Download citation
Download citation
link to html
Difference electron densities do not play a central role in modern phase refinement approaches, essentially because of the explosive success of the EDM (electron-density modification) techniques, mainly based on observed electron-density syntheses. Difference densities however have been recently rediscovered in connection with the VLD (Vive la Difference) approach, because they are a strong support for strengthening EDM approaches and for ab initio crystal structure solution. In this paper the properties of the most documented difference electron densities, here denoted as FFp, mFFp and mFDFp syntheses, are studied. In addition, a fourth new difference synthesis, here denoted as {\overline F_q} synthesis, is proposed. It comes from the study of the same joint probability distribution function from which the VLD approach arose. The properties of the {\overline F_q} syntheses are studied and compared with those of the other three syntheses. The results suggest that the {\overline F_q} difference may be a useful tool for making modern phase refinement procedures more efficient.

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds