Download citation
Download citation
link to html
The title new diquinaldine derivative, C27H24N4, forms mol­ecular assemblies organized by inter­molecular quinoline [pi]-[pi] stacking [3.356 (3) and 3.440 (3) Å] and both inter- and intra­molecular N-H...N hydrogen bonds [3.039 (3)-3.104 (3) Å and 129 (2)-172 (2)°]. The combination of such inter­actions provides readily definable contacts that propagate along each crystallographic axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106030502/sf3012sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106030502/sf3012Isup2.hkl
Contains datablock I

CCDC reference: 621297

Comment top

Different types of arene–arene non-covalent interactions lead to fascinating molecular architectures and supramolecular structure in solids. We have recently shown by NMR spectroscopy (Mitra, Seaton, Assarpour & Williamson et al., 1998; Mitra, Seaton, Capitani & Assarpour, 1998) that such interactions can also be a prevelant theme in solutions. In our continuing study of ππ interactions and their effect on 1H NMR spectra, we wanted to study the consequence of interactions between aromatic and heteroaromatic groups. To this end we synthesized a molecule that contains both arene and quinoline components. 2-Aminobenzylamine is an interesting molecule that consists of two amino groups that have different reactivity profiles. Selective N-alkylation of the benzylic amine with two equivalents of 2-(bromomethyl)quinoline gave the title compound, (I).

The molecular conformation of (I), as it exists in the crystal, is influenced by several close intramolecular contacts. As shown in Fig. 1, the anilino H4B atom participtes in a bifurcated contact with nearby tertiary amino (N1) and quinoline (N3) acceptor groups (Table 1). This hydrogen-bond motif results in the anilino and quinoline fragments adopting a roughly planar alignment with an interplanar angle of 16.66 (8)°. Selected geometric parameters are given in Table 2.

Inspection of the crystal structure reveals translationally related molecules linked by N–H···N hydrogen bonds to form a catemeric motif along the b axis (Fig. 2). These molecular assemblies, described by C(9) graph-set notation (Bernstein et al., 1995), result from the association of neighboring anilino (H4A) and quinoline (N2) groups. Another noteworthy feature of this structure is the contribution of ππ interactions to the crystal packing. As shown in Fig. 2, each of the quinoline groups forms centrosymmetric dimeric motifs [for example quinoline(N3)–quinoline(N3i) = 3.356 (3) Å and quinoline(N2)–quinoline(N2ii) = 3.440 (3) Å)] that link the hydrogen-bonded molecular chains along the a and c axes. Since molecules of (I) contain two nearly orthogonally positioned quinoline fragments [the interplanar angle is 81.75 (4)°], the combination of such ππ interactions and hydrogen bonds provides readily definable contacts that contribute to the overall three-dimensional organization.

Experimental top

2-(Bromomethyl)quinoline (0.222 g, 1.0 mmol) was reacted with 2-aminobenzylamine (0.0.061 g, 0.5 mmol) in CH3CN (5 ml) in the presence of anhydrous K2CO3 (0.152 g, 1.1 mmol) under N2 at room temperature for 16 h. The reaction mixture was concentrated under reduced pressure and directly chromatographed by flash column chromatography (SiO2 gel) using a solvent gradient from 5 to 10% MeOH/CH2Cl2. Fractions containing the pure product were combined, concentrated under reduced pressure and recrystallized from CHCl3/n-heptane to give (I) (0.110 g, 55% yield) as a white powder (m.p. 473–476 K). UV–Vis [MeOH; λmax; nm; (ε)]: 232?(56200), 303?(6570), 316?(6940). IR (KBr; cm-1): 3351, 3186, 1602, 1565, 743. 1H NMR (0.005 M in CDCl3); δ 3.82 (s, 2H, benzyl-CH2), 4.01 (s, 4H, quinolyl-CH2), 5.20 (br s, 2H, NH2), 6.64 (t, J = 7.5 Hz, H-5'), 6.66 (d, J = 6.9 Hz, 1H, H-3'), 7.07 (t, J = 7.5 Hz, 1H, H-4'), 7.11 (d, J = 7.5 Hz, 1H, H-6'), 7.50 (m, 2H, H-6), 7.51 (d, J = 8.1 Hz, 2H, H-3'), 7.69, (ddd, 2H, J = 8.3, 6.9 and 1.4 Hz, 2H, H-7), 7.75 (d, J = 8.1 Hz, 2H, H-5), 8.04 (d, J = 8.1 Hz, 2H, H-4), 8.06 (d, J = 8.3 Hz, 2H, H-8). 13C NMR (CDCl3): δ 159.2 (C2), 147.6 (C8a), 147.0 (C2'), 136.3 (C4), 131.5 (C6'), 129.4 (C7), 128.9 (C8), 128.6 (C4'), 127.5 (C5), 127.3 (C4a), 126.2 (C6), 122.2 (C1'), 121.3 (C3), 117.1 (C5'),115.4 (C3'), 60.9 (CH2), 58.4 (CH2').

Refinement top

The anilino H atoms (H4A and H4B) were located in a difference density map and their parameters were refined freely. The remaining H atoms were treated as riding, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2) [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2002) and XPREP (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

Figures top
[Figure 1] Fig. 1. The molecular structure and labeling scheme of (I) (50% probability displacement elipsoids), showing an intramolecular bifurcated interaction (dotted line).
[Figure 2] Fig. 2. A view of the packing of (I), showing the catemeric hydrogen-bond network and π-stacking of the quinoline fragments. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 2 - y, -z; (iii) x, y - 1, z.]
N-(2-Aminobenzyl)-N,N-bis(quinolin-2-ylmethyl)amine top
Crystal data top
C27H24N4F(000) = 856
Mr = 404.50Dx = 1.282 Mg m3
MonoclinicP21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3239 reflections
a = 12.4071 (16) Åθ = 5.5–53.8°
b = 7.9834 (10) ŵ = 0.08 mm1
c = 21.376 (3) ÅT = 100 K
β = 98.041 (2)°Transparent needle, colorless
V = 2096.5 (5) Å30.38 × 0.04 × 0.03 mm
Z = 4
Data collection top
Bruker APEX-II CCD area-detector
diffractometer
4699 independent reflections
Radiation source: fine-focus sealed tube3089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1315
Tmin = 0.971, Tmax = 0.998k = 1010
14852 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.5447P]
where P = (Fo2 + 2Fc2)/3
4699 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C27H24N4V = 2096.5 (5) Å3
Mr = 404.50Z = 4
MonoclinicP21/nMo Kα radiation
a = 12.4071 (16) ŵ = 0.08 mm1
b = 7.9834 (10) ÅT = 100 K
c = 21.376 (3) Å0.38 × 0.04 × 0.03 mm
β = 98.041 (2)°
Data collection top
Bruker APEX-II CCD area-detector
diffractometer
4699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3089 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.998Rint = 0.058
14852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.40 e Å3
4699 reflectionsΔρmin = 0.23 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.31203 (14)0.81463 (19)0.17491 (7)0.0167 (4)
N20.38292 (14)1.1433 (2)0.07494 (8)0.0177 (4)
N30.15326 (14)0.5904 (2)0.12313 (7)0.0178 (4)
N40.37564 (16)0.4398 (2)0.16790 (9)0.0232 (4)
C10.38390 (18)0.9509 (2)0.16202 (9)0.0181 (5)
H1A0.46020.92060.17800.022*
H1B0.36531.05300.18450.022*
C20.37363 (17)0.9863 (2)0.09240 (9)0.0176 (5)
C30.35704 (17)0.8517 (2)0.04863 (9)0.0200 (5)
H30.34910.74030.06300.024*
C40.35267 (17)0.8846 (2)0.01413 (10)0.0193 (5)
H40.34310.79570.04390.023*
C50.36232 (16)1.0511 (2)0.03495 (9)0.0176 (5)
C60.35938 (17)1.0952 (3)0.09919 (10)0.0213 (5)
H60.34941.01050.13070.026*
C70.37071 (18)1.2578 (3)0.11648 (10)0.0226 (5)
H70.36841.28620.15980.027*
C80.38581 (18)1.3835 (3)0.06998 (10)0.0233 (5)
H80.39401.49670.08230.028*
C90.38884 (18)1.3458 (2)0.00765 (10)0.0212 (5)
H90.39831.43250.02310.025*
C100.37789 (16)1.1778 (2)0.01157 (9)0.0181 (5)
C110.19838 (17)0.8672 (2)0.16677 (9)0.0175 (5)
H11A0.19070.96820.13960.021*
H11B0.17930.89960.20860.021*
C120.11772 (17)0.7377 (2)0.13815 (9)0.0176 (5)
C130.00605 (18)0.7839 (3)0.12818 (10)0.0209 (5)
H130.01600.89120.14080.025*
C140.06876 (18)0.6731 (3)0.10046 (10)0.0232 (5)
H140.14360.70280.09310.028*
C150.03476 (18)0.5131 (2)0.08251 (9)0.0192 (5)
C160.10710 (18)0.3892 (3)0.05350 (10)0.0234 (5)
H160.18260.41340.04380.028*
C170.06929 (19)0.2366 (3)0.03951 (10)0.0239 (5)
H170.11850.15390.02070.029*
C180.04253 (18)0.1998 (3)0.05268 (10)0.0231 (5)
H180.06820.09240.04250.028*
C190.11492 (18)0.3178 (2)0.08011 (9)0.0193 (5)
H190.19030.29190.08850.023*
C200.07766 (17)0.4762 (2)0.09564 (9)0.0184 (5)
C210.34498 (17)0.7398 (2)0.23747 (9)0.0185 (5)
H21A0.28820.65990.24650.022*
H21B0.35000.82930.26980.022*
C220.45217 (18)0.6499 (2)0.24264 (9)0.0185 (5)
C230.46258 (18)0.5027 (2)0.20754 (9)0.0193 (5)
C240.56236 (18)0.4168 (3)0.21622 (10)0.0218 (5)
H240.56960.31570.19370.026*
C250.65032 (19)0.4772 (3)0.25708 (10)0.0244 (5)
H250.71760.41850.26190.029*
C260.64041 (18)0.6235 (3)0.29100 (10)0.0231 (5)
H260.70040.66520.31920.028*
C270.54226 (18)0.7071 (3)0.28319 (10)0.0219 (5)
H270.53590.80740.30630.026*
H4A0.383 (2)0.344 (3)0.1418 (13)0.050 (8)*
H4B0.321 (2)0.519 (3)0.1520 (12)0.045 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0181 (10)0.0139 (8)0.0180 (9)0.0001 (7)0.0022 (7)0.0021 (7)
N20.0177 (10)0.0162 (9)0.0194 (9)0.0007 (7)0.0030 (7)0.0011 (7)
N30.0206 (10)0.0155 (9)0.0178 (9)0.0000 (7)0.0038 (7)0.0014 (7)
N40.0238 (11)0.0163 (9)0.0282 (11)0.0030 (8)0.0014 (8)0.0050 (8)
C10.0218 (12)0.0129 (10)0.0198 (11)0.0007 (9)0.0036 (9)0.0005 (8)
C20.0161 (11)0.0173 (10)0.0196 (11)0.0008 (8)0.0030 (8)0.0015 (8)
C30.0226 (13)0.0150 (10)0.0227 (11)0.0018 (9)0.0037 (9)0.0004 (8)
C40.0190 (12)0.0171 (10)0.0217 (11)0.0018 (9)0.0029 (9)0.0059 (8)
C50.0129 (11)0.0189 (10)0.0209 (11)0.0006 (8)0.0020 (8)0.0006 (8)
C60.0170 (12)0.0256 (11)0.0211 (11)0.0011 (9)0.0022 (9)0.0028 (9)
C70.0210 (12)0.0283 (12)0.0187 (11)0.0010 (10)0.0028 (9)0.0035 (9)
C80.0249 (13)0.0184 (11)0.0269 (12)0.0039 (9)0.0045 (10)0.0061 (9)
C90.0240 (13)0.0147 (10)0.0249 (12)0.0025 (9)0.0039 (9)0.0003 (8)
C100.0146 (11)0.0195 (11)0.0204 (11)0.0010 (9)0.0026 (8)0.0002 (8)
C110.0188 (12)0.0131 (10)0.0208 (11)0.0025 (8)0.0034 (9)0.0027 (8)
C120.0214 (12)0.0169 (10)0.0150 (10)0.0030 (9)0.0039 (8)0.0025 (8)
C130.0216 (12)0.0171 (10)0.0244 (11)0.0035 (9)0.0051 (9)0.0003 (8)
C140.0183 (12)0.0235 (11)0.0282 (12)0.0028 (9)0.0045 (9)0.0002 (9)
C150.0198 (12)0.0198 (11)0.0181 (11)0.0005 (9)0.0027 (9)0.0029 (8)
C160.0169 (12)0.0272 (12)0.0255 (12)0.0008 (9)0.0005 (9)0.0028 (9)
C170.0266 (13)0.0203 (11)0.0233 (12)0.0075 (10)0.0017 (9)0.0019 (9)
C180.0289 (14)0.0163 (10)0.0239 (12)0.0000 (9)0.0026 (10)0.0021 (9)
C190.0187 (12)0.0185 (10)0.0201 (11)0.0027 (9)0.0003 (9)0.0018 (8)
C200.0229 (13)0.0173 (10)0.0149 (10)0.0026 (9)0.0027 (9)0.0012 (8)
C210.0222 (12)0.0165 (10)0.0177 (11)0.0007 (9)0.0059 (9)0.0003 (8)
C220.0249 (13)0.0153 (10)0.0160 (10)0.0015 (9)0.0056 (9)0.0041 (8)
C230.0231 (12)0.0177 (10)0.0179 (11)0.0001 (9)0.0054 (9)0.0039 (8)
C240.0263 (13)0.0179 (11)0.0218 (11)0.0008 (9)0.0056 (9)0.0016 (8)
C250.0230 (13)0.0263 (12)0.0241 (12)0.0062 (10)0.0041 (9)0.0054 (9)
C260.0212 (13)0.0252 (11)0.0214 (11)0.0006 (9)0.0020 (9)0.0031 (9)
C270.0293 (13)0.0189 (11)0.0173 (11)0.0001 (9)0.0030 (9)0.0008 (8)
Geometric parameters (Å, º) top
N1—C11.457 (3)C11—H11B0.9900
N1—C111.458 (3)C12—C131.421 (3)
N1—C211.469 (2)C13—C141.357 (3)
N2—C21.317 (2)C13—H130.9500
N2—C101.375 (3)C14—C151.415 (3)
N3—C121.311 (3)C14—H140.9500
N3—C201.379 (3)C15—C201.415 (3)
N4—C231.370 (3)C15—C161.419 (3)
N4—H4A0.96 (3)C16—C171.354 (3)
N4—H4B0.95 (3)C16—H160.9500
C1—C21.502 (3)C17—C181.408 (3)
C1—H1A0.9900C17—H170.9500
C1—H1B0.9900C18—C191.375 (3)
C2—C31.421 (3)C18—H180.9500
C3—C41.361 (3)C19—C201.402 (3)
C3—H30.9500C19—H190.9500
C4—C51.412 (3)C21—C221.502 (3)
C4—H40.9500C21—H21A0.9900
C5—C101.412 (3)C21—H21B0.9900
C5—C61.413 (3)C22—C271.392 (3)
C6—C71.362 (3)C22—C231.410 (3)
C6—H60.9500C23—C241.405 (3)
C7—C81.407 (3)C24—C251.386 (3)
C7—H70.9500C24—H240.9500
C8—C91.362 (3)C25—C261.389 (3)
C8—H80.9500C25—H250.9500
C9—C101.415 (3)C26—C271.378 (3)
C9—H90.9500C26—H260.9500
C11—C121.508 (3)C27—H270.9500
C11—H11A0.9900
C1—N1—C11111.7 (2)C13—C12—C11117.43 (18)
C1—N1—C21112.1 (2)C14—C13—C12119.30 (19)
C11—N1—C21111.5 (2)C14—C13—H13120.3
C2—N2—C10118.43 (17)C12—C13—H13120.3
C12—N3—C20117.73 (18)C13—C14—C15119.7 (2)
C23—N4—H4A121.1 (16)C13—C14—H14120.2
C23—N4—H4B115.9 (15)C15—C14—H14120.2
H4A—N4—H4B116 (2)C20—C15—C14117.20 (19)
N1—C1—C2111.00 (16)C20—C15—C16119.18 (19)
N1—C1—H1A109.4C14—C15—C16123.6 (2)
C2—C1—H1A109.4C17—C16—C15120.4 (2)
N1—C1—H1B109.4C17—C16—H16119.8
C2—C1—H1B109.4C15—C16—H16119.8
H1A—C1—H1B108.0C16—C17—C18120.4 (2)
N2—C2—C3122.90 (18)C16—C17—H17119.8
N2—C2—C1117.44 (17)C18—C17—H17119.8
C3—C2—C1119.64 (17)C19—C18—C17120.6 (2)
C4—C3—C2119.03 (18)C19—C18—H18119.7
C4—C3—H3120.5C17—C18—H18119.7
C2—C3—H3120.5C18—C19—C20120.1 (2)
C3—C4—C5119.94 (18)C18—C19—H19119.9
C3—C4—H4120.0C20—C19—H19119.9
C5—C4—H4120.0N3—C20—C19118.05 (19)
C4—C5—C10117.47 (18)N3—C20—C15122.67 (18)
C4—C5—C6123.30 (19)C19—C20—C15119.28 (19)
C10—C5—C6119.22 (18)N1—C21—C22113.08 (16)
C7—C6—C5120.77 (19)N1—C21—H21A109.0
C7—C6—H6119.6C22—C21—H21A109.0
C5—C6—H6119.6N1—C21—H21B109.0
C6—C7—C8119.78 (19)C22—C21—H21B109.0
C6—C7—H7120.1H21A—C21—H21B107.8
C8—C7—H7120.1C27—C22—C23118.6 (2)
C9—C8—C7121.09 (19)C27—C22—C21120.98 (18)
C9—C8—H8119.5C23—C22—C21120.35 (18)
C7—C8—H8119.5N4—C23—C24120.37 (19)
C8—C9—C10120.22 (19)N4—C23—C22120.8 (2)
C8—C9—H9119.9C24—C23—C22118.78 (19)
C10—C9—H9119.9C25—C24—C23121.0 (2)
N2—C10—C5122.21 (18)C25—C24—H24119.5
N2—C10—C9118.88 (18)C23—C24—H24119.5
C5—C10—C9118.91 (18)C24—C25—C26120.2 (2)
N1—C11—C12115.26 (16)C24—C25—H25119.9
N1—C11—H11A108.5C26—C25—H25119.9
C12—C11—H11A108.5C27—C26—C25119.0 (2)
N1—C11—H11B108.5C27—C26—H26120.5
C12—C11—H11B108.5C25—C26—H26120.5
H11A—C11—H11B107.5C26—C27—C22122.36 (19)
N3—C12—C13123.39 (19)C26—C27—H27118.8
N3—C12—C11119.17 (19)C22—C27—H27118.8
C11—N1—C1—C273.2 (2)C12—C13—C14—C150.6 (3)
C21—N1—C1—C2160.86 (16)C13—C14—C15—C200.9 (3)
C10—N2—C2—C31.0 (3)C13—C14—C15—C16179.8 (2)
C10—N2—C2—C1177.59 (18)C20—C15—C16—C171.1 (3)
N1—C1—C2—N2145.02 (19)C14—C15—C16—C17177.8 (2)
N1—C1—C2—C336.4 (3)C15—C16—C17—C181.0 (3)
N2—C2—C3—C41.4 (3)C16—C17—C18—C190.2 (3)
C1—C2—C3—C4177.1 (2)C17—C18—C19—C200.4 (3)
C2—C3—C4—C51.3 (3)C12—N3—C20—C19179.28 (18)
C3—C4—C5—C100.9 (3)C12—N3—C20—C150.9 (3)
C3—C4—C5—C6179.5 (2)C18—C19—C20—N3179.93 (18)
C4—C5—C6—C7179.0 (2)C18—C19—C20—C150.3 (3)
C10—C5—C6—C70.4 (3)C14—C15—C20—N31.7 (3)
C5—C6—C7—C80.2 (3)C16—C15—C20—N3179.31 (18)
C6—C7—C8—C90.3 (3)C14—C15—C20—C19178.49 (18)
C7—C8—C9—C100.7 (3)C16—C15—C20—C190.5 (3)
C2—N2—C10—C50.5 (3)C1—N1—C21—C2266.8 (2)
C2—N2—C10—C9179.39 (19)C11—N1—C21—C22167.12 (16)
C4—C5—C10—N20.5 (3)N1—C21—C22—C27114.6 (2)
C6—C5—C10—N2179.18 (19)N1—C21—C22—C2367.1 (2)
C4—C5—C10—C9179.45 (19)C27—C22—C23—N4178.78 (19)
C6—C5—C10—C90.7 (3)C21—C22—C23—N40.4 (3)
C8—C9—C10—N2179.0 (2)C27—C22—C23—C241.9 (3)
C8—C9—C10—C50.9 (3)C21—C22—C23—C24176.47 (18)
C1—N1—C11—C12142.47 (17)N4—C23—C24—C25178.7 (2)
C21—N1—C11—C1291.2 (2)C22—C23—C24—C251.8 (3)
C20—N3—C12—C130.7 (3)C23—C24—C25—C261.0 (3)
C20—N3—C12—C11178.46 (17)C24—C25—C26—C270.2 (3)
N1—C11—C12—N30.3 (3)C25—C26—C27—C220.3 (3)
N1—C11—C12—C13178.89 (17)C23—C22—C27—C261.2 (3)
N3—C12—C13—C141.5 (3)C21—C22—C27—C26177.18 (19)
C11—C12—C13—C14177.66 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N30.95 (3)2.17 (3)3.039 (3)152 (2)
N4—H4B···N10.95 (3)2.42 (3)3.104 (3)129 (2)
N4—H4A···N2i0.96 (3)2.15 (3)3.100 (2)172 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H24N4
Mr404.50
Crystal system, space groupMonoclinicP21/n
Temperature (K)100
a, b, c (Å)12.4071 (16), 7.9834 (10), 21.376 (3)
β (°) 98.041 (2)
V3)2096.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.04 × 0.03
Data collection
DiffractometerBruker APEX-II CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.971, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
14852, 4699, 3089
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.134, 1.02
No. of reflections4699
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.23

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2002) and XPREP (Bruker, 2001), SHELXTL (Bruker, 2000), SHELXTL, X-SEED (Barbour, 2001), X-SEED.

Selected geometric parameters (Å, º) top
N1—C11.457 (3)N1—C211.469 (2)
N1—C111.458 (3)N4—C231.370 (3)
C1—N1—C11111.7 (2)C11—N1—C21111.5 (2)
C1—N1—C21112.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N30.95 (3)2.17 (3)3.039 (3)152 (2)
N4—H4B···N10.95 (3)2.42 (3)3.104 (3)129 (2)
N4—H4A···N2i0.96 (3)2.15 (3)3.100 (2)172 (2)
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds