Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The microstructure of the poly(N-isopropylacrylamide-co-acrylamido-2-methyl-1-propane sulphonic acid) gel, poly(NIPA-co-AMPS), was investigated as a function of temperature and cross-link density using the small angle neutron scattering technique. The sample temperature was varied in the range 30 to 55C. Two different behaviours of poly(NIPA-co-AMPS) gels were observed. At low temperature (30C), the magnitude of the scattered intensity increased with cross-link density suggesting that additional cross-links introduced more inhomogeneities in the gel network. At high temperatures the trend was reversed; that is the lower cross-link density, the higher the scattered intensity. Therefore, the role of cross-links at high temperature was to suppress microphase separation. The fitting of the experimental data with the Rabin and Panyukov theory indicated qualitative agreement.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds