Download citation
Download citation
link to html
The title compound, C6H12N4\cdotC9H16O4, undergoes several thermotropic phase transitions. The crystalline structure is layered, with sheets of azelaic acid linked to sheets of hexamethylenetetramine by hydrogen bonds. In the room-temperature phase, the azelaic acid molecules are disordered. By lowering the temperature, this disorder partially disappears. The ordering is clearly observed in reciprocal space where on the rods of diffuse scattering, present in the room-temperature phase, a series of superstructure reflections emerges. This phase transition leads to twin-lattice quasi-symmetry (TLQS) twinning. The structure of this twinned phase is explored in this paper. There are two orientational domains linked by a mirror plane which relates disordered orientations of the acid molecules above the phase transition. A single domain has space group P2_1/c. The structure has been solved and refined on the complete set of data to R1 = 0.0469. The chains remain partially disordered, showing two acid groups with unequal population: the major form corresponding to a carboxylic acid and the minor to a carboxylate. The ordering of the structure, when going through the phase transition, is interpreted in terms of stabilization by C—H...O hydrogen bonding. A least-squares estimator of the twinning volume ratio is developed that gives an expression for the twinning ratio in terms of the intensities of nonoverlapping reflections. The twinning ratio obtained in the structure refinement compares very well with that obtained from this estimator.

Supporting information

cif

Crystallographic Information File (CIF)
Contains datablocks HMTA-PHASE-3, I

hkl

Structure factor file (CIF format)
Contains datablock I

CCDC references: 1157220; 1157221

Computing details top

Data collection: EXPOSE (STOE & CIE GmbH (1997) IPDS 2.87 Software Manual); cell refinement: INDEX, CELL (STOE & CIE GmbH (1997) IPDS 2.87 Software Manual); data reduction: PROFILE, EMS, INTEGRATE (STOE & CIE GmbH (1997) IPDS 2.87 Software Manual), XPREP Version 5.04, Siemens Analytical X-ray Insts. (1996) and home written programs; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP Version 5.04, Siemens Analytical X-ray Insts. (1996).

(I) top
Crystal data top
C6H12N4·C9H16O4Z = 4
Mr = 328.41F(000) = 712
Monoclinic, P21/cDx = 1.244 Mg m3
a = 5.8907 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 26.071 (2) ŵ = 0.09 mm1
c = 11.8868 (11) ÅT = 258 K
β = 106.118 (9)°Platelet, colourless
V = 1753.8 (3) Å30.3 × 0.2 × 0.02 mm
Data collection top
Stoe IPDS imaging plate system
diffractometer
1443 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = see _diffrn_special_details
Graphite monochromatorθmax = 20.8°, θmin = 2.4°
oscillation scansh = 55
6256 measured reflectionsk = 2525
1443 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.15Calculated w = 1/[σ2(Fo2) + (0.0908P)2 + 0.0702P]
where P = (Fo2 + 2Fc2)/3
1443 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.17 e Å3
8 restraintsΔρmin = 0.12 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The structure is non-merohedral twin. All reflections, i.e. both common and single domain reflections are used in the refinement. The refinement was performed using the HKLF 5 option in SHELXL. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.025 (7)0.875 (2)0.098 (4)0.108 (12)0.29 (4)
O1B0.056 (2)0.8552 (4)0.0475 (16)0.076 (3)0.71 (4)
O2A0.291 (7)0.8681 (16)0.048 (4)0.090 (11)0.29 (4)
O2B0.310 (2)0.8795 (6)0.0680 (14)0.075 (4)0.71 (4)
H2O0.34060.85570.12140.112*0.71 (4)
C110.0823 (9)0.88405 (15)0.0257 (4)0.0509 (12)
C120.0111 (8)0.92394 (16)0.0675 (4)0.0568 (13)
H12A0.03570.91010.13890.068*
H12B0.11640.95300.04460.068*
C130.2383 (8)0.94317 (15)0.0946 (4)0.0575 (13)
H13A0.25780.96240.02810.069*
H13B0.34520.91410.10680.069*
C140.3034 (9)0.97712 (18)0.2026 (5)0.0692 (15)
H14A0.18611.00410.19190.083*
H14B0.29200.95670.26900.083*
C150.5437 (8)1.00182 (18)0.2334 (4)0.0607 (12)
H15A0.54991.02650.17320.073*
H15B0.66230.97580.23540.073*
C160.6007 (9)1.02870 (18)0.3506 (4)0.0666 (15)
H16A0.47171.05190.35020.080*
H16B0.60581.00310.41050.080*
C170.8278 (9)1.05880 (16)0.3857 (4)0.0596 (14)
H17A0.81901.08690.33120.072*
H17B0.95771.03680.38140.072*
C180.8753 (8)1.07994 (17)0.5081 (4)0.0569 (13)
H18A0.73581.09840.51340.068*
H18B0.89671.05120.56200.068*
C191.0829 (9)1.11470 (15)0.5487 (5)0.0546 (12)
O3A1.237 (8)1.1182 (16)0.499 (5)0.072 (9)0.29 (4)
O3B1.178 (4)1.1367 (7)0.486 (2)0.088 (5)0.71 (4)
O4A1.119 (6)1.1335 (18)0.652 (4)0.078 (11)0.29 (4)
O4B1.130 (2)1.1250 (7)0.6618 (14)0.067 (4)0.71 (4)
H4O1.27241.13730.68680.101*0.71 (4)
N10.4557 (6)0.79563 (12)0.2069 (3)0.0460 (9)
H10.38910.82300.16220.055*0.29 (4)
N20.4336 (6)0.70364 (11)0.2341 (3)0.0449 (9)
H20.35190.67460.20580.054*0.29 (4)
N30.8159 (6)0.74534 (13)0.2758 (3)0.0495 (10)
N40.5608 (7)0.75981 (13)0.4034 (3)0.0509 (10)
C10.3276 (8)0.74864 (15)0.1633 (4)0.0486 (10)
H1A0.32820.74320.08260.058*
H1B0.16450.75220.16480.058*
C20.7049 (7)0.78895 (16)0.2057 (4)0.0507 (12)
H2A0.71060.78410.12560.061*
H2B0.79300.81980.23560.061*
C30.4510 (9)0.80276 (16)0.3295 (4)0.0566 (13)
H3A0.53380.83420.36000.068*
H3B0.28850.80620.33190.068*
C40.6794 (8)0.69955 (16)0.2305 (4)0.0548 (13)
H4A0.75220.67010.27640.066*
H4B0.68250.69390.15030.066*
C50.8048 (8)0.75397 (17)0.3963 (5)0.0589 (12)
H5A0.89380.78460.42710.071*
H5B0.87830.72530.44480.071*
C60.4308 (7)0.71313 (15)0.3560 (4)0.0483 (12)
H6A0.26850.71630.35900.058*
H6B0.50100.68410.40420.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.098 (17)0.16 (3)0.08 (2)0.007 (19)0.044 (17)0.057 (19)
O1B0.065 (4)0.069 (5)0.084 (9)0.014 (3)0.007 (5)0.036 (4)
O2A0.116 (17)0.09 (2)0.100 (17)0.062 (18)0.086 (17)0.028 (14)
O2B0.066 (5)0.054 (5)0.092 (8)0.008 (4)0.003 (5)0.033 (5)
C110.058 (3)0.041 (3)0.053 (4)0.004 (2)0.015 (3)0.002 (2)
C120.071 (3)0.046 (2)0.052 (3)0.002 (2)0.014 (3)0.010 (2)
C130.071 (3)0.043 (2)0.060 (3)0.004 (2)0.020 (3)0.006 (2)
C140.085 (4)0.064 (3)0.061 (4)0.015 (3)0.023 (3)0.018 (2)
C150.074 (3)0.054 (2)0.055 (3)0.010 (2)0.019 (3)0.009 (2)
C160.080 (4)0.061 (3)0.061 (4)0.012 (3)0.023 (3)0.014 (2)
C170.075 (3)0.045 (2)0.060 (4)0.010 (2)0.022 (3)0.006 (2)
C180.070 (3)0.049 (2)0.052 (3)0.011 (2)0.017 (3)0.002 (2)
C190.071 (4)0.038 (2)0.059 (4)0.004 (2)0.025 (3)0.003 (2)
O3A0.081 (15)0.07 (2)0.071 (18)0.031 (14)0.037 (13)0.023 (17)
O3B0.129 (13)0.079 (9)0.066 (5)0.048 (8)0.044 (8)0.004 (8)
O4A0.101 (18)0.09 (2)0.077 (14)0.003 (12)0.074 (15)0.014 (13)
O4B0.082 (7)0.062 (5)0.050 (5)0.039 (5)0.006 (5)0.008 (3)
N10.051 (2)0.0436 (19)0.045 (3)0.0034 (17)0.0157 (18)0.0069 (16)
N20.047 (2)0.0436 (19)0.044 (3)0.0037 (16)0.0125 (18)0.0031 (16)
N30.038 (2)0.063 (2)0.049 (3)0.0004 (17)0.0128 (18)0.0026 (18)
N40.057 (2)0.058 (2)0.040 (3)0.0041 (19)0.017 (2)0.0025 (18)
C10.045 (3)0.058 (3)0.040 (3)0.001 (2)0.007 (2)0.000 (2)
C20.049 (3)0.058 (3)0.047 (3)0.005 (2)0.017 (2)0.005 (2)
C30.070 (3)0.049 (2)0.056 (4)0.001 (2)0.026 (3)0.008 (2)
C40.060 (3)0.054 (3)0.055 (3)0.015 (2)0.023 (3)0.002 (2)
C50.050 (3)0.071 (3)0.048 (4)0.008 (2)0.002 (2)0.003 (2)
C60.046 (3)0.056 (3)0.046 (3)0.002 (2)0.018 (2)0.007 (2)
Geometric parameters (Å, º) top
N1—C11.457 (5)C15—C161.512 (6)
N1—C31.477 (6)C15—H15A0.9700
N1—C21.482 (5)C15—H15B0.9700
N1—H10.9100C16—C171.507 (6)
N2—C41.464 (5)C16—H16A0.9700
N2—C61.475 (6)C16—H16B0.9700
N2—C11.477 (5)C17—C181.507 (6)
N2—H20.9100C17—H17A0.9700
N3—C21.454 (6)C17—H17B0.9700
N3—C41.457 (6)C18—C191.490 (6)
N3—C51.469 (7)C18—H18A0.9700
N4—C31.459 (6)C18—H18B0.9700
N4—C61.464 (5)C19—O3B1.20 (2)
N4—C51.471 (6)C19—O3A1.22 (5)
O1A—C111.22 (3)C19—O4A1.29 (4)
O1B—C111.190 (11)C19—O4B1.322 (15)
O2A—C111.25 (3)O4B—H4O0.8700
O2B—C111.298 (14)C1—H1A0.9700
O2B—H2O0.8700C1—H1B0.9700
C11—C121.492 (6)C2—H2A0.9700
C12—C131.500 (6)C2—H2B0.9700
C12—H12A0.9700C3—H3A0.9700
C12—H12B0.9700C3—H3B0.9700
C13—C141.518 (7)C4—H4A0.9700
C13—H13A0.9700C4—H4B0.9700
C13—H13B0.9700C5—H5A0.9700
C14—C151.505 (6)C5—H5B0.9700
C14—H14A0.9700C6—H6A0.9700
C14—H14B0.9700C6—H6B0.9700
C11—O2B—H2O109.5O3B—C19—C18124.9 (12)
O1B—C11—O1A37 (3)O3A—C19—C18123 (2)
O1B—C11—O2A115.7 (19)O4A—C19—C18116.5 (14)
O1A—C11—O2A117 (2)O4B—C19—C18112.0 (8)
O1B—C11—O2B123.6 (9)C19—O4B—H4O109.5
O1A—C11—O2B113 (2)C1—N1—C3107.9 (3)
O2A—C11—O2B17 (2)C1—N1—C2108.3 (3)
O1B—C11—C12122.2 (7)C3—N1—C2108.3 (4)
O1A—C11—C12124.2 (17)C1—N1—H1110.7
O2A—C11—C12116.7 (17)C3—N1—H1110.7
O2B—C11—C12113.5 (8)C2—N1—H1110.7
C11—C12—C13116.7 (4)C4—N2—C6108.7 (3)
C11—C12—H12A108.1C4—N2—C1107.9 (3)
C13—C12—H12A108.1C6—N2—C1108.0 (3)
C11—C12—H12B108.1C4—N2—H2110.7
C13—C12—H12B108.1C6—N2—H2110.7
H12A—C12—H12B107.3C1—N2—H2110.7
C12—C13—C14112.3 (4)C2—N3—C4108.3 (4)
C12—C13—H13A109.1C2—N3—C5107.8 (3)
C14—C13—H13A109.1C4—N3—C5108.4 (3)
C12—C13—H13B109.1C3—N4—C6108.0 (4)
C14—C13—H13B109.1C3—N4—C5108.8 (3)
H13A—C13—H13B107.9C6—N4—C5107.9 (3)
C15—C14—C13117.1 (4)N1—C1—N2111.7 (3)
C15—C14—H14A108.0N1—C1—H1A109.3
C13—C14—H14A108.0N2—C1—H1A109.3
C15—C14—H14B108.0N1—C1—H1B109.3
C13—C14—H14B108.0N2—C1—H1B109.3
H14A—C14—H14B107.3H1A—C1—H1B107.9
C14—C15—C16112.1 (4)N3—C2—N1112.0 (3)
C14—C15—H15A109.2N3—C2—H2A109.2
C16—C15—H15A109.2N1—C2—H2A109.2
C14—C15—H15B109.2N3—C2—H2B109.2
C16—C15—H15B109.2N1—C2—H2B109.2
H15A—C15—H15B107.9H2A—C2—H2B107.9
C17—C16—C15116.7 (4)N4—C3—N1111.8 (3)
C17—C16—H16A108.1N4—C3—H3A109.3
C15—C16—H16A108.1N1—C3—H3A109.3
C17—C16—H16B108.1N4—C3—H3B109.3
C15—C16—H16B108.1N1—C3—H3B109.3
H16A—C16—H16B107.3H3A—C3—H3B107.9
C16—C17—C18111.7 (4)N3—C4—N2112.2 (3)
C16—C17—H17A109.3N3—C4—H4A109.2
C18—C17—H17A109.3N2—C4—H4A109.2
C16—C17—H17B109.3N3—C4—H4B109.2
C18—C17—H17B109.3N2—C4—H4B109.2
H17A—C17—H17B107.9H4A—C4—H4B107.9
C19—C18—C17116.8 (4)N3—C5—N4112.4 (3)
C19—C18—H18A108.1N3—C5—H5A109.1
C17—C18—H18A108.1N4—C5—H5A109.1
C19—C18—H18B108.1N3—C5—H5B109.1
C17—C18—H18B108.1N4—C5—H5B109.1
H18A—C18—H18B107.3H5A—C5—H5B107.9
O3B—C19—O3A28.1 (18)N4—C6—N2111.7 (3)
O3B—C19—O4A116 (2)N4—C6—H6A109.3
O3A—C19—O4A119 (3)N2—C6—H6A109.3
O3B—C19—O4B122.4 (13)N4—C6—H6B109.3
O3A—C19—O4B121 (3)N2—C6—H6B109.3
O4A—C19—O4B11 (3)H6A—C6—H6B107.9
C13—C12—C11—O1A18 (4)C14—C15—C16—C17174.7 (4)
C13—C12—C11—O2A180 (2)C15—C16—C17—C18175.1 (4)
C13—C12—C11—O1B27.2 (12)C16—C17—C18—C19174.2 (4)
C13—C12—C11—O2B161.7 (9)C17—C18—C19—O3A15 (3)
C11—C12—C13—C14171.1 (4)C17—C18—C19—O4A179 (2)
C12—C13—C14—C15175.7 (4)C17—C18—C19—O3B18.9 (16)
C13—C14—C15—C16172.3 (4)C17—C18—C19—O4B170.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2O···N10.871.892.730 (16)163
O4B—H4O···N2i0.871.982.699 (14)140
C2—H2A···O1Bii0.972.633.157 (14)115
C3—H3B···O3Biii0.972.583.19 (2)121
C5—H5A···O3Biv0.972.623.58 (2)170
C5—H5B···O1Bv0.972.403.345 (15)163
C12—H12A···O4Bvi0.972.743.706 (18)176
N1—H1···O2A0.911.762.65 (4)165
N1—H1···O1A0.912.713.46 (3)140
N2—H2···O3Avii0.912.793.51 (5)138
N2—H2···O4Avii0.911.722.59 (4)160
C2—H2B···O1Aii0.972.623.21 (4)120
C6—H6B···O2Aviii0.972.743.38 (4)124
C2—H2A···N4ix0.972.793.682 (6)154
C1—H1B···N3x0.972.743.622 (6)152
C6—H6A···N3x0.972.683.580 (6)154
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y+2, z; (iv) x, y+2, z; (v) x+1, y+3/2, z+1/2; (vi) x1, y+2, z1; (vii) x1, y1/2, z1/2; (viii) x, y+3/2, z+1/2; (ix) x, y+3/2, z1/2; (x) x1, y, z.
Bond distances and angles in the HMT molecule top
N1-C11.457 (5)C1-N1-C2108.3 (3)
N1-C21.482 (5)C1-N1-C3107.9 (3)
N1-C31.477 (6)C3-N1-C2108.3 (4)
N2-C11.477 (5)C4-N2-C6108.7 (3)
N2-C41.464 (5)C4-N2-C1107.9 (3)
N2-C61.475 (6)C6-N2-C1108.0 (3)
N3-C21.454 (6)C2-N3-C4108.3 (4)
N3-C41.457 (6)C2-N3-C5107.8 (3)
N3-C51.469 (7)C4-N3-C5108.4 (3)
N4-C31.459 (6)C3-N4-C5108.8 (3)
N4-C51.471 (6)C3-N4-C6108.0 (4)
N4-C61.464 (5)C6-N4-C5107.9 (3)
N1-C1-N2111.7 (3)
N3-C2-N1112.0 (3)
N4-C3-N1111.8 (3)
N3-C4-N2112.2 (3)
N3-C5-N4112.4 (3)
N4-C6-N2111.7 (3)
Bond distances and angles in the acid molecule top
O1A-C111.22 (3)O1A-C11-O2A117 (2)
O2A-C111.25 (3)O1A-C11-C12124.2 (17)
O1B-C111.190 (11)O2A-C11-C12116.7 (17)
O2B-C111.298 (14)O1B-C11-O2B123.6 (9)
C11-C121.492 (6)O1B-C11-C12122.2 (7)
C12-C131.500 (6)O2B-C11-C12113.5 (8)
C13-C141.518 (7)C11-C12-C13116.7 (4)
C14-C151.505 (6)C12-C13-C14112.3 (4)
C15-C161.512 (6)C15-C14-C13117.1 (4)
C16-C171.507 (6)C14-C15-C16112.1 (4)
C17-C181.507 (6)C17-C16-C15116.7 (4)
C18-C191.490 (6)C16-C17-C18111.7 (4)
C19-O3A1.22 (5)C19-C18-C17116.8 (4)
C19-O4A1.29 (4)O3A-C19-O4A119 (3)
C19-O3B1.20 (2)O3A-C19-C18123 (2)
C19-O4B1.322 (15)O4A-C19-C18116.5 (14)
O3B-C19-O4B122.4 (13)
O3B-C19-C18124.9 (12)
O4B-C19-C18112.0 (8)
 
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds