Download citation
Download citation
link to html
In the title compound, C14H12ClO4P, the seven-membered phosphepine ring exhibits a twist-chair conformation, with the phosphoryl O atom occupying an axial and the chloro­phen­oxy group an equatorial position. The P=O distance is 1.449 (2) Å and the average length of the three P-O bonds is 1.574 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041371/rz6149sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041371/rz6149Isup2.hkl
Contains datablock I

CCDC reference: 296641

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.051
  • wR factor = 0.115
  • Data-to-parameter ratio = 10.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Organophosphorus compounds are ubiquitous in nature and they have unique multifaceted applications as insecticides (Fest & Schmidt, 1982), anticancer agents (Papanastassiou & Bardos, 1962) and lubricating oil additives and polymer stabilizers (Spivack, 1982). Benzoannulated and related analogs (Ludeman & Zon, 1975) of cyclophosphamide posses antitumor activity against lymphoid leukemia in mice. The title compound, (I), which has both antifungal and antibacterial activity, promoted us to undertake the present crystal structure determination to examine the influence of the substituents on the conformation of the heterocyclic ring.

In the dioxaphosphepin ring system of (I), the corresponding bond lengths and angles (Table 1) of the two P—O—CH2—C fragments are equal within experimental error. The endocyclic O—P—O and P—O—C bond angles [108.4 (4) and 123.2 (2)°] are in good agreement with the values of the corresponding seven-membered-ring structures [Selladurai & Subramanian, 1991; Sivakumar et al., 1989; Grand & Robert, 1978]. As a result of the presence of the C10C11 double bond, considerable differences in the C—O and P—O distances are observed in the dioxaphosphepine ring. The average values for the C—O [1.461 (4) Å] and P—O [1.555 (2) Å] bond distances are similar to the values observed in the structures reported by Grand & Robert (1978).

The C14—Cl bond length of 1.732 (2) Å and its associated endocyclic C13—C14—C15 angle of 120.3 (3)° agree well with values of P–sustituted chlorobenzene (Domenicano et al., 1975: Sivakumar et al., 1989), but are slightly different from the corresponding values of 1.68 (3) Å and 118.2 (3)° in dithiaphosphepine (Reddy et al., 1985). The torsion angles (Table 1) indicate that the heterocyclic ring exhibits a twist-chair conformation with the C1/O2/O4/C5 atoms nearly coplanar, and the C10/C11 and P3 atoms puckered in opposite directions in a conformation similar to that observed in tetramethylene phosphoric acid (Coulter, 1975). However, this conformation is different from those generally found in the distorted-boat, twist-boat, and boat forms of the dioxaphosphepine ring (Krishnaiah et al., 2005; Selladurai & Subramanian, 1991; Sivakumar et al., 1989), which have bulky substituents to the heterocyclic ring. The presence of the fused benzene ring, which forms a dihedral angle of 25.8 (1)° with the heterocyclic ring, might account for the different geometry exhibited by the seven-membered ring. The planar chlorophenyl group is oriented at 56.9 (1)° to the heterocyclic ring, keeping the Cl atom away from the phosphoryl O atom.

Experimental top

A solution of 2-chlorophenylphosphorodichloridate (0.48 g, 2 mmol) in dry tetrahydrofuran (20 ml) was added dropwise over a period of 20 minutes at 273 K to a stirred solution of 1,2-benzenedimethanol (0.27 g, 2 mmol) and triethylamine (0.404 g, 4 mmol) in dry tetrahydrofuran (30 ml). After completion of the addition, the temperature was slowly raised to room temperature and the reaction mixture stirred for 4 h. The progress of the reaction was monitored by TLC analysis (ethyl acetate-hexane 1:2). The precipitated triethylamine hydrochloride was filtered and the filtrate evaporated under vacuum. The residue obtained was washed with water and recrystallized from ethanol to afford 0.38 g (62%) of pure title compound.

Refinement top

All the H-atoms were clearly identified from difference Fourier syntheses and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEPII (Zsolnai, 1997); software used to prepare material for publication: enCIFer (CCDC, 2003) and PARST (Nardelli, 1995)'.

Figures top
[Figure 1] Fig. 1. View of the molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radius.
3-(2-Chlorophenoxy)-1,5-dihydroxy-2,4,3-benzodioxaphosphepine 3-oxide top
Crystal data top
C14H12ClO4PF(000) = 640
Mr = 310.66Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 989 reflections
a = 13.585 (2) Åθ = 2.9–25.0°
b = 8.719 (1) ŵ = 0.41 mm1
c = 13.106 (2) ÅT = 293 K
β = 118.15 (2)°Prism, yellow
V = 1368.8 (4) Å30.25 × 0.25 × 0.13 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2410 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1615
Tmin = 0.906, Tmax = 0.949k = 710
6682 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051All H-atom parameters refined
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.766P]
where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max < 0.001
2410 reflectionsΔρmax = 0.18 e Å3
229 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (3)
Crystal data top
C14H12ClO4PV = 1368.8 (4) Å3
Mr = 310.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.585 (2) ŵ = 0.41 mm1
b = 8.719 (1) ÅT = 293 K
c = 13.106 (2) Å0.25 × 0.25 × 0.13 mm
β = 118.15 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2236 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.949Rint = 0.024
6682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.115All H-atom parameters refined
S = 1.31Δρmax = 0.18 e Å3
2410 reflectionsΔρmin = 0.24 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1A0.237 (2)0.954 (4)0.295 (2)0.039 (8)*
H1B0.215 (2)0.787 (3)0.316 (2)0.046 (8)*
H5B0.358 (3)1.115 (4)0.249 (3)0.049 (9)*
H80.569 (3)0.637 (4)0.564 (3)0.059 (9)*
H90.378 (3)0.669 (4)0.457 (3)0.048 (9)*
H5A0.461 (3)1.095 (4)0.229 (3)0.052 (9)*
H150.144 (2)1.569 (4)0.051 (3)0.048 (8)*
H70.689 (3)0.796 (4)0.529 (3)0.054 (9)*
H160.058 (3)1.555 (4)0.149 (3)0.053 (9)*
H180.051 (3)1.102 (4)0.129 (3)0.055 (9)*
H60.612 (3)0.969 (4)0.379 (3)0.065 (10)*
H170.015 (3)1.318 (4)0.237 (3)0.073 (11)*
P30.21146 (7)0.92684 (8)0.07582 (6)0.0432 (2)
Cl0.21078 (8)1.35784 (10)0.22422 (7)0.0650 (3)
O120.14626 (16)1.0709 (2)0.08935 (17)0.0447 (5)
O20.20807 (16)0.8156 (2)0.16665 (17)0.0471 (5)
O40.33469 (16)0.9805 (2)0.12017 (17)0.0471 (5)
C130.1226 (2)1.2029 (3)0.0212 (2)0.0382 (6)
O200.1661 (2)0.8606 (3)0.03888 (19)0.0613 (6)
C50.4028 (3)1.0453 (4)0.2353 (3)0.0478 (7)
C10.2547 (3)0.8535 (4)0.2893 (3)0.0458 (7)
C110.4492 (2)0.9258 (3)0.3284 (2)0.0402 (6)
C100.3784 (2)0.8348 (3)0.3531 (2)0.0401 (6)
C140.1490 (2)1.3442 (3)0.0749 (2)0.0392 (6)
C150.1252 (2)1.4764 (3)0.0101 (3)0.0461 (7)
C180.0690 (3)1.1948 (4)0.0978 (3)0.0492 (8)
C160.0729 (3)1.4671 (4)0.1083 (3)0.0487 (8)
C60.5637 (3)0.9089 (4)0.3941 (3)0.0493 (7)
C80.5391 (3)0.7124 (4)0.5055 (3)0.0565 (9)
C170.0440 (3)1.3279 (4)0.1623 (3)0.0524 (8)
C70.6085 (3)0.8036 (4)0.4829 (3)0.0543 (8)
C90.4248 (3)0.7268 (4)0.4411 (3)0.0499 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P30.0513 (5)0.0339 (4)0.0411 (4)0.0032 (3)0.0190 (4)0.0012 (3)
Cl0.0814 (6)0.0606 (5)0.0402 (4)0.0181 (4)0.0180 (4)0.0057 (4)
O120.0512 (12)0.0374 (11)0.0448 (11)0.0059 (9)0.0221 (10)0.0077 (9)
O20.0485 (12)0.0364 (11)0.0491 (12)0.0017 (9)0.0172 (10)0.0037 (9)
O40.0522 (12)0.0467 (12)0.0469 (12)0.0023 (10)0.0272 (10)0.0058 (9)
C130.0341 (14)0.0374 (15)0.0401 (15)0.0042 (12)0.0150 (12)0.0055 (12)
O200.0762 (16)0.0505 (13)0.0472 (13)0.0079 (11)0.0209 (12)0.0036 (10)
C50.0446 (18)0.0414 (17)0.056 (2)0.0021 (14)0.0225 (16)0.0040 (14)
C10.0480 (18)0.0446 (18)0.0490 (18)0.0013 (15)0.0263 (15)0.0066 (14)
C110.0438 (16)0.0343 (15)0.0423 (16)0.0023 (12)0.0200 (13)0.0033 (12)
C100.0479 (16)0.0352 (14)0.0398 (15)0.0042 (13)0.0229 (13)0.0013 (12)
C140.0357 (14)0.0394 (15)0.0399 (15)0.0051 (12)0.0156 (12)0.0010 (12)
C150.0447 (17)0.0339 (16)0.059 (2)0.0014 (13)0.0240 (15)0.0036 (14)
C180.0503 (18)0.0426 (18)0.0434 (17)0.0018 (14)0.0128 (14)0.0012 (14)
C160.0493 (18)0.0433 (17)0.0520 (19)0.0093 (14)0.0226 (15)0.0146 (15)
C60.0457 (18)0.0454 (17)0.0553 (19)0.0004 (15)0.0226 (15)0.0045 (15)
C80.065 (2)0.0465 (19)0.0435 (18)0.0142 (17)0.0136 (17)0.0053 (15)
C170.056 (2)0.054 (2)0.0373 (17)0.0047 (16)0.0141 (15)0.0068 (15)
C70.0473 (19)0.052 (2)0.0502 (19)0.0094 (16)0.0123 (16)0.0071 (15)
C90.060 (2)0.0443 (18)0.0452 (18)0.0018 (16)0.0248 (16)0.0043 (14)
Geometric parameters (Å, º) top
P3—O201.449 (2)C11—C101.397 (4)
P3—O21.553 (2)C10—C91.389 (4)
P3—O41.562 (2)C14—C151.377 (4)
P3—O121.594 (2)C15—C161.371 (4)
Cl—C141.732 (3)C15—H150.93 (3)
O12—C131.398 (3)C18—C171.380 (4)
O2—C11.461 (4)C18—H180.89 (3)
O4—C51.461 (4)C16—C171.366 (5)
C13—C181.377 (4)C16—H160.90 (3)
C13—C141.380 (4)C6—C71.379 (5)
C5—C111.499 (4)C6—H60.93 (4)
C5—H5B0.93 (3)C8—C71.368 (5)
C5—H5A0.94 (3)C8—C91.379 (5)
C1—C101.492 (4)C8—H80.94 (3)
C1—H1A0.92 (3)C17—H170.88 (4)
C1—H1B0.97 (3)C7—H70.97 (3)
C11—C61.385 (4)C9—H90.90 (3)
O20—P3—O2113.2 (1)C11—C10—C1121.7 (3)
O20—P3—O4111.2 (1)C15—C14—C13120.3 (3)
O2—P3—O4108.4 (1)C15—C14—Cl119.1 (2)
O20—P3—O12116.3 (1)C13—C14—Cl120.6 (2)
O2—P3—O12100.83 (11)C16—C15—C14119.6 (3)
O4—P3—O12106.1 (1)C16—C15—H15123.6 (19)
C13—O12—P3123.3 (2)C14—C15—H15116.7 (19)
C1—O2—P3123.2 (2)C13—C18—C17119.8 (3)
C5—O4—P3123.0 (2)C13—C18—H18117 (2)
C18—C13—C14119.6 (3)C17—C18—H18123 (2)
C18—C13—O12121.4 (3)C17—C16—C15120.5 (3)
C14—C13—O12118.9 (2)C17—C16—H16121 (2)
O4—C5—C11113.0 (2)C15—C16—H16118 (2)
O4—C5—H5B107.3 (19)C7—C6—C11120.9 (3)
C11—C5—H5B111.1 (19)C7—C6—H6118 (2)
O4—C5—H5A103.6 (19)C11—C6—H6121 (2)
C11—C5—H5A110.2 (19)C7—C8—C9120.4 (3)
H5B—C5—H5A111 (3)C7—C8—H8120 (2)
O2—C1—C10112.4 (2)C9—C8—H8119 (2)
O2—C1—H1A108.1 (17)C16—C17—C18120.2 (3)
C10—C1—H1A109.3 (18)C16—C17—H17122 (3)
O2—C1—H1B103.9 (17)C18—C17—H17117 (3)
C10—C1—H1B113.7 (17)C8—C7—C6119.7 (3)
H1A—C1—H1B109 (2)C8—C7—H7120.9 (19)
C6—C11—C10119.4 (3)C6—C7—H7119.4 (19)
C6—C11—C5119.8 (3)C8—C9—C10120.6 (3)
C10—C11—C5120.8 (3)C8—C9—H9121 (2)
C9—C10—C11119.0 (3)C10—C9—H9118 (2)
C9—C10—C1119.3 (3)
O20—P3—O12—C1354.5 (2)O2—C1—C10—C1164.6 (4)
O2—P3—O12—C13177.3 (2)C18—C13—C14—C152.1 (4)
O4—P3—O12—C1369.7 (2)O12—C13—C14—C15179.0 (2)
O20—P3—O2—C1176.5 (2)C18—C13—C14—Cl177.1 (2)
O4—P3—O2—C152.6 (2)O12—C13—C14—Cl0.2 (4)
O12—P3—O2—C158.6 (2)C13—C14—C15—C161.3 (4)
O20—P3—O4—C5177.2 (2)Cl—C14—C15—C16177.8 (2)
O2—P3—O4—C552.1 (2)C14—C13—C18—C171.2 (5)
O12—P3—O4—C555.5 (2)O12—C13—C18—C17178.0 (3)
P3—O12—C13—C1853.1 (3)C14—C15—C16—C170.3 (5)
P3—O12—C13—C14130.0 (2)C10—C11—C6—C70.1 (4)
P3—O4—C5—C1178.6 (3)C5—C11—C6—C7177.7 (3)
P3—O2—C1—C1079.3 (3)C15—C16—C17—C181.2 (5)
O4—C5—C11—C6118.7 (3)C13—C18—C17—C160.4 (5)
O4—C5—C11—C1063.7 (4)C9—C8—C7—C60.9 (5)
C6—C11—C10—C91.6 (4)C11—C6—C7—C81.2 (5)
C5—C11—C10—C9179.1 (3)C7—C8—C9—C100.6 (5)
C6—C11—C10—C1176.8 (3)C11—C10—C9—C81.8 (4)
C5—C11—C10—C10.7 (4)C1—C10—C9—C8176.6 (3)
O2—C1—C10—C9117.0 (3)

Experimental details

Crystal data
Chemical formulaC14H12ClO4P
Mr310.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.585 (2), 8.719 (1), 13.106 (2)
β (°) 118.15 (2)
V3)1368.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.25 × 0.25 × 0.13
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.906, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
6682, 2410, 2236
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.115, 1.31
No. of reflections2410
No. of parameters229
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEPII (Zsolnai, 1997), enCIFer (CCDC, 2003) and PARST (Nardelli, 1995)'.

Selected geometric parameters (Å, º) top
P3—O201.449 (2)O2—C11.461 (4)
P3—O21.553 (2)O4—C51.461 (4)
P3—O41.562 (2)C5—C111.499 (4)
P3—O121.594 (2)C1—C101.492 (4)
Cl—C141.732 (3)C11—C101.397 (4)
O12—C131.398 (3)
O20—P3—O2113.2 (1)C13—O12—P3123.3 (2)
O2—P3—O4108.4 (1)C1—O2—P3123.2 (2)
O20—P3—O12116.3 (1)C5—O4—P3123.0 (2)
O4—P3—O12106.1 (1)C15—C14—C13120.3 (3)
O4—P3—O2—C152.6 (2)O4—C5—C11—C1063.7 (4)
O2—P3—O4—C552.1 (2)C5—C11—C10—C10.7 (4)
P3—O4—C5—C1178.6 (3)O2—C1—C10—C1164.6 (4)
P3—O2—C1—C1079.3 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds