research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and theoretical study of (2E)-1-[4-hy­dr­oxy-3-(morpholin-4-ylmeth­yl)phen­yl]-3-(thio­phen-2-yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey, bDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Aksaray University, 68100 Aksaray, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 28 May 2018; accepted 8 June 2018; online 12 June 2018)

In the title compound, C18H19NO3S, the morpholine ring adopts a chair conformation. The thio­phene ring forms dihedral angles of 26.04 (9) and 74.07 (10)° with the benzene ring and the mean plane of the morpholine ring, respectively. The mol­ecular conformation is stabilized by an O—H⋯N hydrogen bond. In the crystal, mol­ecules are connected through C—H⋯O hydrogen bonds, forming wave-like layers parallel to the ab plane, which are further linked into a three-dimensional network by C—H⋯π inter­actions involving the benzene rings and the methyl­ene H atoms of the morpholine rings.

1. Chemical context

Chalcones, viz 1,3-diaryl-2-propene-1-ones, are major component of many natural products as well as important precursors for many synthetic manipulations (Das et al., 2006[Das, U., Gul, H. I., Alcorn, J., Shrivastav, A., George, T., Sharma, R. K., Nienaber, K. H., De Clercq, E., Balzarini, J., Kawase, M., Kan, N., Tanaka, T., Tani, S., Werbovetz, K. A., Yakovich, A. J., Manavathu, E. K., Stables, J. P. & Dimmock, J. R. (2006). Eur. J. Med. Chem. 41, 577-585.]; Yerdelen et al., 2015[Yerdelen, K. O., Gul, H. I., Sakagami, H., Umemura, N. & Sukuroglu, M. (2015). Lett. Drug. Des. Discov. 12, 643-649.]; Gul et al., 2009[Gul, H. I., Cizmecioglu, M., Zencir, S., Gul, M., Canturk, P., Atalay, M. & Topcu, Z. (2009). J. Enzyme Inhib. Med. Chem. 24, 804-807.]). Chalcones and their synthetic analogues display a wide range of biological activities such as anti­cancer, anti­malarial, anti­bacterial, anti-inflammatory, anti­fungal, anti­oxidant, anti-HIV, anti­protozoal, and carbonic anhydrase inhibiting activities (Das et al., 2006[Das, U., Gul, H. I., Alcorn, J., Shrivastav, A., George, T., Sharma, R. K., Nienaber, K. H., De Clercq, E., Balzarini, J., Kawase, M., Kan, N., Tanaka, T., Tani, S., Werbovetz, K. A., Yakovich, A. J., Manavathu, E. K., Stables, J. P. & Dimmock, J. R. (2006). Eur. J. Med. Chem. 41, 577-585.]; Yerdelen et al., 2015[Yerdelen, K. O., Gul, H. I., Sakagami, H., Umemura, N. & Sukuroglu, M. (2015). Lett. Drug. Des. Discov. 12, 643-649.]; Gul et al., 2007[Gul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. Chem. Life Sci. 340, 195-201.], 2009[Gul, H. I., Cizmecioglu, M., Zencir, S., Gul, M., Canturk, P., Atalay, M. & Topcu, Z. (2009). J. Enzyme Inhib. Med. Chem. 24, 804-807.]; Bilginer et al., 2013[Bilginer, S., Gul, H. I., Mete, E., Das, U., Sakagami, H., Umemura, N. & Dimmock, J. R. (2013). J. Enzyme Inhib. Med. Chem. 28, 974-980.], 2014[Bilginer, S., Unluer, E., Gul, H. I., Mete, E., Isik, S., Vullo, D., Ozensoy-Guler, O., Beyaztas, S., Capasso, C. & Supuran, C. T. (2014). J. Enzyme Inhib. Med. Chem. 29, 495-499.]; Yamali et al., 2016[Yamali, C., Tugrak, M., Gul, H. I., Tanc, M. & Supuran, C. T. (2016). J. Enzyme Inhib. Med. Chem. 31, 1678-1681.]; Singh et al., 2014[Singh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758-777.]).

[Scheme 1]

Mannich bases are an important class of compounds in medicinal chemistry. The Mannich reaction can be considered as a substitution reaction of a suitable compound in which one or more amino­methyl­ation processes happen, depending on the nature of the reactants. The biological activities of Mannich bases may result from their chemical structures or from the production of α,β-unsaturated ketone moieties (Roman, 2015[Roman, G. (2015). Eur. J. Med. Chem. 89, 743-816.]). The title compound was designed with the expectation of observing an increased bioactivity or cytotoxicity in a mol­ecule including both chalcone and Mannich base pharmakophores.

2. Structural commentary

In the title compound (Fig. 1[link]), the morpholine ring (N1/O3/C15–C18) adopts a chair conformation with puckering parameters QT = 0.5776 (18) Å, θ = 0.00 (19)°, φ = 308 (12)°. The benzene ring (C8–C13) forms dihedral angles of 26.04 (9) and 79.95 (8)° with the thio­phene ring (S1/C1–C4) and the mean plane of the morpholine ring, respectively. The values of all bond lengths and angles in the title compound are unexceptional. The mol­ecular conformation is enforced by an intra­molecular O—H⋯N hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯N1 0.83 (2) 1.94 (2) 2.6834 (18) 149 (3)
C1—H1⋯O1i 0.93 2.38 3.249 (2) 156
C2—H2⋯O2ii 0.93 2.57 3.417 (2) 152
C16—H16ACg1iii 0.97 2.88 3.789 (2) 157
C18—H18BCg1iv 0.97 2.70 3.6010 (18) 154
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level

3. Supra­molecular features

In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, forming wave-like layers parallel to the ab plane (Table 1[link], Fig. 2[link]). C—H⋯π inter­actions are observed between the benzene rings and the methyl­ene hydrogen atoms of the morpholine rings in adjacent layers, forming a three-dimensional network.

[Figure 2]
Figure 2
The mol­ecular packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-(morph­olino­meth­yl)phenol substructure yielded two hits, namely BOPMEY (Fun et al., 1999[Fun, H.-K., Shanmuga Sundara Raj, S., Chinnakali, K., Tian, J.-Z., Shen, Z., Zhang, J.-Q. & You, X.-Z. (1999). Acta Cryst. C55, 1843-1845.]) and IHUBIW (Xie et al., 2003[Xie, Y., Jiang, H., Du, C., Zhu, Y., Xu, X. & Liu, Q. (2003). Struct. Chem. 14, 295-298.]). In both compounds, the amine N atoms of the morpholine rings and the hy­droxy groups of the phenol fragments are engaged in intra­molecular hydrogen bonds.

5. Theoretical calculations

A quantum-chemical calculation was performed using the CNDO (Complete Neglect of Differential Overlap; Pople & Beveridge, 1970[Pople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw-Hill.]) approximation. A view of the calculated mol­ecule is shown in Fig. 3[link]. The charges at atoms S1, O1, O2, O3 and N1 are −0.049, −0.336, −0.271, −0.224 and −0.145 e, respectively. The calculated dipole moment of the title mol­ecule is ca 2.881 Debye. The HOMO and LUMO energy levels are −10.3681 and 1.4009 eV, respectively.

[Figure 3]
Figure 3
Spatial view of the title compound calculated using the CNDO method.

In addition, the geometrical optimization calculations of the title compound were performed using the PM3 (Parameterized Model number 3) method (Stewart, 1989a[Stewart, J. J. P. (1989a). J. Comput. Chem. 10, 209-220.],b[Stewart, J. J. P. (1989b). J. Comput. Chem. 10, 221-264.]) in WinMopac7.2. A view of the mol­ecule calculated with PM3 is shown in Fig. 4[link]. The net charges at atoms S1, O1, O2, O3 and N1 are 0.321, −0.230, −0.260, −0.321 and −0.070 e, respectively. The calculated dipole moment of the title mol­ecule is ca 1.176 Debye. The HOMO and LUMO energy levels are −0.1724 and 0.0829 eV, respectively. These calculations were performed assuming the mol­ecule to be isolated and in an absolute vacuum. A comparison between experimental and calculated bond lengths (r.m.s. deviations of 0.029 and 0.016 Å for CNDO and PM3, respectively) and angles (r.m.s. deviations of 1.601 and 1.915° for CNDO and PM3, respectively) is given in Table 2[link]. The PM3 method gave the lowest values for HOMO, LUMO and dipole moments.

Table 2
Comparison of experimental (X-ray), theoretical (CNDO and PM3) parameters (Å, °) of the title compound

Bond/Angle X-ray CNDO PM3
S1—C1 1.705 (2) 1.7663 1.7194
S1—C4 1.720 (2) 1.7758 1.7449
O1—C7 1.224 (2) 1.2143 1.2196
O2—C11 1.354 (2) 1.3565 1.3663
O3—C16 1.419 (2) 1.4208 1.4149
O3—C17 1.422 (2) 1.4209 1.4153
N1—C14 1.472 (2) 1.4606 1.4916
N1—C15 1.469 (2) 1.4573 1.4914
N1—C18 1.469 (2) 1.4567 1.4906
       
C1—S1—C4 92.20 (9) 88.91 91.38
C16—O3—C17 109.29 (13) 110.44 112.79
C14—N1—C15 111.86 (13) 111.15 112.06
C14—N1—C18 110.61 (13) 111.92 112.86
C15—N1—C18 109.09 (13) 109.64 111.62
S1—C1—C2 111.75 (15) 111.11 112.58
S1—C4—C5 123.58 (12) 126.03 125.76
S1—C4—C3 109.79 (12) 109.88 111.11
O1—C7—C6 120.42 (14) 119.03 122.82
O1—C7—C8 119.90 (14) 123.49 121.52
O2—C11—C10 118.59 (14) 119.87 115.22
O2—C11—C12 121.18 (14) 122.06 123.98
N1—C14—C12 112.14 (12) 112.35 111.21
N1—C15—C16 109.98 (14) 110.79 109.89
O3—C16—C15 111.42 (17) 109.89 112.44
O3—C17—C18 111.22 (14) 110.05 112.30
N1—C18—C17 109.80 (15) 110.73 110.02
[Figure 4]
Figure 4
Spatial view of the title compound calculated using the PM3 method

6. Synthesis and crystallization

A mixture of paraformaldehyde (0.13 g, 4.3 mmol) and morpholine (0.37 g, 4.3 mmol) in aceto­nitrile (5 ml) was refluxed at 353 K for 30 min. A solution of a suitable chalcone in aceto­nitrile (25 ml), [1-(4-hy­droxy­phen­yl)-3-(thio­phene-2-yl)-2-propene-1-one (1 g, 4.3 mmol)], was added into the reaction flask under continuous heating. The reaction progress was monitored by TLC. The reaction stopped after 8 h when the chalcone compound was consumed in the reaction medium, and the solvent was removed under vacuum. The residue was purified by column chromotography (SiO2; CHCl3: MeOH 9:1 v/v). Yield 32%, m.p. 424–426 K. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C). The hy­droxy H atom was found in a difference-Fourier map and refined with Uiso(H) = 1.5Ueq(O). 15 outliers (5 4 6, [\overline{8}] 14 1, 5 3 2, 3 4 2, [\overline{1}] 3 1, [\overline{6}] 16 4, [\overline{4}] 11 1, [\overline{7}] 7 9, [\overline{2}] 11 1, 2 2 10, 0 5 12, [\overline{8}] 13 1, [\overline{6}] 13 3, 0 15 4, [\overline{6}] 17 4) were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C18H19NO3S
Mr 329.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 9.4939 (5), 18.5548 (10), 9.5068 (5)
β (°) 96.788 (3)
V3) 1662.95 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.81 × 0.50 × 0.48
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.882, 0.905
No. of measured, independent and observed [I > 2σ(I)] reflections 33902, 4168, 3373
Rint 0.033
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.03
No. of reflections 4168
No. of parameters 211
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(2E)-1-[4-Hydroxy-3-(morpholin-4-ylmethyl)phenyl]-3-(thiophen-2-yl)prop-2-en-1-one top
Crystal data top
C18H19NO3SF(000) = 696
Mr = 329.40Dx = 1.316 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4939 (5) ÅCell parameters from 9868 reflections
b = 18.5548 (10) Åθ = 2.2–28.4°
c = 9.5068 (5) ŵ = 0.21 mm1
β = 96.788 (3)°T = 293 K
V = 1662.95 (15) Å3Prism, colourless
Z = 40.81 × 0.50 × 0.48 mm
Data collection top
Bruker APEXII CCD
diffractometer
4168 independent reflections
Radiation source: sealed tube3373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.882, Tmax = 0.905k = 2424
33902 measured reflectionsl = 1212
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.4859P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4168 reflectionsΔρmax = 0.32 e Å3
211 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3316 (2)0.02309 (12)0.2121 (3)0.0720 (6)
H10.2354650.0198630.2218730.086*
C20.3860 (2)0.06817 (11)0.1231 (2)0.0623 (5)
H20.3313810.0997900.0634330.075*
C30.53423 (18)0.06285 (9)0.12897 (19)0.0522 (4)
H30.5877010.0904380.0731640.063*
C40.59198 (16)0.01301 (8)0.22504 (17)0.0441 (3)
C50.74016 (16)0.00373 (8)0.25820 (17)0.0447 (3)
H50.8022580.0225980.2095310.054*
C60.79903 (17)0.05204 (9)0.34953 (18)0.0465 (4)
H60.7416870.0802540.4002490.056*
C70.95402 (16)0.06168 (8)0.37183 (17)0.0433 (3)
C81.01520 (15)0.12698 (8)0.44638 (15)0.0398 (3)
C90.93436 (16)0.18710 (8)0.47309 (16)0.0435 (3)
H90.8366710.1863780.4480480.052*
C100.99807 (17)0.24766 (8)0.53638 (17)0.0456 (3)
H100.9431570.2876580.5525220.055*
C111.14360 (16)0.24932 (8)0.57615 (15)0.0410 (3)
C121.22777 (15)0.18990 (8)0.54966 (15)0.0390 (3)
C131.16227 (15)0.13017 (8)0.48509 (15)0.0397 (3)
H131.2174890.0906580.4665890.048*
C141.38542 (17)0.19118 (9)0.59817 (18)0.0473 (4)
H14A1.4010570.1812640.6989850.057*
H14B1.4314230.1534400.5497280.057*
C151.45567 (19)0.27260 (10)0.41787 (17)0.0533 (4)
H15A1.3603090.2722160.3683030.064*
H15B1.5088510.2339300.3801830.064*
C161.5255 (2)0.34382 (12)0.3944 (2)0.0645 (5)
H16A1.5298840.3506540.2938660.077*
H16B1.4689020.3825120.4271160.077*
C171.65806 (19)0.33755 (12)0.6150 (2)0.0603 (5)
H17A1.6014850.3758270.6493250.072*
H17B1.7529020.3406690.6652650.072*
C181.59421 (16)0.26603 (10)0.64480 (18)0.0507 (4)
H18A1.6523430.2275140.6137630.061*
H18B1.5910620.2607450.7458940.061*
N11.45003 (13)0.26102 (7)0.56999 (13)0.0425 (3)
O11.03248 (13)0.01683 (7)0.32762 (15)0.0605 (3)
O21.20139 (14)0.30917 (7)0.64087 (14)0.0548 (3)
O31.66467 (14)0.34704 (8)0.46745 (15)0.0686 (4)
S10.45988 (5)0.02779 (3)0.30547 (7)0.0781 (2)
H1O1.2875 (19)0.3090 (18)0.633 (3)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0407 (9)0.0815 (14)0.0932 (15)0.0020 (9)0.0062 (9)0.0139 (12)
C20.0505 (10)0.0600 (11)0.0743 (13)0.0078 (8)0.0017 (9)0.0083 (9)
C30.0508 (9)0.0475 (9)0.0585 (10)0.0007 (7)0.0072 (7)0.0053 (7)
C40.0416 (8)0.0406 (8)0.0499 (8)0.0049 (6)0.0046 (6)0.0006 (6)
C50.0417 (8)0.0414 (7)0.0515 (8)0.0031 (6)0.0073 (6)0.0028 (6)
C60.0419 (8)0.0443 (8)0.0538 (9)0.0012 (6)0.0084 (7)0.0019 (7)
C70.0426 (8)0.0413 (8)0.0470 (8)0.0013 (6)0.0094 (6)0.0031 (6)
C80.0394 (7)0.0408 (7)0.0405 (7)0.0009 (6)0.0098 (6)0.0044 (6)
C90.0370 (7)0.0476 (8)0.0472 (8)0.0017 (6)0.0102 (6)0.0029 (6)
C100.0451 (8)0.0430 (8)0.0505 (9)0.0060 (6)0.0132 (7)0.0018 (6)
C110.0468 (8)0.0414 (7)0.0359 (7)0.0002 (6)0.0086 (6)0.0015 (6)
C120.0388 (7)0.0417 (7)0.0367 (7)0.0007 (6)0.0052 (6)0.0066 (6)
C130.0401 (7)0.0372 (7)0.0427 (7)0.0034 (6)0.0090 (6)0.0049 (6)
C140.0427 (8)0.0468 (8)0.0509 (9)0.0011 (6)0.0012 (6)0.0040 (7)
C150.0532 (9)0.0672 (11)0.0389 (8)0.0119 (8)0.0035 (7)0.0032 (7)
C160.0651 (11)0.0769 (13)0.0532 (10)0.0191 (10)0.0138 (8)0.0029 (9)
C170.0433 (9)0.0802 (13)0.0587 (10)0.0145 (8)0.0114 (7)0.0211 (9)
C180.0379 (8)0.0673 (11)0.0461 (8)0.0016 (7)0.0016 (6)0.0121 (7)
N10.0376 (6)0.0507 (7)0.0388 (6)0.0043 (5)0.0032 (5)0.0020 (5)
O10.0456 (6)0.0539 (7)0.0837 (9)0.0002 (5)0.0151 (6)0.0174 (6)
O20.0554 (7)0.0482 (6)0.0605 (7)0.0024 (5)0.0059 (6)0.0127 (5)
O30.0540 (7)0.0911 (10)0.0646 (8)0.0251 (7)0.0234 (6)0.0133 (7)
S10.0495 (3)0.0889 (4)0.0965 (4)0.0074 (2)0.0111 (3)0.0427 (3)
Geometric parameters (Å, º) top
C1—C21.336 (3)C11—C121.402 (2)
C1—S11.705 (2)C12—C131.379 (2)
C1—H10.9300C12—C141.513 (2)
C2—C31.406 (2)C13—H130.9300
C2—H20.9300C14—N11.472 (2)
C3—C41.368 (2)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.439 (2)C15—N11.469 (2)
C4—S11.7197 (16)C15—C161.507 (3)
C5—C61.325 (2)C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C6—C71.473 (2)C16—O31.419 (2)
C6—H60.9300C16—H16A0.9700
C7—O11.2239 (19)C16—H16B0.9700
C7—C81.487 (2)C17—O31.422 (2)
C8—C91.394 (2)C17—C181.500 (3)
C8—C131.403 (2)C17—H17A0.9700
C9—C101.380 (2)C17—H17B0.9700
C9—H90.9300C18—N11.4691 (19)
C10—C111.389 (2)C18—H18A0.9700
C10—H100.9300C18—H18B0.9700
C11—O21.3538 (19)O2—H1O0.830 (18)
C2—C1—S1111.75 (15)C8—C13—H13118.9
C2—C1—H1124.1N1—C14—C12112.14 (12)
S1—C1—H1124.1N1—C14—H14A109.2
C1—C2—C3113.02 (18)C12—C14—H14A109.2
C1—C2—H2123.5N1—C14—H14B109.2
C3—C2—H2123.5C12—C14—H14B109.2
C4—C3—C2113.24 (16)H14A—C14—H14B107.9
C4—C3—H3123.4N1—C15—C16109.98 (14)
C2—C3—H3123.4N1—C15—H15A109.7
C3—C4—C5126.63 (15)C16—C15—H15A109.7
C3—C4—S1109.79 (12)N1—C15—H15B109.7
C5—C4—S1123.58 (12)C16—C15—H15B109.7
C6—C5—C4127.99 (15)H15A—C15—H15B108.2
C6—C5—H5116.0O3—C16—C15111.42 (17)
C4—C5—H5116.0O3—C16—H16A109.3
C5—C6—C7120.90 (15)C15—C16—H16A109.3
C5—C6—H6119.6O3—C16—H16B109.3
C7—C6—H6119.6C15—C16—H16B109.3
O1—C7—C6120.42 (14)H16A—C16—H16B108.0
O1—C7—C8119.90 (14)O3—C17—C18111.22 (14)
C6—C7—C8119.67 (13)O3—C17—H17A109.4
C9—C8—C13118.09 (14)C18—C17—H17A109.4
C9—C8—C7123.12 (14)O3—C17—H17B109.4
C13—C8—C7118.69 (13)C18—C17—H17B109.4
C10—C9—C8120.57 (14)H17A—C17—H17B108.0
C10—C9—H9119.7N1—C18—C17109.80 (15)
C8—C9—H9119.7N1—C18—H18A109.7
C9—C10—C11120.48 (14)C17—C18—H18A109.7
C9—C10—H10119.8N1—C18—H18B109.7
C11—C10—H10119.8C17—C18—H18B109.7
O2—C11—C10118.59 (14)H18A—C18—H18B108.2
O2—C11—C12121.18 (14)C18—N1—C15109.09 (13)
C10—C11—C12120.23 (14)C18—N1—C14110.61 (13)
C13—C12—C11118.39 (13)C15—N1—C14111.86 (13)
C13—C12—C14121.74 (13)C11—O2—H1O108 (2)
C11—C12—C14119.80 (13)C16—O3—C17109.29 (13)
C12—C13—C8122.22 (13)C1—S1—C492.20 (9)
C12—C13—H13118.9
S1—C1—C2—C30.3 (3)C10—C11—C12—C14177.78 (14)
C1—C2—C3—C40.4 (3)C11—C12—C13—C80.4 (2)
C2—C3—C4—C5178.40 (16)C14—C12—C13—C8176.60 (13)
C2—C3—C4—S10.9 (2)C9—C8—C13—C120.9 (2)
C3—C4—C5—C6179.33 (18)C7—C8—C13—C12177.50 (13)
S1—C4—C5—C61.5 (3)C13—C12—C14—N1140.07 (14)
C4—C5—C6—C7179.26 (15)C11—C12—C14—N142.94 (19)
C5—C6—C7—O113.9 (3)N1—C15—C16—O358.3 (2)
C5—C6—C7—C8165.08 (15)O3—C17—C18—N159.52 (19)
O1—C7—C8—C9166.04 (15)C17—C18—N1—C1556.66 (17)
C6—C7—C8—C912.9 (2)C17—C18—N1—C14179.90 (13)
O1—C7—C8—C1310.4 (2)C16—C15—N1—C1855.98 (19)
C6—C7—C8—C13170.68 (14)C16—C15—N1—C14178.68 (15)
C13—C8—C9—C100.3 (2)C12—C14—N1—C18167.76 (13)
C7—C8—C9—C10176.70 (14)C12—C14—N1—C1570.41 (17)
C8—C9—C10—C110.8 (2)C15—C16—O3—C1759.5 (2)
C9—C10—C11—O2178.50 (14)C18—C17—O3—C1660.1 (2)
C9—C10—C11—C121.3 (2)C2—C1—S1—C40.7 (2)
O2—C11—C12—C13179.13 (13)C3—C4—S1—C10.90 (15)
C10—C11—C12—C130.7 (2)C5—C4—S1—C1178.40 (16)
O2—C11—C12—C142.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O···N10.83 (2)1.94 (2)2.6834 (18)149 (3)
C1—H1···O1i0.932.383.249 (2)156
C2—H2···O2ii0.932.573.417 (2)152
C5—H5···O10.932.452.786 (2)101
C16—H16A···Cg1iii0.972.883.789 (2)157
C18—H18B···Cg1iv0.972.703.6010 (18)154
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2.
Comparison of experimental (X-ray), theoretical (CNDO and PM3) parameters (Å, °) of the title compound top
BondX-rayCNDOPM3
S1—C11.705 (2)1.76631.7194
S1—C41.720 (2)1.77581.7449
O1—C71.224 (2)1.21431.2196
O2—C111.354 (2)1.35651.3663
O3—C161.419 (2)1.42081.4149
O3—C171.422 (2)1.42091.4153
N1—C141.472 (2)1.46061.4916
N1—C151.469 (2)1.45731.4914
N1—C181.469 (2)1.45671.4906
Bond Angle
C1—S1—C492.20 (9)88.9191.38
C16—O3—C17109.29 (13)110.44112.79
C14—N1—C15111.86 (13)111.15112.06
C14—N1—C18110.61 (13)111.92112.86
C15—N1—C18109.09 (13)109.64111.62
S1—C1—C2111.75 (15)111.11112.58
S1—C4—C5123.58 (12)126.03125.76
S1—C4—C3109.79 (12)109.88111.11
O1—C7—C6120.42 (14)119.03122.82
O1—C7—C8119.90 (14)123.49121.52
O2—C11—C10118.59 (14)119.87115.22
O2—C11—C12121.18 (14)122.06123.98
N1—C14—C12112.14 (12)112.35111.21
N1—C15—C16109.98 (14)110.79109.89
O3—C16—C15111.42 (17)109.89112.44
O3—C17—C18111.22 (14)110.05112.30
N1—C18—C17109.80 (15)110.73110.02
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization)

References

First citationBilginer, S., Gul, H. I., Mete, E., Das, U., Sakagami, H., Umemura, N. & Dimmock, J. R. (2013). J. Enzyme Inhib. Med. Chem. 28, 974–980.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBilginer, S., Unluer, E., Gul, H. I., Mete, E., Isik, S., Vullo, D., Ozensoy-Guler, O., Beyaztas, S., Capasso, C. & Supuran, C. T. (2014). J. Enzyme Inhib. Med. Chem. 29, 495–499.  Web of Science CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, U., Gul, H. I., Alcorn, J., Shrivastav, A., George, T., Sharma, R. K., Nienaber, K. H., De Clercq, E., Balzarini, J., Kawase, M., Kan, N., Tanaka, T., Tani, S., Werbovetz, K. A., Yakovich, A. J., Manavathu, E. K., Stables, J. P. & Dimmock, J. R. (2006). Eur. J. Med. Chem. 41, 577–585.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Shanmuga Sundara Raj, S., Chinnakali, K., Tian, J.-Z., Shen, Z., Zhang, J.-Q. & You, X.-Z. (1999). Acta Cryst. C55, 1843–1845.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGul, H. I., Cizmecioglu, M., Zencir, S., Gul, M., Canturk, P., Atalay, M. & Topcu, Z. (2009). J. Enzyme Inhib. Med. Chem. 24, 804–807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. Chem. Life Sci. 340, 195–201.  Web of Science CrossRef Google Scholar
First citationPople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw-Hill.  Google Scholar
First citationRoman, G. (2015). Eur. J. Med. Chem. 89, 743–816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (1989a). J. Comput. Chem. 10, 209–220.  CrossRef CAS Web of Science Google Scholar
First citationStewart, J. J. P. (1989b). J. Comput. Chem. 10, 221–264.  CrossRef CAS Web of Science Google Scholar
First citationXie, Y., Jiang, H., Du, C., Zhu, Y., Xu, X. & Liu, Q. (2003). Struct. Chem. 14, 295–298.  Web of Science CrossRef Google Scholar
First citationYamali, C., Tugrak, M., Gul, H. I., Tanc, M. & Supuran, C. T. (2016). J. Enzyme Inhib. Med. Chem. 31, 1678–1681.  Web of Science CrossRef Google Scholar
First citationYerdelen, K. O., Gul, H. I., Sakagami, H., Umemura, N. & Sukuroglu, M. (2015). Lett. Drug. Des. Discov. 12, 643–649.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds