Download citation
Download citation
link to html
In the title copper(II) compound, [Cu(C7H4BrO2)(ClO4)(C12H8N2)], the Cu atom is five-coordinated in a distorted square-pyramidal geometry by the N- and O-donors of 4-bromo-2-formyl­phenolate, 1,10-phenanthroline and perchlorate. Pairs of complexes are linked together by Cu...O(phenolate) and [pi]-[pi] stacking inter­actions between 4-bromo-2-formyl­phenolate and 1,10-phenanthroline. Along the crystallographic a axis, the dimers are linked by hydrogen bonds between a perchlorate O atom and a 4-bromo-2-formyl­phenolate H atom, and by further [pi]-[pi] stacking inter­actions. Hydrogen bonding between the Br atom and a 1,10-phenanthroline H atom takes place between the stacks of dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106022761/sf3008sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106022761/sf3008Isup2.hkl
Contains datablock I

CCDC reference: 292357

Comment top

Studies of complexes containing salicylaldehyde and its derivatives have been reported by Janzen et al. (2004) and other groups. The five-coordinated CuII complexes have been extensively investigated and the relationship between their structures and reactivities is of major importance. In the light of conflicting opinions on how best to estimate the geometry of five-coordinated CuII complexes, Addison et al. (1984) introduced a very useful parameter, τ, which provides a measure of the degree of SP (square-pyramidal) versus TBP (trigonal–bipyramidal) geometry adopted by five-coordinate CuII complexes.

We report here the synthesis and structure of the title complex, (I). This is the first reported crystal structure of a complex involving Cu2+, 1,10-phenanthroline, 4-bromo-2-formylphenolate and ClO4. Elemental analysis data for this compound are in good agreement with the experimental crystal pattern. The larger of the basal angles, O2—Cu1—N2, is 176.33 (17)° and the remaining angle, O1—Cu1—N1, is 170.43 (17)°. According to Addison's rule, we calculated the parameter τ to be 0.098. Thus, we can conclude that the complex in this paper will show a square-pyramidal coordination geometry.

In complex (I), the CuII ion is coordinated by phenolate atom O1, carbonyl atom O2, 1,10-phenanthroline atoms N1 and N2, and atom O3 of the ClO4 anion. Atom O3 lies in the axial position, and the equatorial positions are occupied by the other four donor atoms. The bond distances for Cu1—N1 and Cu1—N2 of 2.007 (4) and 1.999 (4) Å, respectively, are nearly as long as those found for the similar auxiliary ligand 1,10-phenanthroline (Youngme et al. 2005). The bond lengths for Cu1—O1 and Cu1—O2 are 1.898 (4) and 1.995 (4) Å, respectively, which are in the range of those reported for similar copper(II) complexes [1.953 (2) and 1.952 (2) Å; Yang et al., 2004]. The Cu1—O3 bond distance of 2.423 (11) Å is in the range observed in analogous compounds [2.381 (4) and 2.559 (4) Å; Plieger et al., 2004]. The larger angles around Cu are near 180° (see above), so the ligands form a satisfactory N2O2 square, with atom O3 inhabiting the axial position. In this way, a distorted square pyramid is formed (Fig. 1).

It is interesting that there are weak Cu···O interactions, ππ stacking interactions and intermolecular hydrogen bonds in this complex. There are no intramolecular hydrogen bonds in the structure of (I). The CH groups participate in a hydrogen bond with an O atom of the ClO4 anion, forming a C—H···O hydrogen bond, with the C—H···O angle being 161.6°. The Br atom and an H atom of the 1,10-phenanthroline ligand form a weaker hydrogen bond, with the C—H···Br angle being 135.8°. Adjacent dimers are then linked by face-to-face ππ stacking interactions between 4-bromo-2-formylphenolate and 1,10-phenanthroline ligands, the shortest centroid–centriod contact being 3.628 Å, which is in the range of average values in ππ stacking interactions (Janiak, 2000). In addition, the Cu···O(phenolate) distance in (I) is 2.820 Å, which is in the range of values in the previous literature [Lower limit?–3.076 (4) Å; Yang et al., 2004]. Dimers based on above-mentioned Cu···O weak interaction and ππ stacking interaction are linked along the crystallographic a axis by hydrogen bonding (Fig. 2).

The solid-state IR spectrum of (I) in the region 450–4000 cm−1 is in agreement with the X-ray diffraction data with respect to the mode of coordination. The absorption bands in the spectrum of (I) were red-shifted by 10–20 cm−1 relative to the bands in the spectrum of the free ligand. The two shortest absorption bands in the UV–vis spectrum of the free ligand, at about 230 nm, characterized by high molecular absorption coeffcients, can be attributed to the ππ* transition of the ligands. The longest wavelength band, at about 650 nm, can be characterized by a dd transition of the metal ion. This case is very similar to those observed for the structurally well characterized square-bipyramidal geometry (Lever, 1984).

Experimental top

For the preparation of the title compound, triethylamine (0.1 mmol) was added to a solution of 5-bromosalicylaldimine (0.0220 g, 0.1 mmol) in methanol (10 ml). After stirring the mixture for 10 min, 1,10-phenanthroline (0.0198 g, 0.1 mmol) was added. To the resulting solution, a methanolic solution (5 ml) of Cu(ClO4)2·6H2O (0.0370 g, 0.1 mmol) was added with stirring at room temperature. The solution was then heated and stirred for 2 h. After about 10 d, green block crystals of (I) suitable for X-ray analysis appeared. These were collected by filtration, washed with H2O and dried over silica gel (yield 58%). Analysis, calculated for C19H12BrClCuN2O6: C 42.01, H 2.23, N 5.16%; found: C 42.96, H 2.16, N 5.82%.

Refinement top

H atoms were included in calculated positions and refined as riding on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C,N). The perchlorate ion is disordered. The occupancies of atoms O3, O4, O5 and O6 are 0.42 (1) and those of atoms O3', O4', O5' and O6' are 0.58 (1).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The independent components of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The dimer units of the title complex, along the a axis, showing the Cu···O weak interaction, ππ stacking interaction, and C—H···O and C—H···Br hydrogen bonds. For the sake of clarity, H atoms have been omitted.
(4-Bromo-2-formylphenolato)perchlorato(1,10-phenanthroline)copper(II) top
Crystal data top
[Cu(C7H4BrO2)(ClO4)(C12H8N2)]Z = 2
Mr = 543.21F(000) = 538
Triclinic, P1Dx = 1.861 Mg m3
a = 7.7560 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.336 (2) ÅCell parameters from 1965 reflections
c = 12.873 (3) Åθ = 2.7–26.1°
α = 83.802 (3)°µ = 3.37 mm1
β = 75.795 (3)°T = 294 K
γ = 76.010 (3)°Block, green
V = 969.5 (3) Å30.22 × 0.18 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3353 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.763, Tmax = missingk = 1012
4860 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.9337P]
where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max = 0.002
308 parametersΔρmax = 1.31 e Å3
68 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(C7H4BrO2)(ClO4)(C12H8N2)]γ = 76.010 (3)°
Mr = 543.21V = 969.5 (3) Å3
Triclinic, P1Z = 2
a = 7.7560 (15) ÅMo Kα radiation
b = 10.336 (2) ŵ = 3.37 mm1
c = 12.873 (3) ÅT = 294 K
α = 83.802 (3)°0.22 × 0.18 × 0.12 mm
β = 75.795 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3353 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2427 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = missingRint = 0.019
4860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04968 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 1.31 e Å3
3353 reflectionsΔρmin = 0.53 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.06431 (9)0.56851 (6)0.60366 (5)0.0394 (2)
Br10.32031 (11)0.97317 (8)0.11163 (6)0.0758 (3)
O10.1859 (5)0.5492 (4)0.4571 (3)0.0478 (10)
O20.0713 (5)0.7494 (4)0.5756 (3)0.0442 (9)
N10.0730 (6)0.5590 (5)0.7572 (4)0.0424 (11)
N20.1948 (6)0.3846 (4)0.6423 (4)0.0429 (11)
C10.2141 (7)0.6467 (5)0.3877 (4)0.0386 (12)
C20.3525 (8)0.6171 (6)0.2927 (4)0.0450 (13)
H20.42480.53120.28420.054*
C30.3792 (8)0.7136 (7)0.2146 (5)0.0511 (15)
H30.46900.69280.15230.061*
C40.2741 (7)0.8440 (6)0.2257 (4)0.0447 (13)
C50.1413 (7)0.8787 (6)0.3155 (5)0.0436 (13)
H50.07140.96550.32200.052*
C60.1118 (7)0.7790 (5)0.3994 (4)0.0377 (12)
C70.0300 (7)0.8188 (5)0.4924 (4)0.0413 (12)
H70.09840.90600.49010.050*
C80.2066 (8)0.6495 (7)0.8089 (5)0.0553 (16)
H80.24470.73120.77400.066*
C90.2931 (10)0.6248 (9)0.9161 (6)0.076 (2)
H90.38820.68960.95180.092*
C100.2368 (11)0.5050 (9)0.9677 (6)0.077 (2)
H100.29150.48881.03920.092*
C110.0949 (9)0.4054 (7)0.9121 (5)0.0588 (17)
C120.0322 (12)0.2743 (9)0.9572 (6)0.074 (2)
H120.08540.25071.02740.089*
C130.1036 (12)0.1848 (8)0.8982 (6)0.073 (2)
H130.14360.10070.92900.088*
C140.1868 (9)0.2167 (6)0.7895 (5)0.0539 (16)
C150.3255 (10)0.1294 (6)0.7209 (6)0.0642 (19)
H150.36920.04270.74590.077*
C160.3960 (9)0.1704 (6)0.6187 (6)0.0607 (18)
H160.48840.11240.57420.073*
C170.3288 (8)0.3005 (6)0.5809 (5)0.0514 (15)
H170.37890.32870.51140.062*
C180.1271 (8)0.3438 (6)0.7450 (5)0.0451 (13)
C190.0167 (8)0.4388 (6)0.8065 (4)0.0465 (14)
Cl10.2990 (2)0.76688 (18)0.70234 (16)0.0691 (5)
O30.2947 (19)0.6829 (12)0.6188 (9)0.070 (4)0.423 (12)
O40.1408 (15)0.8575 (13)0.7357 (12)0.102 (6)0.423 (12)
O50.4650 (14)0.8130 (14)0.6673 (11)0.084 (5)0.423 (12)
O60.331 (2)0.6660 (14)0.7934 (9)0.149 (8)0.423 (12)
O3'0.3012 (15)0.6437 (7)0.6652 (10)0.083 (4)0.577 (12)
O4'0.1370 (14)0.8166 (12)0.7807 (8)0.119 (5)0.577 (12)
O5'0.4588 (14)0.7759 (12)0.7275 (12)0.127 (5)0.577 (12)
O6'0.2738 (15)0.8692 (8)0.6082 (7)0.106 (4)0.577 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0431 (4)0.0416 (4)0.0301 (4)0.0109 (3)0.0030 (3)0.0035 (3)
Br10.0839 (5)0.0861 (6)0.0548 (5)0.0333 (4)0.0124 (4)0.0327 (4)
O10.059 (2)0.040 (2)0.036 (2)0.0109 (18)0.0016 (18)0.0006 (16)
O20.045 (2)0.046 (2)0.036 (2)0.0079 (18)0.0018 (17)0.0023 (17)
N10.042 (3)0.053 (3)0.033 (2)0.015 (2)0.006 (2)0.000 (2)
N20.041 (3)0.043 (3)0.047 (3)0.013 (2)0.012 (2)0.001 (2)
C10.041 (3)0.043 (3)0.034 (3)0.015 (2)0.009 (2)0.002 (2)
C20.044 (3)0.052 (3)0.039 (3)0.012 (3)0.006 (2)0.005 (2)
C30.052 (3)0.074 (4)0.030 (3)0.029 (3)0.001 (3)0.001 (3)
C40.044 (3)0.060 (4)0.033 (3)0.021 (3)0.010 (3)0.010 (2)
C50.043 (3)0.046 (3)0.045 (3)0.017 (3)0.014 (3)0.008 (2)
C60.039 (3)0.052 (3)0.025 (3)0.019 (2)0.007 (2)0.004 (2)
C70.042 (3)0.037 (3)0.042 (3)0.003 (2)0.010 (2)0.002 (2)
C80.050 (4)0.077 (4)0.038 (3)0.020 (3)0.005 (3)0.001 (3)
C90.060 (4)0.113 (7)0.050 (4)0.021 (4)0.005 (3)0.013 (4)
C100.079 (5)0.121 (7)0.034 (4)0.042 (5)0.006 (4)0.001 (4)
C110.073 (4)0.080 (5)0.037 (3)0.040 (4)0.020 (3)0.008 (3)
C120.097 (6)0.098 (6)0.046 (4)0.052 (5)0.035 (4)0.027 (4)
C130.110 (6)0.067 (5)0.068 (5)0.046 (5)0.058 (5)0.037 (4)
C140.068 (4)0.048 (3)0.062 (4)0.024 (3)0.036 (3)0.007 (3)
C150.082 (5)0.046 (4)0.085 (5)0.020 (4)0.057 (4)0.009 (3)
C160.063 (4)0.045 (3)0.080 (5)0.000 (3)0.034 (4)0.012 (3)
C170.048 (3)0.048 (3)0.061 (4)0.010 (3)0.017 (3)0.004 (3)
C180.052 (3)0.051 (3)0.043 (3)0.027 (3)0.022 (3)0.009 (3)
C190.049 (3)0.064 (4)0.036 (3)0.030 (3)0.017 (3)0.008 (3)
Cl10.0562 (10)0.0699 (11)0.0835 (13)0.0170 (8)0.0099 (9)0.0219 (9)
O30.066 (7)0.088 (8)0.066 (7)0.028 (6)0.022 (6)0.006 (6)
O40.093 (9)0.088 (9)0.110 (10)0.008 (7)0.022 (7)0.002 (8)
O50.080 (8)0.095 (8)0.088 (8)0.037 (6)0.017 (6)0.017 (7)
O60.155 (11)0.148 (11)0.109 (10)0.006 (8)0.016 (8)0.023 (8)
O3'0.072 (6)0.055 (5)0.134 (9)0.007 (4)0.054 (6)0.005 (5)
O4'0.130 (8)0.102 (8)0.090 (8)0.004 (6)0.009 (6)0.006 (6)
O5'0.112 (8)0.127 (9)0.173 (10)0.027 (6)0.092 (7)0.002 (7)
O6'0.133 (8)0.088 (6)0.092 (7)0.029 (6)0.017 (6)0.008 (5)
Geometric parameters (Å, º) top
Cu1—O11.898 (4)C9—H90.9300
Cu1—O21.955 (4)C10—C111.417 (10)
Cu1—N21.999 (4)C10—H100.9300
Cu1—N12.007 (4)C11—C191.388 (8)
Cu1—O32.423 (11)C11—C121.435 (10)
Br1—C41.902 (5)C12—C131.353 (11)
O1—C11.295 (6)C12—H120.9300
O2—C71.242 (6)C13—C141.430 (10)
N1—C81.311 (7)C13—H130.9300
N1—C191.357 (7)C14—C181.393 (8)
N2—C171.329 (7)C14—C151.410 (10)
N2—C181.360 (7)C15—C161.359 (10)
C1—C61.408 (7)C15—H150.9300
C1—C21.421 (8)C16—C171.401 (9)
C2—C31.353 (8)C16—H160.9300
C2—H20.9300C17—H170.9300
C3—C41.398 (8)C18—C191.428 (8)
C3—H30.9300Cl1—O41.357 (7)
C4—C51.361 (8)Cl1—O5'1.382 (7)
C5—C61.427 (7)Cl1—O3'1.403 (6)
C5—H50.9300Cl1—O4'1.427 (7)
C6—C71.433 (7)Cl1—O51.433 (8)
C7—H70.9300Cl1—O31.464 (7)
C8—C91.405 (9)Cl1—O61.509 (8)
C8—H80.9300Cl1—O6'1.538 (7)
C9—C101.367 (11)
O1—Cu1—O292.72 (16)C13—C12—H12119.8
O1—Cu1—N290.96 (18)C11—C12—H12119.8
O2—Cu1—N2176.33 (17)C12—C13—C14121.4 (6)
O1—Cu1—N1170.43 (17)C18—C14—C15115.9 (6)
O2—Cu1—N193.61 (17)C18—C14—C13118.6 (7)
N2—Cu1—N182.74 (19)C15—C14—C13125.6 (6)
O1—Cu1—O387.0 (3)C16—C15—C14120.7 (6)
O2—Cu1—O383.3 (4)C16—C15—H15119.6
N2—Cu1—O396.9 (4)C14—C15—H15119.6
N1—Cu1—O3100.8 (3)C15—C16—C17119.6 (6)
C1—O1—Cu1125.2 (3)C15—C16—H16120.2
C7—O2—Cu1124.0 (3)C17—C16—H16120.2
C8—N1—C19120.3 (5)N2—C17—C16121.4 (6)
C8—N1—Cu1128.2 (4)N2—C17—H17119.3
C19—N1—Cu1111.4 (4)C16—C17—H17119.3
C17—N2—C18118.7 (5)C12—C13—H13119.3
C17—N2—Cu1128.8 (4)C14—C13—H13119.3
C18—N2—Cu1112.4 (4)N2—C18—C14123.7 (6)
O1—C1—C6123.8 (5)N2—C18—C19115.9 (5)
O1—C1—C2117.9 (5)C14—C18—C19120.4 (6)
C6—C1—C2118.3 (5)N1—C19—C11122.7 (6)
C3—C2—C1120.2 (6)N1—C19—C18117.5 (5)
C3—C2—H2119.9C11—C19—C18119.9 (6)
C1—C2—H2119.9O4—Cl1—O5'121.2 (10)
C2—C3—C4121.2 (5)O4—Cl1—O3'121.7 (9)
C2—C3—H3119.4O5'—Cl1—O3'115.3 (6)
C4—C3—H3119.4O4—Cl1—O4'28.0 (7)
C2—C3—C4121.2 (5)O5'—Cl1—O4'114.6 (7)
C5—C4—C3121.3 (5)O3'—Cl1—O4'113.0 (6)
C5—C4—Br1120.3 (4)O4—Cl1—O5118.5 (7)
C3—C4—Br1118.4 (4)O5'—Cl1—O533.9 (7)
C4—C5—C6118.5 (5)O3'—Cl1—O5116.0 (8)
C4—C5—H5120.7O4'—Cl1—O5130.5 (8)
C6—C5—H5120.7O4—Cl1—O3114.2 (7)
C1—C6—C5120.5 (5)O5'—Cl1—O3123.0 (9)
C1—C6—C7122.5 (5)O3'—Cl1—O327.7 (6)
C5—C6—C7117.0 (5)O4'—Cl1—O3120.5 (9)
O2—C7—C6126.9 (5)O5—Cl1—O3106.5 (6)
O2—C7—H7116.5O4—Cl1—O6109.1 (7)
C6—C7—H7116.5O5'—Cl1—O672.2 (8)
N1—C8—C9121.0 (7)O3'—Cl1—O674.7 (7)
N1—C8—H8119.5O4'—Cl1—O681.1 (7)
C9—C8—H8119.5O5—Cl1—O6104.6 (7)
C10—C9—C8119.6 (7)O3—Cl1—O6102.3 (6)
C10—C9—H9120.2O4—Cl1—O6'72.6 (7)
C8—C9—H9120.2O5'—Cl1—O6'105.9 (6)
C9—C10—C11119.9 (7)O3'—Cl1—O6'105.5 (5)
C9—C10—H10120.0O4'—Cl1—O6'100.6 (5)
C11—C10—H10120.0O5—Cl1—O6'73.4 (7)
C19—C11—C10116.5 (6)O3—Cl1—O6'77.8 (6)
C19—C11—C12119.3 (7)O6—Cl1—O6'177.9 (7)
C10—C11—C12124.2 (7)Cl1—O3—Cu1130.6 (8)
C13—C12—C11120.4 (7)
O2—Cu1—O1—C124.6 (4)C8—C9—C10—C111.6 (11)
N2—Cu1—O1—C1155.4 (4)C9—C10—C11—C191.8 (10)
N1—Cu1—O1—C1156.0 (9)C9—C10—C11—C12176.7 (7)
O3—Cu1—O1—C158.5 (5)C19—C11—C12—C131.1 (10)
O1—Cu1—O2—C716.6 (4)C10—C11—C12—C13179.6 (7)
N2—Cu1—O2—C7164 (2)C11—C12—C13—C140.9 (10)
N1—Cu1—O2—C7170.6 (4)C12—C13—C14—C180.9 (9)
O3—Cu1—O2—C770.1 (5)C12—C13—C14—C15178.3 (6)
O1—Cu1—N1—C8130.0 (10)C18—C14—C15—C161.1 (8)
O2—Cu1—N1—C81.3 (5)C13—C14—C15—C16179.6 (6)
N2—Cu1—N1—C8179.1 (5)C14—C15—C16—C170.6 (9)
O3—Cu1—N1—C885.2 (6)C18—N2—C17—C162.3 (8)
O1—Cu1—N1—C1947.2 (12)Cu1—N2—C17—C16175.0 (4)
O2—Cu1—N1—C19178.5 (4)C15—C16—C17—N21.1 (9)
N2—Cu1—N1—C191.9 (3)C17—N2—C18—C141.8 (8)
O3—Cu1—N1—C1997.6 (5)Cu1—N2—C18—C14176.0 (4)
O1—Cu1—N2—C176.9 (5)C17—N2—C18—C19179.9 (5)
O2—Cu1—N2—C17174 (2)Cu1—N2—C18—C192.2 (6)
N1—Cu1—N2—C17179.7 (5)C15—C14—C18—N20.1 (8)
O3—Cu1—N2—C1780.2 (5)C13—C14—C18—N2179.2 (5)
O1—Cu1—N2—C18170.5 (4)C15—C14—C18—C19178.1 (5)
O2—Cu1—N2—C189 (3)C13—C14—C18—C191.2 (8)
N1—Cu1—N2—C182.2 (3)C8—N1—C19—C110.2 (8)
O3—Cu1—N2—C18102.3 (4)Cu1—N1—C19—C11177.7 (4)
Cu1—O1—C1—C621.3 (7)C8—N1—C19—C18178.8 (5)
Cu1—O1—C1—C2160.8 (4)Cu1—N1—C19—C181.3 (6)
O1—C1—C2—C3175.7 (5)C10—C11—C19—N11.0 (8)
C6—C1—C2—C32.3 (8)C12—C11—C19—N1177.7 (5)
C1—C2—C3—C40.8 (8)C10—C11—C19—C18179.9 (5)
C2—C3—C4—C50.0 (9)C12—C11—C19—C181.3 (8)
C2—C3—C4—Br1179.8 (4)N2—C18—C19—N10.6 (7)
C3—C4—C5—C60.5 (8)C14—C18—C19—N1177.6 (5)
Br1—C4—C5—C6179.6 (4)N2—C18—C19—C11179.6 (5)
O1—C1—C6—C5174.9 (5)C14—C18—C19—C111.4 (8)
C2—C1—C6—C52.9 (7)O4—Cl1—O3—Cu144.7 (14)
O1—C1—C6—C72.4 (8)O5'—Cl1—O3—Cu1149.7 (9)
C2—C1—C6—C7179.8 (5)O3'—Cl1—O3—Cu167.9 (17)
C4—C5—C6—C12.1 (8)O4'—Cl1—O3—Cu113.8 (14)
C4—C5—C6—C7179.5 (5)O5—Cl1—O3—Cu1177.4 (10)
Cu1—O2—C7—C65.0 (8)O6—Cl1—O3—Cu173.1 (12)
C1—C6—C7—O26.2 (9)O6'—Cl1—O3—Cu1109.1 (11)
C5—C6—C7—O2176.4 (5)O1—Cu1—O3—Cl1164.7 (10)
C19—N1—C8—C90.6 (9)O2—Cu1—O3—Cl171.6 (10)
Cu1—N1—C8—C9177.6 (5)N2—Cu1—O3—Cl1104.7 (10)
N1—C8—C9—C100.3 (11)N1—Cu1—O3—Cl120.8 (11)

Experimental details

Crystal data
Chemical formula[Cu(C7H4BrO2)(ClO4)(C12H8N2)]
Mr543.21
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.7560 (15), 10.336 (2), 12.873 (3)
α, β, γ (°)83.802 (3), 75.795 (3), 76.010 (3)
V3)969.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.37
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, missing
No. of measured, independent and
observed [I > 2σ(I)] reflections
4860, 3353, 2427
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.02
No. of reflections3353
No. of parameters308
No. of restraints68
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.53

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O11.898 (4)Cu1—N12.007 (4)
Cu1—O21.955 (4)Cu1—O32.423 (11)
Cu1—N21.999 (4)
O1—Cu1—O292.72 (16)N2—Cu1—O396.9 (4)
O1—Cu1—N290.96 (18)N1—Cu1—O3100.8 (3)
O2—Cu1—N2176.33 (17)C1—O1—Cu1125.2 (3)
O1—Cu1—N1170.43 (17)C7—O2—Cu1124.0 (3)
O2—Cu1—N193.61 (17)C8—N1—Cu1128.2 (4)
N2—Cu1—N182.74 (19)C19—N1—Cu1111.4 (4)
O1—Cu1—O387.0 (3)C17—N2—Cu1128.8 (4)
O2—Cu1—O383.3 (4)C18—N2—Cu1112.4 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds