0.10694 (11)0.7669 (2)0.0498 (7)
H101.22370.10700.69510.060*
C111.1016 (4)0.22830 (10)0.6400 (2)0.0461 (6)
H111.10860.23400.71170.055*
C121.1876 (4)0.26068 (11)0.5820 (2)0.0497 (6)
H121.24910.28780.61310.060*
C131.1797 (4)0.25158 (10)0.4756 (2)0.0471 (6)
H131.23470.27300.43350.056*
C141.0906 (4)0.21093 (10)0.4332 (2)0.0423 (6)
H141.08720.20400.36230.051*
C151.0047 (3)0.17990 (9)0.49744 (17)0.0349 (5)
C160.8611 (3)0.09694 (9)0.49296 (18)0.0361 (5)
C170.8115 (4)0.05858 (10)0.4231 (2)0.0463 (6)
H170.81570.06250.35180.056*
C180.7574 (4)0.01575 (11)0.4597 (2)0.0541 (7)
H180.72190.00950.41360.065*
C190.7557 (4)0.01009 (11)0.5666 (2)0.0543 (7)
H190.72190.01910.59360.065*
C200.8049 (4)0.04864 (10)0.6310 (2)0.0453 (6)
H200.80400.04490.70270.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0399 (2)0.03890 (18)0.02621 (16)0.00206 (11)0.00643 (12)0.00145 (10)
Cl10.0979 (7)0.0685 (5)0.0325 (3)0.0025 (4)0.0166 (4)0.0001 (3)
O10.0684 (16)0.0788 (18)0.0625 (15)0.0007 (13)0.0022 (12)0.0004 (13)
O20.097 (2)0.123 (3)0.089 (2)0.009 (2)0.0168 (18)0.019 (2)
O30.0825 (18)0.0784 (19)0.0810 (18)0.0108 (14)0.0286 (14)0.0199 (14)
O40.0676 (16)0.090 (2)0.093 (2)0.0054 (15)0.0093 (14)0.0272 (17)
N10.0457 (11)0.0385 (11)0.0300 (10)0.0029 (8)0.0046 (8)0.0027 (8)
N20.0388 (11)0.0423 (11)0.0331 (10)0.0029 (9)0.0069 (8)0.0023 (8)
N30.0537 (14)0.0476 (13)0.0289 (10)0.0042 (9)0.0129 (9)0.0047 (8)
N40.0421 (11)0.0419 (11)0.0305 (9)0.0032 (9)0.0062 (8)0.0009 (8)
N50.0430 (11)0.0381 (11)0.0293 (9)0.0028 (8)0.0056 (8)0.0009 (8)
N60.0536 (13)0.0459 (12)0.0248 (9)0.0014 (9)0.0063 (9)0.0009 (8)
N70.0435 (13)0.0544 (14)0.0492 (13)0.0037 (10)0.0005 (10)0.0094 (11)
N80.0380 (12)0.0471 (12)0.0459 (12)0.0054 (9)0.0054 (9)0.0011 (10)
N90.0548 (16)0.0659 (18)0.088 (2)0.0039 (13)0.0132 (14)0.0245 (16)
C10.0544 (15)0.0471 (15)0.0385 (13)0.0089 (12)0.0031 (11)0.0018 (11)
C20.0467 (14)0.0461 (15)0.0569 (17)0.0081 (12)0.0005 (12)0.0095 (13)
C30.0347 (13)0.0585 (17)0.0561 (17)0.0021 (12)0.0118 (11)0.0223 (13)
C40.0401 (13)0.0569 (16)0.0381 (13)0.0036 (11)0.0132 (10)0.0131 (11)
C50.0353 (12)0.0466 (14)0.0328 (11)0.0061 (10)0.0072 (9)0.0046 (10)
C60.0453 (13)0.0396 (13)0.0291 (11)0.0001 (10)0.0066 (9)0.0026 (9)
C70.0593 (18)0.0630 (18)0.0352 (13)0.0088 (14)0.0004 (12)0.0096 (12)
C80.0564 (19)0.073 (2)0.0567 (18)0.0157 (15)0.0036 (14)0.0149 (15)
C90.0484 (17)0.079 (2)0.0585 (18)0.0180 (15)0.0125 (13)0.0102 (16)
C100.0486 (15)0.0614 (18)0.0416 (14)0.0087 (13)0.0137 (12)0.0026 (12)
C110.0497 (15)0.0480 (15)0.0401 (13)0.0058 (12)0.0053 (11)0.0034 (11)
C120.0418 (14)0.0457 (15)0.0615 (17)0.0053 (11)0.0076 (12)0.0004 (13)
C130.0369 (13)0.0481 (15)0.0589 (17)0.0040 (11)0.0160 (11)0.0124 (12)
C140.0429 (14)0.0481 (14)0.0388 (13)0.0036 (11)0.0152 (10)0.0050 (11)
C150.0350 (12)0.0386 (12)0.0319 (11)0.0067 (9)0.0079 (9)0.0030 (9)
C160.0366 (12)0.0410 (13)0.0314 (11)0.0052 (9)0.0074 (9)0.0031 (9)
C170.0522 (15)0.0499 (15)0.0363 (12)0.0002 (12)0.0050 (11)0.0101 (11)
C180.0587 (18)0.0482 (16)0.0550 (17)0.0044 (13)0.0072 (13)0.0138 (13)
C190.0638 (18)0.0413 (15)0.0589 (18)0.0038 (13)0.0128 (14)0.0016 (12)
C200.0524 (15)0.0427 (14)0.0419 (13)0.0006 (11)0.0105 (11)0.0032 (11)
Geometric parameters (Å, º) top
Cu1—N11.999 (2)C2—C31.382 (4)
Cu1—N52.003 (2)C2—H20.9300
Cu1—N72.007 (2)C3—C41.365 (4)
Cu1—N22.028 (2)C3—H30.9300
Cu1—N42.169 (2)C4—C51.403 (3)
O1—H1W0.90 (3)C4—H40.9300
O1—H2W0.90 (2)C6—C71.401 (4)
O2—H3W0.91 (3)C7—C81.359 (4)
O2—H4W0.91 (4)C7—H70.9300
O3—H5W0.92 (4)C8—C91.385 (4)
O3—H6W0.89 (3)C8—H80.9300
O4—H7W0.89 (3)C9—C101.364 (4)
O4—H8W0.90 (4)C9—H90.9300
N1—C51.339 (3)C10—H100.9300
N1—C11.360 (3)C11—C121.371 (4)
N2—C61.338 (3)C11—H110.9300
N2—C101.359 (3)C12—C131.386 (4)
N3—C51.377 (3)C12—H120.9300
N3—C61.389 (3)C13—C141.367 (4)
N3—H50.8600C13—H130.9300
N4—C151.338 (3)C14—C151.398 (3)
N4—C111.349 (3)C14—H140.9300
N5—C161.340 (3)C16—C171.405 (3)
N5—C201.354 (3)C17—C181.359 (4)
N6—C161.378 (3)C17—H170.9300
N6—C151.380 (3)C18—C191.387 (4)
N6—H150.8600C18—H180.9300
N7—N81.179 (3)C19—C201.368 (4)
N8—N91.159 (3)C19—H190.9300
C1—C21.367 (4)C20—H200.9300
C1—H10.9300
N1—Cu1—N5169.35 (9)N1—C5—C4121.4 (2)
N1—Cu1—N786.36 (9)N3—C5—C4118.6 (2)
N5—Cu1—N788.99 (9)N2—C6—N3119.3 (2)
N1—Cu1—N287.37 (8)N2—C6—C7122.0 (2)
N5—Cu1—N293.91 (8)N3—C6—C7118.7 (2)
N7—Cu1—N2160.47 (10)C8—C7—C6119.0 (3)
N1—Cu1—N4102.54 (8)C8—C7—H7120.5
N5—Cu1—N487.86 (8)C6—C7—H7120.5
N7—Cu1—N4103.42 (9)C7—C8—C9119.5 (3)
N2—Cu1—N495.99 (8)C7—C8—H8120.2
H2W—O1—H1W103 (2)C9—C8—H8120.2
H3W—O2—H4W100 (2)C10—C9—C8118.8 (3)
H5W—O3—H6W100 (2)C10—C9—H9120.6
H7W—O4—H8W104 (3)C8—C9—H9120.6
C5—N1—C1118.1 (2)N2—C10—C9123.0 (3)
C5—N1—Cu1122.30 (17)N2—C10—H10118.5
C1—N1—Cu1118.36 (16)C9—C10—H10118.5
C6—N2—C10117.6 (2)N4—C11—C12124.2 (3)
C6—N2—Cu1123.19 (16)N4—C11—H11117.9
C10—N2—Cu1119.15 (17)C12—C11—H11117.9
C5—N3—C6127.0 (2)C11—C12—C13117.7 (3)
C5—N3—H5116.5C11—C12—H12121.1
C6—N3—H5116.5C13—C12—H12121.1
C15—N4—C11117.2 (2)C14—C13—C12119.4 (2)
C15—N4—Cu1121.87 (16)C14—C13—H13120.3
C11—N4—Cu1120.39 (16)C12—C13—H13120.3
C16—N5—C20118.3 (2)C13—C14—C15119.3 (2)
C16—N5—Cu1123.82 (17)C13—C14—H14120.3
C20—N5—Cu1115.28 (16)C15—C14—H14120.3
C16—N6—C15132.0 (2)N4—C15—N6120.2 (2)
C16—N6—H15114.0N4—C15—C14122.0 (2)
C15—N6—H15114.0N6—C15—C14117.7 (2)
N8—N7—Cu1125.8 (2)N5—C16—N6121.7 (2)
N9—N8—N7176.8 (3)N5—C16—C17120.7 (2)
N1—C1—C2123.3 (3)N6—C16—C17117.6 (2)
N1—C1—H1118.3C18—C17—C16120.0 (3)
C2—C1—H1118.3C18—C17—H17120.0
C1—C2—C3117.8 (3)C16—C17—H17120.0
C1—C2—H2121.1C17—C18—C19119.4 (3)
C3—C2—H2121.1C17—C18—H18120.3
C4—C3—C2120.3 (2)C19—C18—H18120.3
C4—C3—H3119.8C20—C19—C18118.2 (3)
C2—C3—H3119.8C20—C19—H19120.9
C3—C4—C5118.9 (2)C18—C19—H19120.9
C3—C4—H4120.6N5—C20—C19123.4 (2)
C5—C4—H4120.6N5—C20—H20118.3
N1—C5—N3120.0 (2)C19—C20—H20118.3
N5—Cu1—N1—C557.6 (5)Cu1—N1—C5—C4162.89 (19)
N7—Cu1—N1—C5121.9 (2)C6—N3—C5—N128.0 (4)
N2—Cu1—N1—C539.60 (19)C6—N3—C5—C4150.5 (3)
N4—Cu1—N1—C5135.16 (18)C3—C4—C5—N15.1 (4)
N5—Cu1—N1—C1109.2 (4)C3—C4—C5—N3173.4 (2)
N7—Cu1—N1—C144.9 (2)C10—N2—C6—N3176.3 (2)
N2—Cu1—N1—C1153.6 (2)Cu1—N2—C6—N35.3 (3)
N4—Cu1—N1—C158.0 (2)C10—N2—C6—C72.7 (4)
N1—Cu1—N2—C633.0 (2)Cu1—N2—C6—C7175.7 (2)
N5—Cu1—N2—C6136.4 (2)C5—N3—C6—N235.1 (4)
N7—Cu1—N2—C638.4 (4)C5—N3—C6—C7144.0 (3)
N4—Cu1—N2—C6135.3 (2)N2—C6—C7—C82.0 (5)
N1—Cu1—N2—C10148.7 (2)N3—C6—C7—C8177.0 (3)
N5—Cu1—N2—C1041.9 (2)C6—C7—C8—C90.5 (5)
N7—Cu1—N2—C10140.0 (3)C7—C8—C9—C102.2 (5)
N4—Cu1—N2—C1046.4 (2)C6—N2—C10—C90.9 (4)
N1—Cu1—N4—C15149.28 (18)Cu1—N2—C10—C9177.5 (3)
N5—Cu1—N4—C1528.39 (19)C8—C9—C10—N21.5 (5)
N7—Cu1—N4—C1560.1 (2)C15—N4—C11—C122.5 (4)
N2—Cu1—N4—C15122.10 (19)Cu1—N4—C11—C12169.4 (2)
N1—Cu1—N4—C1122.2 (2)N4—C11—C12—C131.1 (4)
N5—Cu1—N4—C11160.1 (2)C11—C12—C13—C141.0 (4)
N7—Cu1—N4—C11111.4 (2)C12—C13—C14—C151.6 (4)
N2—Cu1—N4—C1166.4 (2)C11—N4—C15—N6179.4 (2)
N1—Cu1—N5—C16134.0 (4)Cu1—N4—C15—N68.9 (3)
N7—Cu1—N5—C1669.9 (2)C11—N4—C15—C141.8 (3)
N2—Cu1—N5—C16129.39 (19)Cu1—N4—C15—C14169.93 (18)
N4—Cu1—N5—C1633.53 (19)C16—N6—C15—N421.4 (4)
N1—Cu1—N5—C2027.3 (5)C16—N6—C15—C14159.8 (3)
N7—Cu1—N5—C2091.4 (2)C13—C14—C15—N40.2 (4)
N2—Cu1—N5—C2069.29 (19)C13—C14—C15—N6178.6 (2)
N4—Cu1—N5—C20165.15 (19)C20—N5—C16—N6179.4 (2)
N1—Cu1—N7—N8155.7 (3)Cu1—N5—C16—N619.8 (3)
N5—Cu1—N7—N814.7 (3)C20—N5—C16—C171.8 (3)
N2—Cu1—N7—N884.2 (4)Cu1—N5—C16—C17158.96 (19)
N4—Cu1—N7—N8102.3 (3)C15—N6—C16—N516.8 (4)
C5—N1—C1—C20.2 (4)C15—N6—C16—C17164.4 (3)
Cu1—N1—C1—C2167.6 (2)N5—C16—C17—C180.3 (4)
N1—C1—C2—C33.1 (4)N6—C16—C17—C18179.2 (3)
C1—C2—C3—C41.8 (4)C16—C17—C18—C191.3 (4)
C2—C3—C4—C52.1 (4)C17—C18—C19—C201.4 (4)
C1—N1—C5—N3174.6 (2)C16—N5—C20—C191.7 (4)
Cu1—N1—C5—N318.6 (3)Cu1—N5—C20—C19160.7 (2)
C1—N1—C5—C44.0 (4)C18—C19—C20—N50.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O30.90 (3)1.96 (3)2.855 (4)172 (4)
O1—H2W···O3i0.90 (2)1.95 (2)2.847 (4)178 (1)
O2—H3W···Cl1ii0.90 (3)2.30 (3)3.203 (4)174 (1)
O2—H4W···N90.91 (4)2.12 (4)2.964 (5)153 (5)
O3—H5W···O40.92 (4)1.84 (4)2.751 (4)171 (4)
O3—H6W···Cl10.89 (3)2.27 (3)3.151 (3)170 (3)
O4—H7W···O20.89 (3)1.96 (3)2.843 (5)174 (3)
O4—H8W···O1ii0.90 (4)1.89 (4)2.768 (4)164 (1)
N3—H5···Cl1iii0.862.563.256 (2)139
N6—H15···Cl10.862.493.297 (2)157
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(N3)(C10H11N3)2]PF6[Cu(N3)(C10H11N3)2]Cl·4H2O
Mr592.94555.49
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)14.1074 (8), 8.5839 (5), 19.4144 (11)7.0560 (2), 27.8360 (13), 12.8780 (6)
β (°) 95.635 (1) 99.009 (2)
V3)2339.7 (2)2498.18 (18)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.081.03
Crystal size (mm)0.31 × 0.21 × 0.110.50 × 0.20 × 0.15
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Enraf–Nonius MACH3
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000a)
Tmin, Tmax0.769, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
19955, 5804, 4381 12357, 6685, 4900
Rint0.0270.032
(sin θ/λ)max1)0.6670.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.05 0.046, 0.147, 1.10
No. of reflections56356407
No. of parameters397348
No. of restraints212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.220.46, 0.82

Computer programs: SMART (Bruker, 2000), MACH3 (Enraf–Nonius, 1993), SAINT (Bruker, 2000), MACH3, SAINT, MolEN (Fair, 1990), SHELXTL (Sheldrick, 2000b), SHELXTL, PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
Cu1—N12.0046 (19)Cu1—N52.0361 (19)
Cu1—N72.009 (2)Cu1—N42.1534 (19)
Cu1—N22.0166 (19)
N1—Cu1—N788.15 (8)N2—Cu1—N589.82 (8)
N1—Cu1—N288.00 (8)N1—Cu1—N4108.15 (8)
N7—Cu1—N2166.76 (8)N7—Cu1—N496.51 (8)
N1—Cu1—N5163.10 (8)N2—Cu1—N496.73 (8)
N7—Cu1—N590.18 (8)N5—Cu1—N488.75 (8)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H5···F3i0.86 (2)2.20 (2)3.045 (12)168 (2)
N3—H5···F3Ai0.86 (2)2.14 (2)2.963 (8)161 (2)
N6—H15···N9ii0.86 (2)2.27 (2)3.130 (3)179 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Selected geometric parameters (Å, º) for (II) top
Cu1—N11.999 (2)Cu1—N22.028 (2)
Cu1—N52.003 (2)Cu1—N42.169 (2)
Cu1—N72.007 (2)
N1—Cu1—N5169.35 (9)N7—Cu1—N2160.47 (10)
N1—Cu1—N786.36 (9)N1—Cu1—N4102.54 (8)
N5—Cu1—N788.99 (9)N5—Cu1—N487.86 (8)
N1—Cu1—N287.37 (8)N7—Cu1—N4103.42 (9)
N5—Cu1—N293.91 (8)N2—Cu1—N495.99 (8)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O30.90 (3)1.96 (3)2.855 (4)172 (4)
O1—H2W···O3i0.90 (2)1.95 (2)2.847 (4)178 (1)
O2—H3W···Cl1ii0.90 (3)2.30 (3)3.203 (4)174 (1)
O2—H4W···N90.91 (4)2.12 (4)2.964 (5)153 (5)
O3—H5W···O40.92 (4)1.84 (4)2.751 (4)171 (4)
O3—H6W···Cl10.89 (3)2.27 (3)3.151 (3)170 (3)
O4—H7W···O20.89 (3)1.96 (3)2.843 (5)174 (3)
O4—H8W···O1ii0.90 (4)1.89 (4)2.768 (4)164 (1)
N3—H5···Cl1iii0.8602.5553.256 (2)139
N6—H15···Cl10.8602.4893.297 (2)157
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds