Download citation
Download citation
link to html
Until recently, protein crystallization has mostly been regarded as a stochastic event over which the investigator has little or no control. With the dramatic technological advances in synchrotron-radiation sources and detectors and the equally impressive progress in crystallographic software, including automated model building and validation, crystallization has increasingly become the rate-limiting step in X-ray diffraction studies of macromolecules. However, with the advent of recombinant methods it has also become possible to engineer target proteins and their complexes for higher propensity to form crystals with desirable X-ray diffraction qualities. As most proteins that are under investigation today are obtained by heterologous overexpression, these tech­niques hold the promise of becoming routine tools with the potential to transform classical crystallization screening into a more rational high-success-rate approach. This article presents an overview of protein-engineering methods designed to enhance crystallizability and discusses a number of examples of their successful application.

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds