Download citation
Download citation
link to html
The title copper(II) complex, [Cu(C22H18N6)2](ClO4)2·2C2H3N, comprises two neutral substituted tris­(pyrazol-1-yl)­methane ligands bonded to a central CuII ion, which is positioned on a crystallographic inversion center. Six Cu-N bonds are arranged in a distorted octa­hedral fashion. The unsubstituted pyrazole rings on each ligand are oriented trans with respect to each other, inter­digitated with the two 3-phenyl­pyrazole rings of the other ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105041661/sf1025sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105041661/sf1025Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270105041661/sf1025sup3.pdf
Supplementary material

CCDC reference: 299615

Comment top

The transition metal complexes of tris(pyrazolyl)methanes (Tpm) have been known for over 30 years (Trofimenko, 1970; Reger, 1999). Several structural studies on 2:1 T pm–CuII complexes have been undertaken. These include the CuII complexes with tris(3,5-dimethylpyrazolyl)methane (Reger et al., 2002; Martini et al., 2002), tris(3,4,5-trimethylpyrazolyl)methane (Martini et al., 2002); tris(4-bromo-3,5-dimethylpyrazolyl)methane (Cvetkovic et al., 2001) and simply tris(pyrazolyl)methane (Astley et al., 1993). With CuII, these tripodal N-donor ligands typically form 2:1 octahedral complexes, showing Jahn–Teller distortion typical of d9 metal complexes. Other stoichiometry is also possible (Cvetkovic et al., 2001; Moubaraki et al., 2002; Van Langenberg et al., 2002).

A common feature of all the tris(pyrazolyl)methane ligands studied thus far is that they each have C3V symmetry – they are all constructed using three identical pyrazole moieties. In this report, for the first time, we present the structure of a metal complex that incorporates a tris(pyrazolyl)methane ligand constructed from two different pyrazoles (see scheme). Ligand L, bis(3-phenylpyrazolyl)(pyrazolyl)methane, incorporates two 3-phenylpyrazole moieties and a single unsubstituted pyrazole ring. Upon mixing with 0.5 equivalents of CuII perchlorate in acetonitrile/acetone, the green complex [CuL2](ClO4)2·2C2H3N crystallizes.

There are two possible isomers of the complex that differ in the position of the unsubstituted pyrazole moieties relative to each other in the complex. A centrosymmetric complex with two unsubstituted pyrazole moieties being opposed to each other clearly has less steric hindrance than an asymmetric isomer with juxtaposed unsubstituted groups.

Previously reported structures of symmetric tris(pyrazolyl)methane copper(II) complexes demonstrate a typically Jahn–Teller-distorted geometry, with two short C—N distances of approximately 2.0 Å and one long distance of 2.35 Å. In our case, an additional effect of the unsubstituted pyrazole group results in further variety of the bond distances (Table 1), with one becoming significantly shorter (1.94 Å) and another much longer (2.18 Å). The bite angles between unsubstituted pyrazole atom N32 and phenylpyrazole atoms N12 and N22 are only slightly smaller than 90° (Table 1), while the angle between the two phenylpyrazole N atoms is visibly less (79°). Once again, it appears that steric hindrance is playing a dominant role.

The central CuII atom along with axial atom C1 and each corresponding pair of pyrazole groups form three planes. In agreement with planarity of the copper–pyrazole complex, the torsion angles around the N—N bond are small, being almost zero for the unsubstituted pyrazole moiety (Table 1). The mean deviations of atoms from the plane containing the unsubstituted pyrazole is less than 0.01 Å, while for the other two planes these deviations are visibly larger (0.04 Å). These three planes intercept each other very close to the C1—Cu axis, thus forming the main motif of a complex cation. The same shape of the complex can be achieved via molecular simulations using semi-empirical calculations in PM3 approximation. The angles between the planes are 73.5, 53.0 and 53.5°, where the largest correspond to that between two substituted pyrazole groups.

Cationic complexes are positioned with the copper ion on a crystallographic inversion center. The metal ion is surrounded by a hydrophobic `coat', thus leaving no possibility to any additional interactions. The perchlorate ions and solvent molecules fill voids in the crystal structure, which shows no hydrogen bonds or short contacts (Fig. 2).

Experimental top

Ligand L was prepared using a method similar to that previously described by Goodman & Bateman (2001). Tris(pyrazolyl)methane (2.00 g, 9.3 mmol) and 3-phenylpyrazole (4.00 g, 27.7 mmol) were dissolved in dry toluene (250 ml) in a 500 ml round-bottomed flask. p-Toluenesulfonic acid (1.60 g, 9.3 mmol) was added and the reaction mixture was heated at reflux for 24 h under argon. The cooled reaction mixture was poured into saturated aqueous NaHCO3 (150 ml), and the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (2 × 100 ml) and the combined organic layers were washed with water (100 ml). The organic extracts were dried with Na2SO4 and evaporated, affording a mixture consisting of all possible substitution products, 3-phenylpyrazole and pyrazole. The crude product was dissolved in a small amount of dichloromethane and applied to a silica column. The column was first eluted with a 4:1 dichloromethane/ethyl acetate mixture. The polarity was slowly increased to 3:1 dichloromethane/ethyl acetate. The order of elution is based on the number of 3-phenylpyrazoles incorporated into the Tpm. The trisubstituted tris(3-phenylpyrazolyl)methane elutes first, followed by disubstituted L, and finally the monosubstituted (3-phenylpyrazolyl)bis(pyrazolyl)methane. Ligand L: 1H NMR: δ 6.37 (t, J = 4.3 Hz, 1H), 6.67 (d, J = 2.6 Hz, 2H), 7.32 (t, J = 7.1 Hz, 2H), 7.39 (t, J = 6.6 Hz, 4H), 7.66 (d, J = 2.6 Hz, 3H), 7.68 (d, J = 1.3 Hz, 1H), 7.81 (d, J = 6.9 Hz, 4H), 8.48 (s, 1H); 13C NMR: δ 83.7, 104.6, 107.2, 126.0, 128.4, 128.6, 129.6, 130.8, 132.5, 141.8, 153.6; EIMS m/z: 366 (M+), 223. EI-HRMS: calculated for C22H18N6 366.1593, found 366.1590. For the preparation of the CuII complex, a solution of Cu(ClO4)2·6H2O (37 mg, 0.10 mmol) in acetonitrile (10 ml) was mixed with L (73 mg, 0.20 mmol) dissolved in acetone (10 ml). Upon standing, dark-green crystals suitable for X-ray diffraction were deposited on the sides of the tube.

Refinement top

All H atoms were located in a difference map and then allowed to ride on their parent C atoms, with Uiso(H) values of 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the molecule of [CuL2](ClO4)2·2C2H3N, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. The packing of [CuL2](ClO4)2·2C2H3N, viewed along the c axis.
Bis[bis(3-phenylpyrazol-1-yl)(pyrazol-1-yl)methane]copper(II) bis(perchlorate) acetonitrile solvate top
Crystal data top
[Cu(C22H18N6)2](ClO4)2·2C2H3NF(000) = 1110
Mr = 1077.40Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20256 reflections
a = 11.3652 (2) Åθ = 3–29°
b = 16.3372 (3) ŵ = 0.63 mm1
c = 14.0065 (3) ÅT = 90 K
β = 109.949 (1)°Prism, green
V = 2444.62 (8) Å30.40 × 0.25 × 0.19 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5606 independent reflections
Radiation source: rotating anode4998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.79, Tmax = 0.88k = 2121
34957 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0395P)2 + 2.3608P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5606 reflectionsΔρmax = 0.92 e Å3
352 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (5)
Crystal data top
[Cu(C22H18N6)2](ClO4)2·2C2H3NV = 2444.62 (8) Å3
Mr = 1077.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.3652 (2) ŵ = 0.63 mm1
b = 16.3372 (3) ÅT = 90 K
c = 14.0065 (3) Å0.40 × 0.25 × 0.19 mm
β = 109.949 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5606 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4998 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.88Rint = 0.030
34957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.92 e Å3
5606 reflectionsΔρmin = 0.37 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.00000.50000.01224 (8)
C10.49831 (15)0.09785 (9)0.30996 (11)0.0145 (3)
H10.494970.12210.25130.017*
N110.38371 (13)0.11733 (8)0.32805 (10)0.0159 (3)
N120.36313 (13)0.09052 (8)0.41361 (10)0.0160 (3)
C130.26062 (16)0.13104 (11)0.41371 (12)0.0206 (3)
C140.21777 (18)0.18329 (13)0.32935 (14)0.0289 (4)
H140.14940.21700.31270.035*
C150.29888 (17)0.17359 (12)0.27720 (13)0.0243 (4)
H150.296190.19910.22130.029*
N210.60552 (13)0.13028 (8)0.38931 (10)0.0156 (3)
N220.63298 (12)0.10663 (8)0.48790 (10)0.0156 (3)
C230.72498 (15)0.15711 (10)0.54061 (12)0.0184 (3)
C240.75476 (17)0.21294 (12)0.47575 (14)0.0245 (4)
H240.81600.25440.49440.029*
C250.67645 (16)0.19453 (11)0.38015 (13)0.0210 (3)
H250.672360.22190.31820.025*
N310.50879 (13)0.01076 (8)0.29753 (10)0.0159 (3)
N320.50826 (12)0.04151 (8)0.37242 (9)0.0139 (3)
C330.51440 (15)0.11631 (10)0.33689 (12)0.0161 (3)
H330.515780.16310.37140.019*
C340.51838 (17)0.11207 (10)0.23862 (13)0.0200 (3)
H340.52270.15540.19750.024*
C350.51451 (17)0.03046 (10)0.21559 (12)0.0198 (3)
H350.515630.00740.15410.024*
C410.20239 (15)0.12236 (11)0.49266 (12)0.0206 (3)
C420.15938 (16)0.19302 (12)0.52630 (13)0.0228 (3)
H420.16970.24410.50000.027*
C430.10140 (16)0.18777 (12)0.59851 (13)0.0249 (4)
H430.07220.23490.62010.030*
C440.08676 (17)0.11233 (13)0.63879 (15)0.0281 (4)
H440.04650.108810.69120.034*
C450.12885 (18)0.04191 (13)0.60530 (16)0.0314 (4)
H450.11830.01220.63390.038*
C460.18580 (17)0.04670 (12)0.53183 (15)0.0266 (4)
H460.21400.00280.50790.032*
C510.78705 (15)0.15142 (11)0.65143 (12)0.0191 (3)
C520.84255 (16)0.22159 (11)0.70488 (13)0.0218 (3)
H520.83610.27180.67050.026*
C530.90713 (16)0.21741 (12)0.80849 (14)0.0255 (4)
H530.94540.26590.84490.031*
C540.91691 (17)0.14371 (13)0.85999 (14)0.0286 (4)
H540.96330.141030.93350.034*
C550.86124 (17)0.07395 (13)0.80772 (14)0.0281 (4)
H550.86660.02580.84120.034*
C560.79703 (16)0.07803 (12)0.70345 (13)0.0231 (3)
H560.76070.03130.66860.028*
Cl0.48198 (4)0.33621 (2)0.54507 (3)0.01806 (10)
O10.49208 (15)0.40924 (8)0.49325 (11)0.0339 (3)
O20.47056 (17)0.26723 (9)0.48008 (12)0.0387 (4)
O30.59071 (16)0.32766 (11)0.63498 (10)0.0444 (4)
O40.37372 (14)0.34229 (10)0.57679 (11)0.0363 (3)
N10.9508 (2)0.10649 (13)0.11123 (18)0.0466 (5)
C40.8752 (2)0.05824 (14)0.10069 (17)0.0350 (4)
C50.7786 (3)0.00343 (18)0.0817 (3)0.0632 (8)
H5A0.79140.04860.03010.095*
H5B0.68810.02490.04860.095*
H5C0.78430.03250.15220.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01581 (14)0.01290 (14)0.00917 (13)0.00110 (9)0.00577 (10)0.00061 (9)
C10.0192 (7)0.0135 (7)0.0119 (7)0.0004 (6)0.0068 (6)0.0003 (5)
N110.0186 (6)0.0179 (6)0.0119 (6)0.0011 (5)0.0061 (5)0.0002 (5)
N120.0187 (6)0.0185 (6)0.0126 (6)0.0029 (5)0.0074 (5)0.0023 (5)
C130.0175 (7)0.0288 (9)0.0145 (7)0.0001 (6)0.0043 (6)0.0048 (6)
C140.0254 (9)0.0426 (11)0.0179 (8)0.0134 (8)0.0065 (7)0.0020 (8)
C150.0266 (9)0.0304 (9)0.0149 (7)0.0096 (7)0.0061 (7)0.0029 (7)
N210.0195 (7)0.0169 (6)0.0115 (6)0.0013 (5)0.0069 (5)0.0001 (5)
N220.0181 (6)0.0184 (6)0.0115 (6)0.0030 (5)0.0068 (5)0.0002 (5)
C230.0159 (7)0.0243 (8)0.0161 (7)0.0003 (6)0.0071 (6)0.0032 (6)
C240.0237 (8)0.0294 (9)0.0222 (8)0.0081 (7)0.0101 (7)0.0044 (7)
C250.0250 (8)0.0214 (8)0.0195 (8)0.0051 (7)0.0113 (7)0.0013 (6)
N310.0241 (7)0.0141 (6)0.0112 (6)0.0003 (5)0.0084 (5)0.0001 (5)
N320.0176 (6)0.0135 (6)0.0113 (6)0.0000 (5)0.0057 (5)0.0011 (5)
C330.0195 (7)0.0136 (7)0.0163 (7)0.0004 (6)0.0074 (6)0.0011 (6)
C340.0289 (9)0.0165 (7)0.0165 (7)0.0001 (6)0.0101 (7)0.0039 (6)
C350.0310 (9)0.0179 (8)0.0134 (7)0.0002 (6)0.0112 (6)0.0029 (6)
C410.0131 (7)0.0328 (9)0.0155 (7)0.0004 (6)0.0042 (6)0.0056 (6)
C420.0172 (8)0.0307 (9)0.0184 (8)0.0002 (7)0.0033 (6)0.0046 (7)
C430.0172 (8)0.0353 (10)0.0220 (8)0.0026 (7)0.0065 (7)0.0095 (7)
C440.0203 (8)0.0407 (11)0.0280 (9)0.0003 (7)0.0143 (7)0.0044 (8)
C450.0261 (9)0.0348 (11)0.0398 (11)0.0003 (8)0.0198 (8)0.0001 (9)
C460.0209 (8)0.0311 (9)0.0311 (9)0.0010 (7)0.0132 (7)0.0056 (8)
C510.0126 (7)0.0287 (8)0.0168 (7)0.0009 (6)0.0061 (6)0.0050 (6)
C520.0181 (8)0.0271 (9)0.0211 (8)0.0013 (6)0.0081 (6)0.0060 (7)
C530.0173 (8)0.0362 (10)0.0220 (8)0.0002 (7)0.0056 (7)0.0114 (7)
C540.0204 (8)0.0443 (11)0.0176 (8)0.0033 (8)0.0018 (7)0.0053 (8)
C550.0238 (9)0.0358 (10)0.0216 (9)0.0027 (7)0.0038 (7)0.0023 (8)
C560.0184 (8)0.0289 (9)0.0204 (8)0.0012 (7)0.0044 (6)0.0041 (7)
Cl0.0296 (2)0.01366 (18)0.01316 (17)0.00060 (14)0.01012 (15)0.00063 (13)
O10.0599 (10)0.0181 (6)0.0312 (7)0.0013 (6)0.0253 (7)0.0065 (5)
O20.0666 (11)0.0191 (7)0.0356 (8)0.0036 (7)0.0241 (8)0.0118 (6)
O30.0430 (9)0.0684 (11)0.0171 (6)0.0251 (8)0.0043 (6)0.0001 (7)
O40.0370 (8)0.0499 (9)0.0303 (7)0.0100 (7)0.0223 (6)0.0084 (7)
N10.0383 (11)0.0373 (10)0.0595 (13)0.0016 (9)0.0105 (10)0.0003 (9)
C40.0311 (10)0.0342 (11)0.0367 (11)0.0064 (9)0.0076 (8)0.0019 (9)
C50.0425 (15)0.0499 (16)0.086 (2)0.0063 (12)0.0083 (15)0.0017 (15)
Geometric parameters (Å, º) top
Cu—N321.9433 (13)C35—H350.9438
Cu—N32i1.9433 (13)C41—C461.391 (3)
Cu—N122.1878 (14)C41—C421.397 (2)
Cu—N12i2.1878 (14)C42—C431.385 (2)
Cu—N222.3500 (14)C42—H420.9353
Cu—N22i2.3500 (14)C43—C441.389 (3)
C1—N211.441 (2)C43—H430.9294
C1—N311.4432 (19)C44—C451.388 (3)
C1—N111.445 (2)C44—H440.9903
C1—H10.9008C45—C461.392 (3)
N11—C151.347 (2)C45—H450.9939
N11—N121.3689 (18)C46—H460.9708
N12—C131.340 (2)C51—C561.387 (3)
C13—C141.403 (3)C51—C521.397 (2)
C13—C411.477 (2)C52—C531.387 (2)
C14—C151.367 (3)C52—H520.9414
C14—H140.9151C53—C541.388 (3)
C15—H150.8779C53—H530.9613
N21—C251.356 (2)C54—C551.385 (3)
N21—N221.3635 (18)C54—H540.9841
N22—C231.339 (2)C55—C561.394 (2)
C23—C241.408 (2)C55—H550.9076
C23—C511.473 (2)C56—H560.9240
C24—C251.365 (2)Cl—O11.4214 (13)
C24—H240.9421Cl—O21.4265 (14)
C25—H250.9631Cl—O31.4389 (15)
N31—C351.351 (2)Cl—O41.4471 (14)
N31—N321.3543 (18)N1—C41.138 (3)
N32—C331.330 (2)C4—C51.447 (4)
C33—C341.394 (2)C5—H5A1.0774
C33—H330.9018C5—H5B1.0774
C34—C351.369 (2)C5—H5C1.0774
C34—H340.9241
N32—Cu—N32i180.0N32—C33—H33124.8
N32—Cu—N1288.60 (5)C34—C33—H33124.8
N32i—Cu—N1291.40 (5)C35—C34—C33105.76 (14)
N32—Cu—N12i91.40 (5)C35—C34—H34127.1
N32i—Cu—N12i88.60 (5)C33—C34—H34127.1
N12—Cu—N12i180.00 (7)N31—C35—C34106.99 (14)
N32—Cu—N2287.61 (5)N31—C35—H35126.5
N32i—Cu—N2292.39 (5)C34—C35—H35126.5
N12—Cu—N2279.19 (5)C46—C41—C42119.42 (16)
N12i—Cu—N22100.81 (5)C46—C41—C13122.44 (16)
N32—Cu—N22i92.39 (5)C42—C41—C13118.11 (16)
N32i—Cu—N22i87.61 (5)C43—C42—C41120.24 (18)
N12—Cu—N22i100.81 (5)C43—C42—H42119.9
N12i—Cu—N22i79.19 (5)C41—C42—H42119.9
N22—Cu—N22i180.00 (7)C42—C43—C44120.28 (17)
N21—C1—N31111.87 (13)C42—C43—H43119.9
N21—C1—N11111.06 (12)C44—C43—H43119.9
N31—C1—N11110.79 (13)C45—C44—C43119.70 (17)
N21—C1—H1107.6C45—C44—H44120.2
N31—C1—H1107.6C43—C44—H44120.2
N11—C1—H1107.6C44—C45—C46120.27 (19)
C15—N11—N12112.10 (13)C44—C45—H45119.9
C15—N11—C1125.68 (14)C46—C45—H45119.9
N12—N11—C1121.11 (13)C41—C46—C45120.07 (18)
C13—N12—N11104.54 (13)C41—C46—H46120.0
C13—N12—Cu141.95 (11)C45—C46—H46120.0
N11—N12—Cu113.51 (10)C56—C51—C52119.14 (16)
N12—C13—C14110.59 (15)C56—C51—C23122.14 (16)
N12—C13—C41124.41 (15)C52—C51—C23118.65 (16)
C14—C13—C41124.99 (16)C53—C52—C51120.10 (18)
C15—C14—C13106.01 (16)C53—C52—H52119.9
C15—C14—H14127.0C51—C52—H52119.9
C13—C14—H14127.0C52—C53—C54120.43 (17)
N11—C15—C14106.75 (16)C52—C53—H53119.8
N11—C15—H15126.6C54—C53—H53119.8
C14—C15—H15126.6C55—C54—C53119.85 (17)
C25—N21—N22112.15 (13)C55—C54—H54120.1
C25—N21—C1125.81 (14)C53—C54—H54120.1
N22—N21—C1121.20 (13)C54—C55—C56119.72 (19)
C23—N22—N21104.47 (13)C54—C55—H55120.1
C23—N22—Cu144.83 (11)C56—C55—H55120.1
N21—N22—Cu110.64 (9)C51—C56—C55120.76 (17)
N22—C23—C24110.96 (15)C51—C56—H56119.6
N22—C23—C51123.07 (15)C55—C56—H56119.6
C24—C23—C51125.94 (15)O1—Cl—O2110.05 (9)
C25—C24—C23105.70 (15)O1—Cl—O3109.48 (11)
C25—C24—H24127.2O2—Cl—O3110.23 (10)
C23—C24—H24127.2O1—Cl—O4108.94 (9)
N21—C25—C24106.71 (15)O2—Cl—O4110.39 (10)
N21—C25—H25126.6O3—Cl—O4107.71 (9)
C24—C25—H25126.6N1—C4—C5177.0 (3)
C35—N31—N32110.97 (13)C4—C5—H5A109.5
C35—N31—C1128.58 (14)C4—C5—H5B109.5
N32—N31—C1120.39 (12)H5A—C5—H5B109.5
C33—N32—N31105.95 (12)C4—C5—H5C109.5
C33—N32—Cu133.62 (11)H5A—C5—H5C109.5
N31—N32—Cu120.43 (10)H5B—C5—H5C109.5
N32—C33—C34110.33 (14)
N21—C1—N11—C15106.23 (18)C1—N21—C25—C24170.64 (15)
N31—C1—N11—C15128.80 (17)C23—C24—C25—N210.6 (2)
N21—C1—N11—N1260.69 (18)N21—C1—N31—C35117.32 (18)
N31—C1—N11—N1264.28 (18)N11—C1—N31—C35118.17 (18)
C15—N11—N12—C131.07 (18)N21—C1—N31—N3265.81 (18)
C1—N11—N12—C13169.62 (14)N11—C1—N31—N3258.70 (18)
C15—N11—N12—Cu179.30 (11)C35—N31—N32—C330.32 (18)
C1—N11—N12—Cu10.75 (17)C1—N31—N32—C33177.70 (14)
N32—Cu—N12—C13145.40 (18)C35—N31—N32—Cu179.81 (11)
N32i—Cu—N12—C1334.60 (18)C1—N31—N32—Cu2.43 (19)
N22—Cu—N12—C13126.76 (19)N12—Cu—N32—C33139.33 (15)
N22i—Cu—N12—C1353.24 (19)N12i—Cu—N32—C3340.67 (15)
N32—Cu—N12—N1134.02 (10)N22—Cu—N32—C33141.44 (15)
N32i—Cu—N12—N11145.98 (10)N22i—Cu—N32—C3338.56 (15)
N22—Cu—N12—N1153.82 (10)N12—Cu—N32—N3140.84 (12)
N22i—Cu—N12—N11126.18 (10)N12i—Cu—N32—N31139.16 (12)
N11—N12—C13—C140.44 (19)N22—Cu—N32—N3138.39 (11)
Cu—N12—C13—C14179.89 (14)N22i—Cu—N32—N31141.61 (11)
N11—N12—C13—C41179.69 (15)N31—N32—C33—C340.24 (18)
Cu—N12—C13—C410.9 (3)Cu—N32—C33—C34179.92 (12)
N12—C13—C14—C150.3 (2)N32—C33—C34—C350.1 (2)
C41—C13—C14—C15178.95 (17)N32—N31—C35—C340.3 (2)
N12—N11—C15—C141.3 (2)C1—N31—C35—C34177.39 (16)
C1—N11—C15—C14169.20 (16)C33—C34—C35—N310.1 (2)
C13—C14—C15—N110.9 (2)N12—C13—C41—C4643.3 (3)
N31—C1—N21—C25127.44 (16)C14—C13—C41—C46137.6 (2)
N11—C1—N21—C25108.20 (17)N12—C13—C41—C42138.70 (17)
N31—C1—N21—N2263.84 (18)C14—C13—C41—C4240.5 (3)
N11—C1—N21—N2260.52 (18)C46—C41—C42—C430.4 (2)
C25—N21—N22—C230.99 (18)C13—C41—C42—C43178.47 (15)
C1—N21—N22—C23171.13 (14)C41—C42—C43—C440.7 (3)
C25—N21—N22—Cu176.92 (11)C42—C43—C44—C450.9 (3)
C1—N21—N22—Cu6.78 (16)C43—C44—C45—C460.1 (3)
N32—Cu—N22—C23146.99 (19)C42—C41—C46—C451.2 (3)
N32i—Cu—N22—C2333.01 (19)C13—C41—C46—C45179.17 (17)
N12—Cu—N22—C23123.97 (19)C44—C45—C46—C410.9 (3)
N12i—Cu—N22—C2356.03 (19)N22—C23—C51—C5628.3 (2)
N32—Cu—N22—N2136.52 (10)C24—C23—C51—C56149.71 (18)
N32i—Cu—N22—N21143.48 (10)N22—C23—C51—C52154.68 (16)
N12—Cu—N22—N2152.52 (10)C24—C23—C51—C5227.3 (2)
N12i—Cu—N22—N21127.48 (10)C56—C51—C52—C530.3 (2)
N21—N22—C23—C240.55 (18)C23—C51—C52—C53176.79 (15)
Cu—N22—C23—C24176.06 (14)C51—C52—C53—C540.2 (3)
N21—N22—C23—C51177.75 (14)C52—C53—C54—C550.4 (3)
Cu—N22—C23—C515.6 (3)C53—C54—C55—C560.8 (3)
N22—C23—C24—C250.1 (2)C52—C51—C56—C550.1 (3)
C51—C23—C24—C25178.30 (16)C23—C51—C56—C55177.11 (16)
N22—N21—C25—C241.0 (2)C54—C55—C56—C510.7 (3)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C22H18N6)2](ClO4)2·2C2H3N
Mr1077.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)11.3652 (2), 16.3372 (3), 14.0065 (3)
β (°) 109.949 (1)
V3)2444.62 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.40 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.79, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
34957, 5606, 4998
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.05
No. of reflections5606
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.37

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—N321.9433 (13)N21—C251.356 (2)
Cu—N122.1878 (14)N21—N221.3635 (18)
Cu—N222.3500 (14)N22—C231.339 (2)
C1—N211.441 (2)C23—C241.408 (2)
C1—N311.4432 (19)C24—C251.365 (2)
C1—N111.445 (2)N31—C351.351 (2)
N11—C151.347 (2)N31—N321.3543 (18)
N11—N121.3689 (18)N32—C331.330 (2)
N12—C131.340 (2)C33—C341.394 (2)
C13—C141.403 (3)C34—C351.369 (2)
C14—C151.367 (3)
N32—Cu—N1288.60 (5)N32i—Cu—N2292.39 (5)
N32i—Cu—N1291.40 (5)N12—Cu—N2279.19 (5)
N32—Cu—N2287.61 (5)N12i—Cu—N22100.81 (5)
C1—N11—N12—Cu10.75 (17)C1—N31—N32—Cu2.43 (19)
C1—N21—N22—Cu6.78 (16)
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds